J. Semicond. > Volume 39 > Issue 12 > Article Number: 124010

Fabrication, electrical and photovoltaic characteristics of CuInGeSe4/n-Si diode

I. M. El Radaf 1, , A. M. Mansour 2, , and G. B. Sakr 3,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: The CuInGeSe4 thin film was deposited onto n-type single crystal silicon wafers by the electron beam deposition technique. The Au/CuInGeSe4/n-Si/Al heterojunction device has been fabricated. The structure of the CuInGeSe4 thin film was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray analysis (EDX). The dark current–voltage characteristics of the Au/CuInGeSe4/n-Si/Al heterojunction diode have been studied at a temperature range of 303–383 K. Also, the photovoltaic properties were examined at different illumination intensities. The capacitance–voltage characteristics of the CuInGeSe4/n-Si heterojunction were studied at different temperatures in the dark.

Key words: CuInGeSe4electron beam depositionseries resistance, rectificationideality factor

Abstract: The CuInGeSe4 thin film was deposited onto n-type single crystal silicon wafers by the electron beam deposition technique. The Au/CuInGeSe4/n-Si/Al heterojunction device has been fabricated. The structure of the CuInGeSe4 thin film was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray analysis (EDX). The dark current–voltage characteristics of the Au/CuInGeSe4/n-Si/Al heterojunction diode have been studied at a temperature range of 303–383 K. Also, the photovoltaic properties were examined at different illumination intensities. The capacitance–voltage characteristics of the CuInGeSe4/n-Si heterojunction were studied at different temperatures in the dark.

Key words: CuInGeSe4electron beam depositionseries resistance, rectificationideality factor



References:

[1]

Matsushita H, Katsui A. Materials design for Cu-based quaternary compounds derived from chalcopyrite-rule. J Phys Chem Solids, 2005, 66: 1933

[2]

Gorgut G P, Fedorchuk A O, Kityk I V, et al. Synthesis and structural properties of CuInGeS4. J Cryst Growth, 2011, 324: 212

[3]

Li W, Yan X, Xu W L, et al. Efficiency improvement of CIGS solar cells by a modified rear contact. Sol Energy, 2017, 157: 486

[4]

Shah A V, Schade H, Vanecek M, et al. Thin-film silicon solar cell technology. Prog Photovoltaics Res Appl, 2004, 12: 113

[5]

Matsushita H, Ochiai T, Mikajiri K, et al. Preparation of CuInGeSe4 thin films by selenization method using the Cu–In–Ge evaporated layer precursors. J Phys Chem Solids, 2005, 66: 1937

[6]

Matsushita H, Maeda T, Katsui A, et al. Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu–III–IV–VI4 and Cu2–II–IV–VI4(II = Zn, Cd; III = Ga, In; IV = Ge, Sn; VI = Se). J Cryst Growth, 2000, 208: 416

[7]

Hughes O H, Woolley J C, Lopez-Rivera S A, et al. Quaternary adamantine selenides and tellurides of the form I III IV VI4. Solid State Commun, 1980, 35: 573

[8]

Contreras M A, Ramanathan K, Abushama J, et al. Diode characteristics in state-of-the-art ZnO/CdS/ Cu(In1-xGax)Se2 solar cells. Prog Photovolt Res Appl, 2005, 13: 209

[9]

Abd El-Rahman K F, Darwish A A A, El-Shazly E A A. Electrical and photovoltaic properties of SnSe/Si heterojunction. Mater Sci Semicond Process, 2014, 25: 123

[10]

Lin Y, Chen X. Advanced nano deposition methods. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2016

[11]

Cuomo J J, Rossnagel S M, Haufman H R, et al. Handbook of ion beam processing technology: principles, deposition, film modification, and synthesis. Westwood: Noyes Publications, 1989

[12]

Cividjian N, Hagen C W. Electron-beam-induced nanometer-scale deposition. Adv Imaging Electron Phys, 2006, 143: 1

[13]

Strehl P. Beam Instrumentation and Diagnostics. Berlin: Springer, 2006

[14]

El Radaf I M, Nasr M, Mansour A M. Structural, electrical and photovoltaic properties of CoS/Si heterojunction prepared by spray pyrolysis. Mater Res Express, 2018, 5: 015904

[15]

Hassan N, Mansour A M, Roushdy N, et al. Optical sensing performance characteristics of Schottky devices diodes based nano-particle disodium 6-hydroxy-5-[(2-methoxy-5-methyl-4-sulfophenyl)azo]-2-naphthalenesulfonate thin films: A comparison study. Optik (Stuttg), 2018, 158: 1255

[16]

Nasr M, El Radaf I M, Mansour A M. Current transport and capacitance–voltage characteristics of an n-PbTe/p-GaP heterojunction prepared using the electron beam deposition technique. J Phys Chem Solids, 2018, 115: 283

[17]

Farag A A M, Terra F S, Mahmoud G M, et al. Study of Gaussian distribution of inhomogeneous barrier height for n-InSb/p-GaAs heterojunction prepared by flash evaporation. J Alloys Compd, 2009, 481: 427

[18]

Farag A A M, Soliman H S, Atta A A. Analysis of dark and photovoltaic characteristics of Au/Pyronine G(Y)/p-Si/Al heterojunction. Synth Met, 2012, 161: 2759

[19]

Farag A A M, Terra F S, Fahim G M M, et al. Current transport and capacitance-voltage characteristics of n-InSb/p-GaP prepared by flash evaporation and liquid phase epitaxy. Met Mater Int, 2012, 18: 509

[20]

Gupta R K, Aydın M E, Yakuphanoglu F. Photoconducting and electrical properties of Al/TIPS-pentacene/p-Si/Al hybrid diode for optical sensor applications. Synth Met, 2011, 161: 2355

[21]

Yahia I S, Farag A A M, Yakuphanoglu F, et al. Temperature dependence of electronic parameters of organic Schottky diode based on fluorescein sodium salt. Synth Met, 2011, 161: 881

[22]

Yahia I S, Fadel M, Sakr G B, et al. Analysis of current–voltage characteristics of Al/p-ZnGa2Se4/n-Si nanocrystalline heterojunction diode. J Alloys Compd, 2011, 509: 4414

[23]

Soliman H S, Farag A A M, Khosifan N M, et al. Electronic and photovoltaic properties of Au/pyronine G(Y)/p-GaAs/Au:Zn heterojunction. J Alloys Compd, 2012, 530: 157

[24]

Çetinkaya H G, Tecimer H, Uslu H, et al. Photovoltaic characteristics of Au/PVA (Bi-doped)/n-Si Schottky barrier diodes (SBDs) at various temperatures. Curr Appl Phys, 2013, 13: 1150

[25]

Farag A A M, Terra F S, Ashery A, et al. Structural and electrical characteristics of n-InSb/p-GaAs heterojunction prepared by liquid phase epitaxy. J Alloys Compd, 2014, 615: 604

[26]

Farag A A M, Terra F S, Ashery A, et al. Structural and electrical characterization of n-InAs/p-GaP heterojunctions prepared by vacuum flash evaporation and liquid phase epitaxy. Optoelectron. Adv Mater – RAPID Commun, 2017, 11: 82

[27]

Ahmad Z, Sayyad M H, Yaseen M, et al. Investigation of 5,10,15,20-Tetrakis(3-,5--Di-Tert-Butylphenyl)Porphyrinatocopper(II) for Electronics Applications. Int J Chem Mol Nucl Mater Metall Eng, 2011, 5: 380

[28]

Farag A A M, Terra F S, Ashery A, et al. Temperature dependence of J-V and C-V characteristics of n-InAs/p-GaAs heterojunctions prepared by flash evaporation technique and liquid phase epitaxy. Indian Pure Appl Phys, 2018, 56: 203

[29]

El-Nahass M M, Metwally H S, El-Sayed H E A , et al. Electrical and photovoltaic properties of FeTPPCl/p-Si heterojunction. Synth Met, 2011, 161: 2253

[30]

Hameed T A, El Radaf I M, Elsayed-Ali H E. Characterization of CuInGeSe4 thin films and Al/n-Si/p-CuInGeSe4/Au heterojunction device. J Mater Sci Mater Electron, 2018, 29: 12584

[31]

Sze S M, Ng K K. Physics of semiconductor devices. New York: Wiley-Interscience, 2007

[1]

Matsushita H, Katsui A. Materials design for Cu-based quaternary compounds derived from chalcopyrite-rule. J Phys Chem Solids, 2005, 66: 1933

[2]

Gorgut G P, Fedorchuk A O, Kityk I V, et al. Synthesis and structural properties of CuInGeS4. J Cryst Growth, 2011, 324: 212

[3]

Li W, Yan X, Xu W L, et al. Efficiency improvement of CIGS solar cells by a modified rear contact. Sol Energy, 2017, 157: 486

[4]

Shah A V, Schade H, Vanecek M, et al. Thin-film silicon solar cell technology. Prog Photovoltaics Res Appl, 2004, 12: 113

[5]

Matsushita H, Ochiai T, Mikajiri K, et al. Preparation of CuInGeSe4 thin films by selenization method using the Cu–In–Ge evaporated layer precursors. J Phys Chem Solids, 2005, 66: 1937

[6]

Matsushita H, Maeda T, Katsui A, et al. Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu–III–IV–VI4 and Cu2–II–IV–VI4(II = Zn, Cd; III = Ga, In; IV = Ge, Sn; VI = Se). J Cryst Growth, 2000, 208: 416

[7]

Hughes O H, Woolley J C, Lopez-Rivera S A, et al. Quaternary adamantine selenides and tellurides of the form I III IV VI4. Solid State Commun, 1980, 35: 573

[8]

Contreras M A, Ramanathan K, Abushama J, et al. Diode characteristics in state-of-the-art ZnO/CdS/ Cu(In1-xGax)Se2 solar cells. Prog Photovolt Res Appl, 2005, 13: 209

[9]

Abd El-Rahman K F, Darwish A A A, El-Shazly E A A. Electrical and photovoltaic properties of SnSe/Si heterojunction. Mater Sci Semicond Process, 2014, 25: 123

[10]

Lin Y, Chen X. Advanced nano deposition methods. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2016

[11]

Cuomo J J, Rossnagel S M, Haufman H R, et al. Handbook of ion beam processing technology: principles, deposition, film modification, and synthesis. Westwood: Noyes Publications, 1989

[12]

Cividjian N, Hagen C W. Electron-beam-induced nanometer-scale deposition. Adv Imaging Electron Phys, 2006, 143: 1

[13]

Strehl P. Beam Instrumentation and Diagnostics. Berlin: Springer, 2006

[14]

El Radaf I M, Nasr M, Mansour A M. Structural, electrical and photovoltaic properties of CoS/Si heterojunction prepared by spray pyrolysis. Mater Res Express, 2018, 5: 015904

[15]

Hassan N, Mansour A M, Roushdy N, et al. Optical sensing performance characteristics of Schottky devices diodes based nano-particle disodium 6-hydroxy-5-[(2-methoxy-5-methyl-4-sulfophenyl)azo]-2-naphthalenesulfonate thin films: A comparison study. Optik (Stuttg), 2018, 158: 1255

[16]

Nasr M, El Radaf I M, Mansour A M. Current transport and capacitance–voltage characteristics of an n-PbTe/p-GaP heterojunction prepared using the electron beam deposition technique. J Phys Chem Solids, 2018, 115: 283

[17]

Farag A A M, Terra F S, Mahmoud G M, et al. Study of Gaussian distribution of inhomogeneous barrier height for n-InSb/p-GaAs heterojunction prepared by flash evaporation. J Alloys Compd, 2009, 481: 427

[18]

Farag A A M, Soliman H S, Atta A A. Analysis of dark and photovoltaic characteristics of Au/Pyronine G(Y)/p-Si/Al heterojunction. Synth Met, 2012, 161: 2759

[19]

Farag A A M, Terra F S, Fahim G M M, et al. Current transport and capacitance-voltage characteristics of n-InSb/p-GaP prepared by flash evaporation and liquid phase epitaxy. Met Mater Int, 2012, 18: 509

[20]

Gupta R K, Aydın M E, Yakuphanoglu F. Photoconducting and electrical properties of Al/TIPS-pentacene/p-Si/Al hybrid diode for optical sensor applications. Synth Met, 2011, 161: 2355

[21]

Yahia I S, Farag A A M, Yakuphanoglu F, et al. Temperature dependence of electronic parameters of organic Schottky diode based on fluorescein sodium salt. Synth Met, 2011, 161: 881

[22]

Yahia I S, Fadel M, Sakr G B, et al. Analysis of current–voltage characteristics of Al/p-ZnGa2Se4/n-Si nanocrystalline heterojunction diode. J Alloys Compd, 2011, 509: 4414

[23]

Soliman H S, Farag A A M, Khosifan N M, et al. Electronic and photovoltaic properties of Au/pyronine G(Y)/p-GaAs/Au:Zn heterojunction. J Alloys Compd, 2012, 530: 157

[24]

Çetinkaya H G, Tecimer H, Uslu H, et al. Photovoltaic characteristics of Au/PVA (Bi-doped)/n-Si Schottky barrier diodes (SBDs) at various temperatures. Curr Appl Phys, 2013, 13: 1150

[25]

Farag A A M, Terra F S, Ashery A, et al. Structural and electrical characteristics of n-InSb/p-GaAs heterojunction prepared by liquid phase epitaxy. J Alloys Compd, 2014, 615: 604

[26]

Farag A A M, Terra F S, Ashery A, et al. Structural and electrical characterization of n-InAs/p-GaP heterojunctions prepared by vacuum flash evaporation and liquid phase epitaxy. Optoelectron. Adv Mater – RAPID Commun, 2017, 11: 82

[27]

Ahmad Z, Sayyad M H, Yaseen M, et al. Investigation of 5,10,15,20-Tetrakis(3-,5--Di-Tert-Butylphenyl)Porphyrinatocopper(II) for Electronics Applications. Int J Chem Mol Nucl Mater Metall Eng, 2011, 5: 380

[28]

Farag A A M, Terra F S, Ashery A, et al. Temperature dependence of J-V and C-V characteristics of n-InAs/p-GaAs heterojunctions prepared by flash evaporation technique and liquid phase epitaxy. Indian Pure Appl Phys, 2018, 56: 203

[29]

El-Nahass M M, Metwally H S, El-Sayed H E A , et al. Electrical and photovoltaic properties of FeTPPCl/p-Si heterojunction. Synth Met, 2011, 161: 2253

[30]

Hameed T A, El Radaf I M, Elsayed-Ali H E. Characterization of CuInGeSe4 thin films and Al/n-Si/p-CuInGeSe4/Au heterojunction device. J Mater Sci Mater Electron, 2018, 29: 12584

[31]

Sze S M, Ng K K. Physics of semiconductor devices. New York: Wiley-Interscience, 2007

[1]

Zhang Shuang, Guo Shuxu, Guo Xin, Cao Junsheng, Gao Fengli, Shan Jiangdong, Ren Ruizhi. Extrinsic Ideality Factor of Laser Array. J. Semicond., 2007, 28(5): 768.

[2]

K. Chakraborty, S. Chakraborty, N. B. Manik. Effect of single walled carbon nanotubes on series resistance of Rose Bengal and Methyl Red dye-based organic photovoltaic device. J. Semicond., 2018, 39(9): 094001. doi: 10.1088/1674-4926/39/9/094001

[3]

Gourab Dutta, Sukla Basu. Analysis of the electrical characteristics of GaInP/GaAs HBTs including the recombination effect. J. Semicond., 2012, 33(5): 054002. doi: 10.1088/1674-4926/33/5/054002

[4]

P. Dalapati, N. B. Manik, A. N. Basu. Effect of temperature on the intensity and carrier lifetime of an AlGaAs based red light emitting diode. J. Semicond., 2013, 34(9): 092001. doi: 10.1088/1674-4926/34/9/092001

[5]

P. Dalapati, N.B. Manik, A.N. Basu. Influence of temperature on tunneling-enhanced recombination in Si based p-i-n photodiodes. J. Semicond., 2014, 35(8): 082001. doi: 10.1088/1674-4926/35/8/082001

[6]

Cheng Caijing, Ding Jiaxin, Zhang Xiangfeng, Zhao Hongyan, Lu Zhengxiong, Si Junjie, Sun Weiguo, Sang Liwen, Zhang Guoyi. A Back-Illuminated Al0.42Ga0.58N/Al0.40Ga0.60N Heterojunction p-i-n Solar-Blind UV Photodetector. J. Semicond., 2008, 29(3): 566.

[7]

Ali Ahaitouf, Abdelaziz Ahaitouf, Jean Paul Salvestrini, Hussein Srour. Accurate surface potential determination in Schottky diodes by the use of a correlated current and capacitance voltage measurements. Application to n-InP. J. Semicond., 2011, 32(10): 104002. doi: 10.1088/1674-4926/32/10/104002

[8]

M. A. Yeganeh, S. H. Rahmatollahpur. Barrier height and ideality factor dependency on identically produced small Au/p-Si Schottky barrier diodes. J. Semicond., 2010, 31(7): 074001. doi: 10.1088/1674-4926/31/7/074001

[9]

Jiang Ran, Meng Lingguo, Zhang Xijian, Hyung-Suk Jung, Cheol Seong Hwang. Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite by using electron beam irradiation. J. Semicond., 2012, 33(9): 093004. doi: 10.1088/1674-4926/33/9/093004

[10]

Guo Weilian, Song Ruiliang, Wang Wei, Yu Xin, Niu Pingjuan, Mao Luhong, Zhang Shilin, Liang Huilai. A New Method for Measuring Series Resistance of RTDs. J. Semicond., 2008, 29(5): 950.

[11]

Nitin Kumar, Bhawana Joshi, K. Asokan. Influence of deposition rate on the structural, optical and electrical properties of electron beam evaporated SnO2 thin films for transparent conducting electrode applications. J. Semicond., 2018, 39(8): 083002. doi: 10.1088/1674-4926/39/8/083002

[12]

Chen Jiezhi, Shi Yi, Pu Lin, Long Shibing, Liu Ming, Zheng Youdou. Transport Characteristics of Si-Based Single-Electron Transistors Having a High Gate Modulation Factor. J. Semicond., 2007, 28(1): 69.

[13]

Liu Lifeng, Chen Nuofu, Chai Chunlin, Yang Shaoyan, Liu Zhikai. Mn-Si Films Fabricated by Low Energy Ion Beam Deposition. J. Semicond., 2005, 26(S1): 94.

[14]

Hao Xu, Hong Yang, Yanrong Wang, Wenwu Wang, Guangxing Wan, Shangqing Ren, Weichun Luo, Luwei Qi, Chao Zhao, Dapeng Chen, Xinyu Liu, Tianchun Ye. Series resistance effect on time zero dielectrics breakdown characteristics of MOSCAP with ultra-thin EOT high-k/metal gate stacks. J. Semicond., 2016, 37(5): 054005. doi: 10.1088/1674-4926/37/5/054005

[15]

Luo Dawei, Liu Ning, Lu Yiping, Zhang Guoliang, Li Tingju. Removal of impurities from metallurgical grade silicon by electron beam melting. J. Semicond., 2011, 32(3): 033003. doi: 10.1088/1674-4926/32/3/033003

[16]

, , , , . A New Method to Retrieve Proximity Effect Parameters in Electron-Beam Lithography. J. Semicond., 2005, 26(3): 455.

[17]

Liu Ming, Chen Baogin, Wang Yunxiang, Long Shibing, Lu Jing, Li Ling. Fundamental technique of direct writing Electron beam Nano-Lithography. J. Semicond., 2003, 24(S1): 226.

[18]

Chen Baogin, Ren Liming, Liu Ming, Wang Yunxiang, Long Shibing, Lu Jing, Li Ling. Proximity Effect Correction Technique in Electron-Beam Direct Writing. J. Semicond., 2003, 24(S1): 221.

[19]

Zhu Xinghua, Yang Dingyu, Wei Zhaorong, Sun Hui, Wang Zhiguo, Zu Xiaotao. Photoconductive properties of lead iodide films prepared by electron beam evaporation. J. Semicond., 2010, 31(8): 083002. doi: 10.1088/1674-4926/31/8/083002

[20]

Gao Xin, Sun Guosheng, Li Jinmin, Zhao Wanshun, Wang Lei, Zhang Yongxing, Zeng Yiping. Homoepitaxial Growth and Properties of 4H-SiC by Chemical Vapor Deposition. J. Semicond., 2005, 26(S1): 70.

Search

Advanced Search >>

GET CITATION

I M El Radaf, A M Mansour, G B Sakr, Fabrication, electrical and photovoltaic characteristics of CuInGeSe4/n-Si diode[J]. J. Semicond., 2018, 39(12): 124010. doi: 10.1088/1674-4926/39/12/124010.

Export: BibTex EndNote

Article Metrics

Article views: 689 Times PDF downloads: 30 Times Cited by: 0 Times

History

Manuscript received: 11 May 2018 Manuscript revised: 17 June 2018 Online: Uncorrected proof: 11 October 2018 Published: 13 December 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误