SEMICONDUCTOR DEVICES

Experimental comparison of SiC GTO and ETO for pulse power applications

Cheng Zeng, Linfeng Deng, Zongjian Li and Jun Wang

+ Author Affiliations

 Corresponding author: Jun Wang, Email: junwang@hnu.edu.cn

PDF

Turn off MathJax

Abstract: Silicon carbide (SiC) emitter turn-off thyristors (ETOs) are very promising high power capacity semiconductor devices for high voltage and high power density power systems and pulse power applications. However, reports on comparison of high voltage SiC GTOs and ETOs in pulse power applications have been rare. In this paper, a comprehensive study on a 6.5 kV SiC GTO and ETO are carried out to demonstrate the superior performance of the SiC ETO over the GTO in pulse power application. A 6.5 kV SiC ETO was designed and tested with a printed circuit board (PCB) integrated gate driver. The forward conduction characteristics of the SiC ETO and GTO in elevated temperatures are measured and compared, showing the excellent temperature coefficient of the SiC ETO's output characteristics. Their turn-off characteristics with resistive load are measured and compared, demonstrating that the SiC ETO has much faster switching speed and smaller turn-off loss. Experimental results demonstrate that the SiC ETO has a better performance, especially with respect to its switching characteristics, making it a very competitive candidate for high power and pulse power applications.

Key words: SiCthyristoremitter turn-off thyristorpulse power



[1]
Wang F, Zhang Z, Ericsen T, et al. Advances in power conversion and drives for shipboard systems. Proc IEEE, 2015, 103(12): 2285 doi: 10.1109/JPROC.2015.2495331
[2]
Mirzaee H, De A, Tripathi A, et al. Design comparison of high-power medium-voltage converters based on a 6.5-kV Si-IGBT/Si-PiN diode, a 6.5-kV Si-IGBT/SiC-JBS diode, and a 10-kV SiC-MOSFET/SiC-JBS Diode. IEEE Trans Industry Appl, 2014, 50(4): 2728 doi: 10.1109/TIA.2014.2301865
[3]
Zhu J, Kim H, Chen H, et al. High efficiency SiC traction inverter for electric vehicle applications. IEEE Applied Power Electronics Conference and Exposition (APEC), 2018: 1428
[4]
Ryu S H, Krishnaswami S, Hull B, et al. 10 kV, 5 A 4H-SiC power DMOSFET. IEEE International Symposium on Power Semiconductor Devices & ICs (ISPSD), 2006: 1
[5]
Van E Brunt, Cheng L, Capell C, et al. 22 kV, 1 cm2, 4H-SiC n-IGBTs with improved conductivity modulation. IEEE International Symposium on Power Semiconductor Devices & ICs (ISPSD), 2014: 358
[6]
Cheng L, Agarwal A, Capell C, et al. 20 kV, 2 cm2 4H-SiC gate turn-off thyristors for advanced pulsed power applications. IEEE Pulsed Power Conference (PPC), 2013: 1
[7]
Wang J, Wang G, Li J, et al. Silicon carbide emitter turn-off thyristor, a promising technology for high voltage and high frequency applications. IEEE Applied Power Electronics Conference and Exposition (APEC), 2009: 658
[8]
Rezaei M A, Wang G, Huang A Q, et al. Static and dynamic characterization of a >13 kV SiC p-ETO device. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2014: 354
[9]
Sundaresan S, Soe A M, Singh R. Static and switching characteristics of 6500 V silicon carbide anode switched thyristor modules. IEEE Energy Conversion Congress and Exposition (ECCE), 2012: 1515
[10]
De A, Bhattacharya S, Singh R. Performance evaluation and characterization of 6500 V asymmetric SiC NPNP thyristor based current switch. IEEE Wide Bandgap Power Devices and Applications (WiPDA), 2015: 10
[11]
Wang J, Huang A Q. Design and characterization of high-voltage silicon carbide emitter turn-off thyristor. IEEE Trans Power Electron, 2009, 24(5): 1189 doi: 10.1109/TPEL.2009.2013861
[12]
Cheng L, Agarwal A, Palmour J, et al. Advanced silicon carbide gate turn-off thyristor for energy conversion and power grid applications. IEEE Energy Conversion Congress and Exposition (ECCE), 2012: 2249
[13]
Zhanga Q, Agarwal A, Capell C, et al. SiC super GTO thyristor technology development: Present status and future perspective. IEEE Pulsed Power Conference (PPC), 2011: 1530
[14]
Temple V, Waldron J, Holroyd F, et al. 2nd generation Si and SiC SGTO's for extreme pulse power and sub-microsecond switching. IEEE International Conference on Plasma Science (ICOPS), 2013: 1
[15]
Flack T, Hettler C, Bayne S. Characterization of an n-Type 4-kV GTO for pulsed power applications. IEEE Trans Plasma Sci, 2016, 44(10): 1947 doi: 10.1109/TPS.2016.2563161
[16]
Ryu S, Agarwal A K, Singh R, et al. 3100 V, asymmetrical, gate turn-off (GTO) thyristors in 4H-SiC. IEEE Electron Device Lett, 2001, 3(22): 127
[17]
Sakata H, Zahim M. Device simulation of SiC-GTO. Proceedings of the Power Conversion Conference, 2002: 220
[18]
Mohamed N, Sujod M Z. Numerical simulation of SiC GTO thyristor using finite element analysis. International Conference on Electrical Engineering and Informatics, 2009: 227
[19]
Chen C, Pei X, Chen Y, et al. Investigation, evaluation, and optimization of stray inductance in laminated busbar. IEEE Trans Power Electron, 2014, 29(7): 3679 doi: 10.1109/TPEL.2013.2282621
[20]
Kuwabara Y, Wada K, J M, et al. Implementation and performance of a current sensor for a laminated bus bar. IEEE Trans Ind Appl, 2018, 54(3): 2579 doi: 10.1109/TIA.2018.2796538
[21]
Rogers D J, Lakshmanan P. Low-inductance snubber arrays for high-power, high-bandwidth switch-mode amplifiers. IEEE Applied Power Electronics Conference and Exposition (APEC), 2015: 255
Fig. 1.  (Color online) A unit cell structure of the 4H-SiC GTO thyristor.

Fig. 2.  Schematic of 6.5 kV SiC ETO basic structures.

Fig. 3.  (Color online) Prototype of the 6.5 kV SiC ETO test board.

Fig. 4.  Schematic of SiC ETO gate drive circuit.

Fig. 5.  (Color online) SiC ETO switching waveforms at 3 kV.

Fig. 6.  (Color online) The conduction characteristics of the p-channel MOSFET.

Fig. 7.  (Color online) Forward conduction characteristics of the SiC GTO and SiC ETO at various temperatures.

Fig. 8.  (Color online) Blocking characteristics of the 6.5 kV SiC GTO at room temperatures.

Fig. 9.  (Color online) Turn-off waveforms at 500 V/1 A (a) SiC GTO and (b) SiC ETO.

Fig. 10.  (Color online) Mixed-mode circuit simulation setup.

Fig. 11.  (Color online) Simulated results with (a) different dv/dt and (b) different gate current.

Fig. 12.  (Color online) (a) Prototype and (b) circuit diagram of pulse power test bed.

Fig. 13.  (Color online) SiC ETO pulse discharge waveforms at 1.5 kV/3 A.

Table 1.   Key parameters used in the simulation.

Parameter SiC GTO
Base doping 7 × 1016 cm−3
Emitter doping 2 × 1019 cm−3
Drift doping 2.5 × 1014 cm−3
Anode width 10 μm
Gate width 5 μm
Base thickness 2.5 μm
Anode thickness 2.5 μm
Drift thickness 75 μm
Distance between A and G 5 μm
Lifetime τn = 3τp 0.6 μm
DownLoad: CSV
[1]
Wang F, Zhang Z, Ericsen T, et al. Advances in power conversion and drives for shipboard systems. Proc IEEE, 2015, 103(12): 2285 doi: 10.1109/JPROC.2015.2495331
[2]
Mirzaee H, De A, Tripathi A, et al. Design comparison of high-power medium-voltage converters based on a 6.5-kV Si-IGBT/Si-PiN diode, a 6.5-kV Si-IGBT/SiC-JBS diode, and a 10-kV SiC-MOSFET/SiC-JBS Diode. IEEE Trans Industry Appl, 2014, 50(4): 2728 doi: 10.1109/TIA.2014.2301865
[3]
Zhu J, Kim H, Chen H, et al. High efficiency SiC traction inverter for electric vehicle applications. IEEE Applied Power Electronics Conference and Exposition (APEC), 2018: 1428
[4]
Ryu S H, Krishnaswami S, Hull B, et al. 10 kV, 5 A 4H-SiC power DMOSFET. IEEE International Symposium on Power Semiconductor Devices & ICs (ISPSD), 2006: 1
[5]
Van E Brunt, Cheng L, Capell C, et al. 22 kV, 1 cm2, 4H-SiC n-IGBTs with improved conductivity modulation. IEEE International Symposium on Power Semiconductor Devices & ICs (ISPSD), 2014: 358
[6]
Cheng L, Agarwal A, Capell C, et al. 20 kV, 2 cm2 4H-SiC gate turn-off thyristors for advanced pulsed power applications. IEEE Pulsed Power Conference (PPC), 2013: 1
[7]
Wang J, Wang G, Li J, et al. Silicon carbide emitter turn-off thyristor, a promising technology for high voltage and high frequency applications. IEEE Applied Power Electronics Conference and Exposition (APEC), 2009: 658
[8]
Rezaei M A, Wang G, Huang A Q, et al. Static and dynamic characterization of a >13 kV SiC p-ETO device. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2014: 354
[9]
Sundaresan S, Soe A M, Singh R. Static and switching characteristics of 6500 V silicon carbide anode switched thyristor modules. IEEE Energy Conversion Congress and Exposition (ECCE), 2012: 1515
[10]
De A, Bhattacharya S, Singh R. Performance evaluation and characterization of 6500 V asymmetric SiC NPNP thyristor based current switch. IEEE Wide Bandgap Power Devices and Applications (WiPDA), 2015: 10
[11]
Wang J, Huang A Q. Design and characterization of high-voltage silicon carbide emitter turn-off thyristor. IEEE Trans Power Electron, 2009, 24(5): 1189 doi: 10.1109/TPEL.2009.2013861
[12]
Cheng L, Agarwal A, Palmour J, et al. Advanced silicon carbide gate turn-off thyristor for energy conversion and power grid applications. IEEE Energy Conversion Congress and Exposition (ECCE), 2012: 2249
[13]
Zhanga Q, Agarwal A, Capell C, et al. SiC super GTO thyristor technology development: Present status and future perspective. IEEE Pulsed Power Conference (PPC), 2011: 1530
[14]
Temple V, Waldron J, Holroyd F, et al. 2nd generation Si and SiC SGTO's for extreme pulse power and sub-microsecond switching. IEEE International Conference on Plasma Science (ICOPS), 2013: 1
[15]
Flack T, Hettler C, Bayne S. Characterization of an n-Type 4-kV GTO for pulsed power applications. IEEE Trans Plasma Sci, 2016, 44(10): 1947 doi: 10.1109/TPS.2016.2563161
[16]
Ryu S, Agarwal A K, Singh R, et al. 3100 V, asymmetrical, gate turn-off (GTO) thyristors in 4H-SiC. IEEE Electron Device Lett, 2001, 3(22): 127
[17]
Sakata H, Zahim M. Device simulation of SiC-GTO. Proceedings of the Power Conversion Conference, 2002: 220
[18]
Mohamed N, Sujod M Z. Numerical simulation of SiC GTO thyristor using finite element analysis. International Conference on Electrical Engineering and Informatics, 2009: 227
[19]
Chen C, Pei X, Chen Y, et al. Investigation, evaluation, and optimization of stray inductance in laminated busbar. IEEE Trans Power Electron, 2014, 29(7): 3679 doi: 10.1109/TPEL.2013.2282621
[20]
Kuwabara Y, Wada K, J M, et al. Implementation and performance of a current sensor for a laminated bus bar. IEEE Trans Ind Appl, 2018, 54(3): 2579 doi: 10.1109/TIA.2018.2796538
[21]
Rogers D J, Lakshmanan P. Low-inductance snubber arrays for high-power, high-bandwidth switch-mode amplifiers. IEEE Applied Power Electronics Conference and Exposition (APEC), 2015: 255
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3495 Times PDF downloads: 55 Times Cited by: 0 Times

    History

    Received: 17 July 2018 Revised: 10 September 2018 Online: Accepted Manuscript: 08 November 2018Uncorrected proof: 14 November 2018Published: 13 December 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Cheng Zeng, Linfeng Deng, Zongjian Li, Jun Wang. Experimental comparison of SiC GTO and ETO for pulse power applications[J]. Journal of Semiconductors, 2018, 39(12): 124017. doi: 10.1088/1674-4926/39/12/124017 C Zeng, L F Deng, Z J Li, J Wang, Experimental comparison of SiC GTO and ETO for pulse power applications[J]. J. Semicond., 2018, 39(12): 124017. doi: 10.1088/1674-4926/39/12/124017.Export: BibTex EndNote
      Citation:
      Cheng Zeng, Linfeng Deng, Zongjian Li, Jun Wang. Experimental comparison of SiC GTO and ETO for pulse power applications[J]. Journal of Semiconductors, 2018, 39(12): 124017. doi: 10.1088/1674-4926/39/12/124017

      C Zeng, L F Deng, Z J Li, J Wang, Experimental comparison of SiC GTO and ETO for pulse power applications[J]. J. Semicond., 2018, 39(12): 124017. doi: 10.1088/1674-4926/39/12/124017.
      Export: BibTex EndNote

      Experimental comparison of SiC GTO and ETO for pulse power applications

      doi: 10.1088/1674-4926/39/12/124017
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 51577054) and the Science and Technology Major Project of Hunan Province (No. 2017GK1020).

      More Information
      • Corresponding author: Email: junwang@hnu.edu.cn
      • Received Date: 2018-07-17
      • Revised Date: 2018-09-10
      • Published Date: 2018-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return