SPECIAL ISSUE ON Si-BASED MATERIALS AND DEVICES

Dopant atoms as quantum components in silicon nanoscale devices

Xiaosong Zhao1, 2, Weihua Han1, 2, , Hao Wang1, Liuhong Ma1, 3, Xiaoming Li1, Wang Zhang1, 2, Wei Yan1 and Fuhua Yang1, 2, 3,

+ Author Affiliations

 Corresponding author: Weihua Han, E-mail: weihua@semi.ac.cn; Fuhua Yang, fhyang@semi.ac.cn

PDF

Turn off MathJax

Abstract: Recent progress in nanoscale fabrication allows many fundamental studies of the few dopant atoms in various semiconductor nanostructures. Since the size of nanoscale devices has touched the limit of the nature, a single dopant atom may dominate the performance of the device. Besides, the quantum computing considered as a future choice beyond Moore's law also utilizes dopant atoms as functional units. Therefore, the dopant atoms will play a significant role in the future novel nanoscale devices. This review focuses on the study of few dopant atoms as quantum components in silicon nanoscale device. The control of the number of dopant atoms and unique quantum transport characteristics induced by dopant atoms are presented. It can be predicted that the development of nanoelectronics based on dopant atoms will pave the way for new possibilities in quantum electronics.

Key words: silicon nanoscale devicesdopant atomsionization energydopant-induced quantum dotsquantum transport



[1]
Tanaka T, Usuki T, Futatsugi T, et al. Vth fluctuation induced by statistical variation of pocket dopant profile. International Electron Devices Meeting, 2000: 271
[2]
Sano N, Tomizawa M. Random dopant model for three-dimensional drift-diffusion simulations in metal–oxide–semiconductor field-effect-transistors. Appl Phys Lett, 2001, 79: 2267 doi: 10.1063/1.1406980
[3]
Li Y, Yu S M, Hwang J R, et al. Discrete dopant fluctuations in 20-nm/15-nm-gate planar CMOS. IEEE Trans Electron Devices, 2008, 55: 1449 doi: 10.1109/TED.2008.921991
[4]
Shinada T, Okamoto S, Kobayashi T, et al. Enhancing semiconductor device performance using ordered dopant arrays. Nature, 2005, 437: 1128 doi: 10.1038/nature04086
[5]
Han W H, Wang Z M. Toward quantum FinFET. Berlin: Springer, 2013
[6]
Fujiwara A, Inokawa H, Yamazaki K, et al. Single electron tunneling transistor with tunable barriers using silicon nanowire metal–oxide–semiconductor field-effect transistor. Appl Phys Lett, 2006, 88: 053121 doi: 10.1063/1.2168496
[7]
Fuechsle M, Miwa J A, Mahapatra S, et al. A single-atom transistor. Nat Nanotechnol, 2012, 7: 242 doi: 10.1038/nnano.2012.21
[8]
Moraru D, Udhiarto A, Anwar M, et al. Atom devices based on single dopants in silicon nanostructures. Nanoscale Res Lett, 2011, 6: 479 doi: 10.1186/1556-276X-6-479
[9]
Lansbergen G P, Rahman R, Wellard C J, et al. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nat Phys, 2008, 4: 656 doi: 10.1038/nphys994
[10]
Kane B E. A silicon-based nuclear spin quantum computer. Nature, 1998, 393: 133 doi: 10.1038/30156
[11]
Vrijen R, Yablonovitch E, Wang K, et al. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys Rev A, 2000, 62: 012306 doi: 10.1103/PhysRevA.62.012306
[12]
Kuljanishvili I, Kayis C, Harrison J F, et al. Scanning-probe spectroscopy of semiconductor donor molecules. Nat Phys, 2008, 4: 227 doi: 10.1038/nphys855
[13]
Gasseller M, DeNinno M, Loo R, et al. Single-electron capacitance spectroscopy of individual dopants in silicon. Nano Lett, 2011, 11: 5208 doi: 10.1021/nl2025163
[14]
Schofield S R, Curson N J, Simmons M Y, et al. Atomically precise placement of single dopants in Si. Phys Rev Lett, 2003, 91: 136104 doi: 10.1103/PhysRevLett.91.136104
[15]
Sellier H, Lansbergen G P, Caro J, et al. Transport spectroscopy of a single dopant in a gated silicon nanowire. Phys Rev Lett, 2006, 97: 206805 doi: 10.1103/PhysRevLett.97.206805
[16]
Escott C C, Zwanenburg F A, Morello A. Resonant tunneling features in quantum dots. Nanotechnology, 2010, 21: 274018 doi: 10.1088/0957-4484/21/27/274018
[17]
Matsukawa T, Fukai T, Suzuki S, et al. Development of single-ion implantation — controllability of implanted ion number. Appl Surf Scie, 1997, 117: 677
[18]
Persaud A, Allen F I, Gicquel F, et al. Single ion implantation with scanning probe alignment. J Vac Sci Technol B, 2004, 22: 2992 doi: 10.1116/1.1802891
[19]
Persaud A, Ivanova K, Sarov Y, et al. Micromachined piezoresistive proximal probe with integrated bimorph actuator for aligned single ion implantation. J Vac Sci Technol B, 2006, 24: 3148 doi: 10.1116/1.2375079
[20]
Han W H, Wang H, Yang X, et al. Transport through dopant atom arrays in silicon junctionless nanowire transistor. 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2014: 1
[21]
Mott N F. Metal–insulator transition. Rev Modern Phys, 1968, 40: 677 doi: 10.1103/RevModPhys.40.677
[22]
Bose D N, Seishu B, Parthasarathy G, et al. Doping dependence of semiconductor–metal transition in InP at high pressures. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1986, 405: 345
[23]
Altermatt P P, Schenk A, Heiser G. A simulation model for the density of states and for incomplete ionization in crystalline silicon. I. Establishing the model in Si:P. J Appl Phys, 2006, 100: 113714 doi: 10.1063/1.2386934
[24]
Varshni Y P, Khanna S M. Effect of dielectric screening on the donor binding energy in silicon and germanium. Phys Rev B, 1991, 43: 9279 doi: 10.1103/PhysRevB.43.9279
[25]
Li X M, Han W H, Wang H, et al. Low-temperature electron mobility in heavily n-doped junctionless nanowire transistor. Appl Phys Lett, 2013, 102: 223507 doi: 10.1063/1.4809828
[26]
Deleure C, Lannoo M. Nanostructures: theory and modelling. Berlin: Springer Verlag, 2004
[27]
Niquet Y M, Lherbier A, Quang N H, et al. Electronic structure of semiconductor nanowires. Phys Rev B, 2006, 73: 165319 doi: 10.1103/PhysRevB.73.165319
[28]
Pereira R N, Stegner A R, Andlauer T, et al. Dielectric screening versus quantum confinement of phosphorus donors in silicon nanocrystals investigated by magnetic resonance. Phys Rev B, 2009, 79: 161304 doi: 10.1103/PhysRevB.79.161304
[29]
Diarra M, Niquet Y M, Delerue C, et al. Ionization energy of donor and acceptor impurities in semiconductor nanowires: importance of dielectric confinement. Phys Rev B, 2007, 75: 045301 doi: 10.1103/PhysRevB.75.045301
[30]
Pierre M, Wacquez R, Jehl X, et al. Single-donor ionization energies in a nanoscale CMOS channel. Nat Nanotechnol, 2010, 5: 133 doi: 10.1038/nnano.2009.373
[31]
Jehl X, Niquet Y M, Sanquer M. Single donor electronics and quantum functionalities with advanced CMOS technology. J Phys: Conden Matter, 2016, 28: 103001 doi: 10.1088/0953-8984/28/10/103001
[32]
Kasfner M A. Artificial atoms. Phys Today, 1993, 46: 24
[33]
Ashoori R C. Electrons in artificial atoms. Nature, 1996, 379: 413 doi: 10.1038/379413a0
[34]
Jäger N D, Urban K, Weber E R, et al. Nanoscale dopant-induced dots and potential fluctuations in GaAs. Appl Phys Lett, 2003, 82: 2700 doi: 10.1063/1.1569419
[35]
Anwar M, Nowak R, Moraru D, et al. Effect of electron injection into phosphorus donors in silicon-on-insulator channel observed by Kelvin probe force microscopy. Appl Phys Lett, 2011, 99: 213101 doi: 10.1063/1.3663624
[36]
Waugh F R, Berry M J, Mar D J, et al. Single-electron charging in double and triple quantum dots with tunable coupling. Phys Rev Lett, 1995, 75: 705 doi: 10.1103/PhysRevLett.75.705
[37]
Tabe M, Moraru D, Ligowski M, et al. Single-electron transport through single dopants in a dopant-rich environment. Phys Rev Lett, 2010, 105: 016803 doi: 10.1103/PhysRevLett.105.016803
[38]
Tan K Y, Chan K W, Mottonen M, et al. Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor. Nano Lett, 2010, 10: 11 doi: 10.1021/nl901635j
[39]
Rahman R, Lansbergen G P, Verduijn J, et al. Electric field reduced charging energies and two-electron bound excited states of single donors in silicon. Phys Rev B, 2011, 84: 115428 doi: 10.1103/PhysRevB.84.115428
[40]
Verduijn J, Tettamanzi G C, Rogge S. Wave function control over a single donor atom. Nano Lett, 2013, 13: 1476 doi: 10.1021/nl304518v
[41]
Ruess F J, Pok W, Goh K E J, et al. Electronic properties of atomically abrupt tunnel junctions in silicon. Phys Rev B, 2007, 75: 121303 doi: 10.1103/PhysRevB.75.121303
[42]
Wang H, Han W H, Ma L H, et al. Quantum transport characteristics in single and multiple N-channel junctionless nanowire transistors at low temperatures. Chin Phys B, 2014, 23: 088107 doi: 10.1088/1674-1056/23/8/088107
[43]
Wang H, Han W H, Ma L H, et al. Current–voltage spectroscopy of dopant-induced quantum-dots in heavily n-doped junctionless nanowire transistors. Appl Phys Lett, 2014, 104: 133509 doi: 10.1063/1.4870512
[44]
Ma L H, Han W H, Wang H, et al. Electron transport behaviors through donor-induced quantum dot array in heavily n-doped junctionless nanowire transistors. J Appl Phys, 2015, 117: 034505 doi: 10.1063/1.4906223
[45]
Schenk A, Altermatt P P, Schmithusen B. Physical model of incomplete ionization for silicon device simulation. 2006 International Conference on Simulation of Semiconductor Processes and Devices, 2006: 51
[46]
Chen G, Klimeck G, Datta S, et al. Resonant tunneling through quantum-dot arrays. Phys Rev B, 1994, 50: 8035 doi: 10.1103/PhysRevB.50.8035
[47]
Krzysztof T, Daniel M, Arup S, et al. Effect of selective doping on the spatial dispersion of donor-induced quantum dots in Si nanoscale transistors. Appl Phys Express, 2015, 8: 094202 doi: 10.7567/APEX.8.094202
[48]
Samanta A, Muruganathan M, Hori M, et al. Single-electron quantization at room temperature in a-few-donor quantum dot in silicon nano-transistors. Appl Phys Lett, 2017, 110: 093107 doi: 10.1063/1.4977836
[49]
Yi K S, Trivedi K, Floresca H C, et al. Room-temperature quantum confinement effects in transport properties of ultrathin Si nanowire field-effect transistors. Nano Lett, 2011, 11: 5465 doi: 10.1021/nl203238e
[50]
Li Z Z. Theory of solids. Shanghai: Higher Education Press, 2002
[51]
Yu D, Wang C, Wehrenberg B L, et al. Variable range hopping conduction in semiconductor nanocrystal solids. Phys Rev Lett, 2004, 92: 216802 doi: 10.1103/PhysRevLett.92.216802
[52]
Mott N, Pepper M, Pollitt S, et al. , The Anderson transition. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1975: 169
[53]
Pollitt S, Pepper M, Adkins C J. The Anderson transition in Silicon inversion layers. Surf Sci, 1976, 58: 79 doi: 10.1016/0039-6028(76)90116-3
[54]
Prati E, Hori M, Guagliardo F, et al. Anderson-Mott transition in arrays of a few dopant atoms in a silicon transistor. Nat Nanotechnol, 2012, 7: 443 doi: 10.1038/nnano.2012.94
[55]
Hiramoto T, Ishikuro H, Fujii T, et al. Room temperature Coulomb blockade and low temperature hopping transport in a multiple-dot-channel metal–oxide–semiconductor field-effect-transistor. Jpn J Appl Phys, 1997, 36: 4139 doi: 10.1143/JJAP.36.4139
[56]
Efros A L, Shklovskii B I. Coulomb gap and low temperature conductivity of disordered systems. J Phys C, 1975, 8: L49 doi: 10.1088/0022-3719/8/4/003
[57]
Wang H, Han W H, Li X M, et al. Low-temperature study of array of dopant atoms on transport behaviors in silicon junctionless nanowire transistor. J Appl Phys, 2014, 116: 124505 doi: 10.1063/1.4896586
[58]
Wang H, Han W H, Zhao X S, et al. Electric-field-dependent charge delocalization from dopant atoms in silicon junctionless nanowire transistor. Chin Phys B, 2016, 25: 108102 doi: 10.1088/1674-1056/25/10/108102
[59]
Colinge J P, Lee C W, Afzalian A, et al. Nanowire transistors without junctions. Nat Nanotechnol, 2010, 5: 225 doi: 10.1038/nnano.2010.15
[60]
Colinge J, Kranti A, Yan R, et al. Junctionless nanowire transistor (JNT): properties and design guidelines. Solid-State Electron, 2011, 65: 33
[61]
Colinge J P, Lee C W, Akhavan N D, et al. Junctionless transistors: physics and properties. In: Semiconductor-on-insulator materials for nanoelectronics applications. Berlin: Springer, 2011: 87
[62]
Lee C W, Ferain I, Afzalian A, et al. Performance estimation of junctionless multigate transistors. Solid-State Electron, 2010, 54: 97 doi: 10.1016/j.sse.2009.12.003
[63]
Nazarov A N, Rudenko T E. Nanowire junctionless silicon-on-insulator MOSFETs: operation features and electrical characterization. 2015 International Semiconductor Conference, 2015: 27
[64]
Rudenko T, Barraud S, Georgiev Y M, et al. Electrical characterization and parameter extraction of junctionless nanowire transistors. J Nano Res, 2016, 39: 17 doi: 10.4028/www.scientific.net/JNanoR.39
[65]
Ma D D D, Lee C S, Au F C K, et al. Small-diameter silicon nanowire surfaces. Science, 2003, 299: 1874 doi: 10.1126/science.1080313
[66]
Chuang S, Gao Q, Kapadia R, et al. Ballistic InAs nanowire transistors. Nano Lett, 2013, 13: 555 doi: 10.1021/nl3040674
[67]
Raseong K, Lundstrom M S. Characteristic features of 1-D ballistic transport in nanowire MOSFETs. IEEE Trans Nanotechnol, 2008, 7: 787 doi: 10.1109/TNANO.2008.920196
[68]
Colinge J P, Lee C W, Ferain I, et al. Reduced electric field in junctionless transistors. Appl Phys Lett, 2010, 96: 073510 doi: 10.1063/1.3299014
[69]
Park J T, Kim J Y, Lee C W, et al. Low-temperature conductance oscillations in junctionless nanowire transistors. Appl Phys Lett, 2010, 97: 172101 doi: 10.1063/1.3506899
[70]
Trivedi K, Yuk H, Floresca H C, et al. Quantum confinement induced performance enhancement in sub-5-nm lithographic Si nanowire transistors. Nano Lett, 2011, 11: 1412 doi: 10.1021/nl103278a
[71]
Ma L H, Han W H, Wang H, et al. Observation of degenerate one-dimensional subbands in single n-channel junctionless nanowire transistors. IEEE Electron Device Lett, 2015, 36: 941 doi: 10.1109/LED.2015.2451646
[72]
Ma L H, Han W H, Wang H, et al. Electronic transport properties of silicon junctionless nanowire transistors fabricated by femtosecond laser direct writing. Chin Phys B, 2016, 25: 068103 doi: 10.1088/1674-1056/25/6/068103
Fig. 1.  Normalized electron mobility of theoretical calculation and experimental extraction[25].

Fig. 2.  IDSVGS curves at T = 6 K with VDS ranging from 0.2 to 1.0 mV in step of 0.2 mV (up) and transconductance curves as a function of VGS (down)[44].

Fig. 3.  (a) Arrhenius plot of the conductance at Vds = 5 mV for various gate voltages. (b) The activation energy as a function of gate voltages in different temperature regions[58].

Fig. 4.  Conductance and the number of subbands as a function of gate voltage for VDS = 10 mV at T = 6 K[72]. Inset: degenerate valleys in silicon nanowire.

[1]
Tanaka T, Usuki T, Futatsugi T, et al. Vth fluctuation induced by statistical variation of pocket dopant profile. International Electron Devices Meeting, 2000: 271
[2]
Sano N, Tomizawa M. Random dopant model for three-dimensional drift-diffusion simulations in metal–oxide–semiconductor field-effect-transistors. Appl Phys Lett, 2001, 79: 2267 doi: 10.1063/1.1406980
[3]
Li Y, Yu S M, Hwang J R, et al. Discrete dopant fluctuations in 20-nm/15-nm-gate planar CMOS. IEEE Trans Electron Devices, 2008, 55: 1449 doi: 10.1109/TED.2008.921991
[4]
Shinada T, Okamoto S, Kobayashi T, et al. Enhancing semiconductor device performance using ordered dopant arrays. Nature, 2005, 437: 1128 doi: 10.1038/nature04086
[5]
Han W H, Wang Z M. Toward quantum FinFET. Berlin: Springer, 2013
[6]
Fujiwara A, Inokawa H, Yamazaki K, et al. Single electron tunneling transistor with tunable barriers using silicon nanowire metal–oxide–semiconductor field-effect transistor. Appl Phys Lett, 2006, 88: 053121 doi: 10.1063/1.2168496
[7]
Fuechsle M, Miwa J A, Mahapatra S, et al. A single-atom transistor. Nat Nanotechnol, 2012, 7: 242 doi: 10.1038/nnano.2012.21
[8]
Moraru D, Udhiarto A, Anwar M, et al. Atom devices based on single dopants in silicon nanostructures. Nanoscale Res Lett, 2011, 6: 479 doi: 10.1186/1556-276X-6-479
[9]
Lansbergen G P, Rahman R, Wellard C J, et al. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nat Phys, 2008, 4: 656 doi: 10.1038/nphys994
[10]
Kane B E. A silicon-based nuclear spin quantum computer. Nature, 1998, 393: 133 doi: 10.1038/30156
[11]
Vrijen R, Yablonovitch E, Wang K, et al. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys Rev A, 2000, 62: 012306 doi: 10.1103/PhysRevA.62.012306
[12]
Kuljanishvili I, Kayis C, Harrison J F, et al. Scanning-probe spectroscopy of semiconductor donor molecules. Nat Phys, 2008, 4: 227 doi: 10.1038/nphys855
[13]
Gasseller M, DeNinno M, Loo R, et al. Single-electron capacitance spectroscopy of individual dopants in silicon. Nano Lett, 2011, 11: 5208 doi: 10.1021/nl2025163
[14]
Schofield S R, Curson N J, Simmons M Y, et al. Atomically precise placement of single dopants in Si. Phys Rev Lett, 2003, 91: 136104 doi: 10.1103/PhysRevLett.91.136104
[15]
Sellier H, Lansbergen G P, Caro J, et al. Transport spectroscopy of a single dopant in a gated silicon nanowire. Phys Rev Lett, 2006, 97: 206805 doi: 10.1103/PhysRevLett.97.206805
[16]
Escott C C, Zwanenburg F A, Morello A. Resonant tunneling features in quantum dots. Nanotechnology, 2010, 21: 274018 doi: 10.1088/0957-4484/21/27/274018
[17]
Matsukawa T, Fukai T, Suzuki S, et al. Development of single-ion implantation — controllability of implanted ion number. Appl Surf Scie, 1997, 117: 677
[18]
Persaud A, Allen F I, Gicquel F, et al. Single ion implantation with scanning probe alignment. J Vac Sci Technol B, 2004, 22: 2992 doi: 10.1116/1.1802891
[19]
Persaud A, Ivanova K, Sarov Y, et al. Micromachined piezoresistive proximal probe with integrated bimorph actuator for aligned single ion implantation. J Vac Sci Technol B, 2006, 24: 3148 doi: 10.1116/1.2375079
[20]
Han W H, Wang H, Yang X, et al. Transport through dopant atom arrays in silicon junctionless nanowire transistor. 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2014: 1
[21]
Mott N F. Metal–insulator transition. Rev Modern Phys, 1968, 40: 677 doi: 10.1103/RevModPhys.40.677
[22]
Bose D N, Seishu B, Parthasarathy G, et al. Doping dependence of semiconductor–metal transition in InP at high pressures. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1986, 405: 345
[23]
Altermatt P P, Schenk A, Heiser G. A simulation model for the density of states and for incomplete ionization in crystalline silicon. I. Establishing the model in Si:P. J Appl Phys, 2006, 100: 113714 doi: 10.1063/1.2386934
[24]
Varshni Y P, Khanna S M. Effect of dielectric screening on the donor binding energy in silicon and germanium. Phys Rev B, 1991, 43: 9279 doi: 10.1103/PhysRevB.43.9279
[25]
Li X M, Han W H, Wang H, et al. Low-temperature electron mobility in heavily n-doped junctionless nanowire transistor. Appl Phys Lett, 2013, 102: 223507 doi: 10.1063/1.4809828
[26]
Deleure C, Lannoo M. Nanostructures: theory and modelling. Berlin: Springer Verlag, 2004
[27]
Niquet Y M, Lherbier A, Quang N H, et al. Electronic structure of semiconductor nanowires. Phys Rev B, 2006, 73: 165319 doi: 10.1103/PhysRevB.73.165319
[28]
Pereira R N, Stegner A R, Andlauer T, et al. Dielectric screening versus quantum confinement of phosphorus donors in silicon nanocrystals investigated by magnetic resonance. Phys Rev B, 2009, 79: 161304 doi: 10.1103/PhysRevB.79.161304
[29]
Diarra M, Niquet Y M, Delerue C, et al. Ionization energy of donor and acceptor impurities in semiconductor nanowires: importance of dielectric confinement. Phys Rev B, 2007, 75: 045301 doi: 10.1103/PhysRevB.75.045301
[30]
Pierre M, Wacquez R, Jehl X, et al. Single-donor ionization energies in a nanoscale CMOS channel. Nat Nanotechnol, 2010, 5: 133 doi: 10.1038/nnano.2009.373
[31]
Jehl X, Niquet Y M, Sanquer M. Single donor electronics and quantum functionalities with advanced CMOS technology. J Phys: Conden Matter, 2016, 28: 103001 doi: 10.1088/0953-8984/28/10/103001
[32]
Kasfner M A. Artificial atoms. Phys Today, 1993, 46: 24
[33]
Ashoori R C. Electrons in artificial atoms. Nature, 1996, 379: 413 doi: 10.1038/379413a0
[34]
Jäger N D, Urban K, Weber E R, et al. Nanoscale dopant-induced dots and potential fluctuations in GaAs. Appl Phys Lett, 2003, 82: 2700 doi: 10.1063/1.1569419
[35]
Anwar M, Nowak R, Moraru D, et al. Effect of electron injection into phosphorus donors in silicon-on-insulator channel observed by Kelvin probe force microscopy. Appl Phys Lett, 2011, 99: 213101 doi: 10.1063/1.3663624
[36]
Waugh F R, Berry M J, Mar D J, et al. Single-electron charging in double and triple quantum dots with tunable coupling. Phys Rev Lett, 1995, 75: 705 doi: 10.1103/PhysRevLett.75.705
[37]
Tabe M, Moraru D, Ligowski M, et al. Single-electron transport through single dopants in a dopant-rich environment. Phys Rev Lett, 2010, 105: 016803 doi: 10.1103/PhysRevLett.105.016803
[38]
Tan K Y, Chan K W, Mottonen M, et al. Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor. Nano Lett, 2010, 10: 11 doi: 10.1021/nl901635j
[39]
Rahman R, Lansbergen G P, Verduijn J, et al. Electric field reduced charging energies and two-electron bound excited states of single donors in silicon. Phys Rev B, 2011, 84: 115428 doi: 10.1103/PhysRevB.84.115428
[40]
Verduijn J, Tettamanzi G C, Rogge S. Wave function control over a single donor atom. Nano Lett, 2013, 13: 1476 doi: 10.1021/nl304518v
[41]
Ruess F J, Pok W, Goh K E J, et al. Electronic properties of atomically abrupt tunnel junctions in silicon. Phys Rev B, 2007, 75: 121303 doi: 10.1103/PhysRevB.75.121303
[42]
Wang H, Han W H, Ma L H, et al. Quantum transport characteristics in single and multiple N-channel junctionless nanowire transistors at low temperatures. Chin Phys B, 2014, 23: 088107 doi: 10.1088/1674-1056/23/8/088107
[43]
Wang H, Han W H, Ma L H, et al. Current–voltage spectroscopy of dopant-induced quantum-dots in heavily n-doped junctionless nanowire transistors. Appl Phys Lett, 2014, 104: 133509 doi: 10.1063/1.4870512
[44]
Ma L H, Han W H, Wang H, et al. Electron transport behaviors through donor-induced quantum dot array in heavily n-doped junctionless nanowire transistors. J Appl Phys, 2015, 117: 034505 doi: 10.1063/1.4906223
[45]
Schenk A, Altermatt P P, Schmithusen B. Physical model of incomplete ionization for silicon device simulation. 2006 International Conference on Simulation of Semiconductor Processes and Devices, 2006: 51
[46]
Chen G, Klimeck G, Datta S, et al. Resonant tunneling through quantum-dot arrays. Phys Rev B, 1994, 50: 8035 doi: 10.1103/PhysRevB.50.8035
[47]
Krzysztof T, Daniel M, Arup S, et al. Effect of selective doping on the spatial dispersion of donor-induced quantum dots in Si nanoscale transistors. Appl Phys Express, 2015, 8: 094202 doi: 10.7567/APEX.8.094202
[48]
Samanta A, Muruganathan M, Hori M, et al. Single-electron quantization at room temperature in a-few-donor quantum dot in silicon nano-transistors. Appl Phys Lett, 2017, 110: 093107 doi: 10.1063/1.4977836
[49]
Yi K S, Trivedi K, Floresca H C, et al. Room-temperature quantum confinement effects in transport properties of ultrathin Si nanowire field-effect transistors. Nano Lett, 2011, 11: 5465 doi: 10.1021/nl203238e
[50]
Li Z Z. Theory of solids. Shanghai: Higher Education Press, 2002
[51]
Yu D, Wang C, Wehrenberg B L, et al. Variable range hopping conduction in semiconductor nanocrystal solids. Phys Rev Lett, 2004, 92: 216802 doi: 10.1103/PhysRevLett.92.216802
[52]
Mott N, Pepper M, Pollitt S, et al. , The Anderson transition. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1975: 169
[53]
Pollitt S, Pepper M, Adkins C J. The Anderson transition in Silicon inversion layers. Surf Sci, 1976, 58: 79 doi: 10.1016/0039-6028(76)90116-3
[54]
Prati E, Hori M, Guagliardo F, et al. Anderson-Mott transition in arrays of a few dopant atoms in a silicon transistor. Nat Nanotechnol, 2012, 7: 443 doi: 10.1038/nnano.2012.94
[55]
Hiramoto T, Ishikuro H, Fujii T, et al. Room temperature Coulomb blockade and low temperature hopping transport in a multiple-dot-channel metal–oxide–semiconductor field-effect-transistor. Jpn J Appl Phys, 1997, 36: 4139 doi: 10.1143/JJAP.36.4139
[56]
Efros A L, Shklovskii B I. Coulomb gap and low temperature conductivity of disordered systems. J Phys C, 1975, 8: L49 doi: 10.1088/0022-3719/8/4/003
[57]
Wang H, Han W H, Li X M, et al. Low-temperature study of array of dopant atoms on transport behaviors in silicon junctionless nanowire transistor. J Appl Phys, 2014, 116: 124505 doi: 10.1063/1.4896586
[58]
Wang H, Han W H, Zhao X S, et al. Electric-field-dependent charge delocalization from dopant atoms in silicon junctionless nanowire transistor. Chin Phys B, 2016, 25: 108102 doi: 10.1088/1674-1056/25/10/108102
[59]
Colinge J P, Lee C W, Afzalian A, et al. Nanowire transistors without junctions. Nat Nanotechnol, 2010, 5: 225 doi: 10.1038/nnano.2010.15
[60]
Colinge J, Kranti A, Yan R, et al. Junctionless nanowire transistor (JNT): properties and design guidelines. Solid-State Electron, 2011, 65: 33
[61]
Colinge J P, Lee C W, Akhavan N D, et al. Junctionless transistors: physics and properties. In: Semiconductor-on-insulator materials for nanoelectronics applications. Berlin: Springer, 2011: 87
[62]
Lee C W, Ferain I, Afzalian A, et al. Performance estimation of junctionless multigate transistors. Solid-State Electron, 2010, 54: 97 doi: 10.1016/j.sse.2009.12.003
[63]
Nazarov A N, Rudenko T E. Nanowire junctionless silicon-on-insulator MOSFETs: operation features and electrical characterization. 2015 International Semiconductor Conference, 2015: 27
[64]
Rudenko T, Barraud S, Georgiev Y M, et al. Electrical characterization and parameter extraction of junctionless nanowire transistors. J Nano Res, 2016, 39: 17 doi: 10.4028/www.scientific.net/JNanoR.39
[65]
Ma D D D, Lee C S, Au F C K, et al. Small-diameter silicon nanowire surfaces. Science, 2003, 299: 1874 doi: 10.1126/science.1080313
[66]
Chuang S, Gao Q, Kapadia R, et al. Ballistic InAs nanowire transistors. Nano Lett, 2013, 13: 555 doi: 10.1021/nl3040674
[67]
Raseong K, Lundstrom M S. Characteristic features of 1-D ballistic transport in nanowire MOSFETs. IEEE Trans Nanotechnol, 2008, 7: 787 doi: 10.1109/TNANO.2008.920196
[68]
Colinge J P, Lee C W, Ferain I, et al. Reduced electric field in junctionless transistors. Appl Phys Lett, 2010, 96: 073510 doi: 10.1063/1.3299014
[69]
Park J T, Kim J Y, Lee C W, et al. Low-temperature conductance oscillations in junctionless nanowire transistors. Appl Phys Lett, 2010, 97: 172101 doi: 10.1063/1.3506899
[70]
Trivedi K, Yuk H, Floresca H C, et al. Quantum confinement induced performance enhancement in sub-5-nm lithographic Si nanowire transistors. Nano Lett, 2011, 11: 1412 doi: 10.1021/nl103278a
[71]
Ma L H, Han W H, Wang H, et al. Observation of degenerate one-dimensional subbands in single n-channel junctionless nanowire transistors. IEEE Electron Device Lett, 2015, 36: 941 doi: 10.1109/LED.2015.2451646
[72]
Ma L H, Han W H, Wang H, et al. Electronic transport properties of silicon junctionless nanowire transistors fabricated by femtosecond laser direct writing. Chin Phys B, 2016, 25: 068103 doi: 10.1088/1674-1056/25/6/068103
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5326 Times PDF downloads: 100 Times Cited by: 0 Times

    History

    Received: 31 March 2017 Revised: 31 May 2017 Online: Uncorrected proof: 11 November 2017Corrected proof: 15 November 2017Published: 01 June 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaosong Zhao, Weihua Han, Hao Wang, Liuhong Ma, Xiaoming Li, Wang Zhang, Wei Yan, Fuhua Yang. Dopant atoms as quantum components in silicon nanoscale devices[J]. Journal of Semiconductors, 2018, 39(6): 061003. doi: 10.1088/1674-4926/39/6/061003 X S Zhao, W H Han, H Wang, L H Ma, X M Li, W Zhang, W Yan, F H Yang. Dopant atoms as quantum components in silicon nanoscale devices[J]. J. Semicond., 2018, 39(6): 061003. doi: 10.1088/1674-4926/39/6/061003.Export: BibTex EndNote
      Citation:
      Xiaosong Zhao, Weihua Han, Hao Wang, Liuhong Ma, Xiaoming Li, Wang Zhang, Wei Yan, Fuhua Yang. Dopant atoms as quantum components in silicon nanoscale devices[J]. Journal of Semiconductors, 2018, 39(6): 061003. doi: 10.1088/1674-4926/39/6/061003

      X S Zhao, W H Han, H Wang, L H Ma, X M Li, W Zhang, W Yan, F H Yang. Dopant atoms as quantum components in silicon nanoscale devices[J]. J. Semicond., 2018, 39(6): 061003. doi: 10.1088/1674-4926/39/6/061003.
      Export: BibTex EndNote

      Dopant atoms as quantum components in silicon nanoscale devices

      doi: 10.1088/1674-4926/39/6/061003
      Funds:

      Project supported by National Key R&D Program of China (No. 2016YFA0200503).

      More Information
      • Corresponding author: E-mail: weihua@semi.ac.cnfhyang@semi.ac.cn
      • Received Date: 2017-03-31
      • Revised Date: 2017-05-31
      • Available Online: 2017-06-01
      • Published Date: 2018-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return