J. Semicond. > Volume 39 > Issue 6 > Article Number: 061008

Light-emitting diodes based on colloidal silicon quantum dots

Shuangyi Zhao , Xiangkai Liu , Xiaodong Pi , and Deren Yang

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Colloidal silicon quantum dots (Si QDs) hold great promise for the development of printed Si electronics. Given their novel electronic and optical properties, colloidal Si QDs have been intensively investigated for optoelectronic applications. Among all kinds of optoelectronic devices based on colloidal Si QDs, QD light-emitting diodes (LEDs) play an important role. It is encouraging that the performance of LEDs based on colloidal Si QDs has been significantly increasing in the past decade. In this review, we discuss the effects of the QD size, QD surface and device structure on the performance of colloidal Si-QD LEDs. The outlook on the further optimization of the device performance is presented at the end.

Key words: quantum dotsoptoelectronic deviceslight-emitting diode

Abstract: Colloidal silicon quantum dots (Si QDs) hold great promise for the development of printed Si electronics. Given their novel electronic and optical properties, colloidal Si QDs have been intensively investigated for optoelectronic applications. Among all kinds of optoelectronic devices based on colloidal Si QDs, QD light-emitting diodes (LEDs) play an important role. It is encouraging that the performance of LEDs based on colloidal Si QDs has been significantly increasing in the past decade. In this review, we discuss the effects of the QD size, QD surface and device structure on the performance of colloidal Si-QD LEDs. The outlook on the further optimization of the device performance is presented at the end.

Key words: quantum dotsoptoelectronic deviceslight-emitting diode



References:

[1]

Ni Z, Pi X, Ali M, et al. Freestanding doped silicon nanocrystals synthesized by plasma. J Phys D, 2015, 48(31): 314006

[2]

Mangolini L, Kortshagen U. Plasma-assisted synthesis of silicon nanocrystal inks. Adv Mater, 2007, 19(18): 2513

[3]

Nozaki T, Sasaki K. Microplasma synthesis of tunable photoluminescent silicon nanocrystals. Nanotechnology, 2007, 18(23): 235603

[4]

Buuren T V, Dinh L N, Chase L L, et al. Changes in the electronic properties of Si nanocrystals as a function of particle size. Phys Rev Lett, 1998, 80(17): 3803

[5]

Liu X, Zhang Y, Yu T, Qiao X, et al. Optimum quantum yield of the light emission from 2 to 10 nm hydrosilylated silicon quantum dots. Particle & Particle Systems Characterization, 2016, 33(1): 44

[6]

Gresback R, Murakami Y, Ding Y, et al. Optical extinction spectra of silicon nanocrystals: size dependence upon the lowest direct transition. Langmuir, 2013, 29(6): 1802

[7]

Zhou S, Ni Z, Ding Y, et al. Ligand-free, colloidal, and plasmonic silicon nanocrystals heavily doped with boron. ACS Photon, 2016, 3(3): 415

[8]

Sangghaleh F, Sychugov I, Yang Z, et al. Near-unity internal quantum efficiency of luminescent silicon nanocrystals with ligand passivation. ACS Nano, 2015, 9(7): 7097

[9]

Mangolini L, Thimsen E, Kortshagen U. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett, 2005, 5(4): 655

[10]

Zhong Y, Sun X, Wang S, et al. Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano, 2015, 9(6): 5958

[11]

Zhou S, Pi X, Ni Z, et al. Boron- and phosphorus-hyperdoped silicon nanocrystals. Particle & Particle Systems Characterization, 2015, 32(2): 213

[12]

Fujii M, Mimura A, Hayashi S, et al. Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films: improvement of photoluminescence efficiency. Appl Phys Lett, 1999, 75(2): 184

[13]

Cullis A G, Canham L T. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature, 1991, 353(6342): 335

[14]

Sham T K, Jiang D T, Coulthard I. Origin of luminescence from porous silicon deduced by synchrotron-light-induced optical luminescence. Nature, 1993, 363: 331

[15]

Takeoka S. Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime. Phys Rev B, 2000, 62(24): 16820

[16]

Zhang H, Lin L, Jiang S. Fabrication of nc-Si/SiO2 structure by thermal oxidation method and its luminescence characteristics. Chin Opt Lett, 2009, 7(4): 332

[17]

Kim T W, Cho C H, Kim B H, et al. Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3. Appl Phys Lett, 2006, 88(12): 123102

[18]

Cao Y, Xu J, Ge Z, et al. Enhanced broadband spectral re- sponse and energy conversion efficiency for hetero-junction solar cells with graded-sized Si quantum dots/SiC multilayers. J Mater Chem C, 2015, 3(46): 12061

[19]

Rui Y, Li S, Xu J, et al. Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix. J Appl Phys, 2011, 110(6): 064322

[20]

Rui Y, Li S, Xu J, et al. Comparative study of electrolumines- cence from annealed amorphous SiC single layer and amorph- ous Si/SiC multilayers. J Non-Cryst Solids, 2012, 358(17): 2114

[21]

Song D, Cho E C, Cho Y H, et al. Evolution of Si (and SiC) nanocrystal precipitation in SiC matrix. Thin Solid Films, 2008, 516(12): 3824

[22]

Holmes J D, Ziegler K J, Doty R C, et al. Highly luminescent silicon nanocrystals with discrete optical transitions. J Am Chem Soc, 2001, 123: 3743

[23]

Pettigrew K A, Liu Q, Power P P, et al. Solution synthesis of alkyl- and alkyl/alkoxy-capped silicon nanoparticles via oxidation of Mg2Si. Chem Mater, 2003, 15: 4005

[24]

Niesar S, Pereira R N, Stegner A R, et al. Low-cost post-growth treatments of crystalline silicon nanoparticles improving surface and electronic properties. Adv Funct Mater, 2012, 22(6): 1190

[25]

Zhou S, Pi X, Ni Z, et al. Comparative study on the localized surface plasmon resonanace of boron and phosphorous doped silicon nanocrystals. ACS Nano, 2015, 9(1): 378

[26]

Pi X, Zhang L, Yang D. Enhancing the efficiency of multicrystalline silicon solar cells by the inkjet printing of silicon-quantum-dot ink. J Phys Chem C, 2012, 116(40): 21240

[27]

Yu T, Wang F, Xu Y, Ma L, et al. Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors. Adv Mater, 2016, 28(24): 4912

[28]

Liu C, Holman Z C, Kortshagen U R. Optimization of Si NC/P3HT hybrid solar cells. Adv Funct Mater, 2010, 20(13): 2157

[29]

Ding Y, Sugaya M, Liu Q, et al. Oxygen passivation of silicon nanocrystals: Influences on trap states, electron mobility, and hybrid solar cell performance. Nano Energy, 2014, 10: 322

[30]

Ni Z, Ma L, Du S, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano, 2017, 11(10): 9854

[31]

Ding Y, Gresback R, Liu Q, et al. Silicon nanocrystal conjugated polymer hybrid solar cells with improved performance. Nano Energy, 2014, 9: 25

[32]

Švrček V, Cook S, Kazaoui S, et al. Silicon nanocrystals and semiconducting single-walled carbon nanotubes applied to photovoltaic cells. J Phys Chem Lett, 2011, 2(14): 1646

[33]

Zhao S, Pi X, Mercier C, et al. Silicon-nanocrystal-incorporated ternary hybrid solar cells. Nano Energy, 2016, 26: 305

[34]

Ni Z, Pi X, Zhou S, et al. Size-dependent structures and optical absorption of boron-hyperdoped silicon nanocrystals. Adv Opt Mater, 2016, 4(5): 700

[35]

Lin T, Liu X, Zhou B, et al. A Solution-processed UV-sensitive photodiode produced using a new silicon nanocrystal ink. Adv Funct Mater, 2014, 24(38): 6016

[36]

Pi X, Li Q, Li D, et al. Spin-coating silicon-quantum-dot ink to improve solar cell efficiency. Sol Energy Maters Sol Cells, 2011, 95(10): 2941

[37]

Mastronardi M L, Henderson E J, Puzzo D P, et al. Silicon nanocrystal OLEDs: effect of organic capping group on performance. Small, 2012, 8(23): 3647

[38]

Dai X, Zhang Z, Jin Y, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 2014, 515(7525): 96

[39]

Pan J, Chen J, Huang Q, et al. Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs. ACS Photon, 2016, 3(2): 215

[40]

Dai X, Deng Y, Peng X, et al. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Adv Mater, 2017, 29(14): 1607022

[41]

Forrest S R, Bradley D D C, Thompson M E. Measuring the efficiency of organic light-emitting devices. Adv Mater, 2003, 15(13): 1043

[42]

Rogach A L, Gaponik N, Lupton J M, et al. Light-emitting diodes with semiconductor nanocrystals. Angew Chem Int Ed Engl, 2008, 47(35): 6538

[43]

Kwak J, Lim J, Park M, et al. High-power genuine ultraviolet light-emitting diodes based on colloidal nanocrystal quantum dots. Nano Lett, 2015, 15(6): 3793

[44]

Cho K, Lee E, Joo W, et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nat Photon, 2009, 3(6): 341

[45]

Bansal A K, Antolini F, Zhang S, et al. Highly luminescent colloidal CdS quantum dots with efficient near-infrared electroluminescence in light-emitting diodes. J Phys Chem C, 2016, 120(3): 1871

[46]

Lee K, Han C, Kang H, et al. Highly efficient, color-reproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer. ACS Nano, 2015, 9(11): 10941

[47]

Mashford B S, Stevenson M, Popovic Z, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat Photon, 2013, 7: 407

[48]

Zou Y, Ban M, Cui W, et al. A general solvent selection strategy for solution processed quantum dots targeting high performance light-emitting diode. Adv Funct Mater, 2017, 27(1): 1603325

[49]

Brovelli S, Chiodini N, Lorenzi R, et al. Fully inorganic oxide-in-oxide ultraviolet nanocrystal light emitting devices. Nat Commun, 2012, 3: 690

[50]

Shirasaki Y, Supran G J, Bawendi M G, et al. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photon, 2012, 7(1): 13

[51]

Tessler N, Medvedev V, Kazes M, et al. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science, 2002, 295(22): 1566

[52]

Cheng X, Lowe S B, Reece P J, et al. Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem Soc Rev, 2014, 43(8): 2680

[53]

Caruge J M, Halpert J E, Wood V, et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat Photon, 2008, 2(4): 247

[54]

Pi X D, Mangolini L, Campbell S A, et al. Room-temperature atmospheric oxidation of Si nanocrystals after HF etching. Phys Rev B, 2007, 75(8): 086423

[55]

Gupta A, Wiggers H. Surface chemistry and photoluminescence property of functionalized silicon nanoparticles. Physica E, 2009, 41(6): 1010

[56]

Anthony R J, Rowe D J, Stein M, et al. Routes to achieving high quantum yield luminescence from gas-phase-produced silicon nanocrystals. Adv Funct Mater, 2011, 21(21): 4042

[57]

Hua F, Swihart M T, Ruckenstein E. Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation. Langmuir, 2005, 21: 6054

[58]

Pi X, Yu T, Yang D. Water-dispersible silicon-quantum-dot-containing micelles self-assembled from an amphiphilic polymer. Particle & Particle Systems Characterization, 2014, 31(7): 751

[59]

Purkait T K, Iqbal M, Wahl M H, et al. Borane-catalyzed room-temperature hydrosilylation of alkenes/alkynes on silicon nanocrystal surfaces. J Am Chem Soc, 2014, 136(52): 17914

[60]

Kovalev D, Heckler H, Ben-Chorin M, et al. Breakdown of the k-conservation rule in Si nanoparticle. Phys Rev Lett, 1998, 81(13): 2803

[61]

Dasog M, Yang Z, Regli S, et al. Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano, 2013, 7(3): 2676

[62]

Nelles J, Sendor D, Ebbers A, et al. Functionalization of silicon nanoparticles via hydrosilylation with 1-alkenes. Colloid Polym Sci, 2007, 285(7): 729

[63]

Weeks S L, Macco B, van de Sanden M C, et al. Gas-phase hydrosilylation of plasma-synthesized silicon nanocrystals with short- and long-chain alkynes. Langmuir, 2012, 28(50): 17295

[64]

Jurbergs D, Rogojina E, Mangolini L, et al. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl Phys Lett, 2006, 88(23): 233116

[65]

Yang Z, Dasog M, Dobbie A R, et al. Highly luminescent covalently linked silicon nanocrystal/polystyrene hybrid functional materials: synthesis, properties, and processability. Adv Funct Mater, 2014, 24(10): 1345

[66]

Mastronardi M L, Chen K K, Liao K, et al. Size-dependent chemical reactivity of silicon nanocrystals with water and oxygen. J Phys Chem C, 2015, 119(1): 826

[67]

Rinck J, Schray D, Kubel C, et al. Size-dependent oxidation of monodisperse silicon nanocrystals with allylphenylsulfide surfaces. Small, 2015, 11(3): 335

[68]

Jariwala B N, Dewey O S, Stradins P, et al. In situ gas-phase hydrosilylation of plasma-synthesized silicon nanocrystals. ACS Appl Mater Interfaces, 2011, 3(8): 3033

[69]

Hessel C M, Reid D, Panthani M G, et al. Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem Mater, 2012, 24(2): 393

[70]

Mastronardi M L, Maier-Flaig F, Faulkner D, et al. Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. Nano Lett, 2012, 12(1): 337

[71]

Dasog M, Reyes G B, Titova L V, et al. Size vs. Surface tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano, 2014, 8(9): 9636

[72]

Locritani M, Yu Y, Bergamini G, et al. Silicon nanocrystals functionalized with pyrene units: efficient light-harvesting antennae with bright near-infrared emission. J Phys Chem Lett, 2014, 5(19): 3325

[73]

Li Q, Luo T Y, Zhou M, et al. Silicon nanoparticles with surface nitrogen: 90% quantum yield with narrow luminescence bandwidth and the ligand structure based energy law. ACS Nano, 2016, 10(9): 8385

[74]

Liu X, Ni Z, Zhao S, et al. Light-emitting diodes based on colloidal silicon quantum dots with octyl and phenylpropyl ligands. ACS Appl Mater Inter, 2018, 10(6): 5959

[75]

Maier-Flaig F, Rinck J, Stephan M, et al. Multicolor silicon light-emitting diodes (SiLEDs). Nano Lett, 2013, 13(2): 475

[76]

Maier-Flaig F, Kubel C, Rinck J, et al. Looking inside a working SiLED. Nano Lett, 2013, 13(8): 3539

[77]

Cheng K Y, Anthony R, Kortshagen U R, et al. Hybrid silicon nanocrystal-organic light-emitting devices for infrared electroluminescence. Nano Lett, 2010, 10(4): 1154

[78]

Puzzo D P, Henderson E J, Helander M G, et al. Visible colloidal nanocrystal silicon light-emitting diode. Nano Lett, 2011, 11(4): 1585

[79]

Cheng K Y, Anthony R, Kortshagen U R, et al. High-efficiency silicon nanocrystal light-emitting devices. Nano Lett, 2011, 11(5): 1952

[80]

Gu W, Liu X, Pi X, et al. Silicon-quantum-dot light-emitting diodes with interlayer-enhanced hole transport. IEEE Photon J, 2017, 9(2): 1

[81]

Zhao S, Liu X, Gu W, et al. Al2O3-interlayer-enhanced performance of all-inorganic silicon-quantum-dot near-infrared light-emitting diodes. IEEE Trans Electron Device, 2018, 65: 577

[82]

Yao L, Yu T, Ba L, et al. Efficient silicon quantum dots light emitting diodes with an inverted device structure. J Mater Chem C, 2016, 4: 673

[83]

Kim Y, Han T, Cho H, et al. Polyethylene imine as an ideal interlayer for highly efficient inverted polymer light-emitting diodes. Adv Funct Mater, 2014, 24: 3808

[1]

Ni Z, Pi X, Ali M, et al. Freestanding doped silicon nanocrystals synthesized by plasma. J Phys D, 2015, 48(31): 314006

[2]

Mangolini L, Kortshagen U. Plasma-assisted synthesis of silicon nanocrystal inks. Adv Mater, 2007, 19(18): 2513

[3]

Nozaki T, Sasaki K. Microplasma synthesis of tunable photoluminescent silicon nanocrystals. Nanotechnology, 2007, 18(23): 235603

[4]

Buuren T V, Dinh L N, Chase L L, et al. Changes in the electronic properties of Si nanocrystals as a function of particle size. Phys Rev Lett, 1998, 80(17): 3803

[5]

Liu X, Zhang Y, Yu T, Qiao X, et al. Optimum quantum yield of the light emission from 2 to 10 nm hydrosilylated silicon quantum dots. Particle & Particle Systems Characterization, 2016, 33(1): 44

[6]

Gresback R, Murakami Y, Ding Y, et al. Optical extinction spectra of silicon nanocrystals: size dependence upon the lowest direct transition. Langmuir, 2013, 29(6): 1802

[7]

Zhou S, Ni Z, Ding Y, et al. Ligand-free, colloidal, and plasmonic silicon nanocrystals heavily doped with boron. ACS Photon, 2016, 3(3): 415

[8]

Sangghaleh F, Sychugov I, Yang Z, et al. Near-unity internal quantum efficiency of luminescent silicon nanocrystals with ligand passivation. ACS Nano, 2015, 9(7): 7097

[9]

Mangolini L, Thimsen E, Kortshagen U. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett, 2005, 5(4): 655

[10]

Zhong Y, Sun X, Wang S, et al. Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano, 2015, 9(6): 5958

[11]

Zhou S, Pi X, Ni Z, et al. Boron- and phosphorus-hyperdoped silicon nanocrystals. Particle & Particle Systems Characterization, 2015, 32(2): 213

[12]

Fujii M, Mimura A, Hayashi S, et al. Photoluminescence from Si nanocrystals dispersed in phosphosilicate glass thin films: improvement of photoluminescence efficiency. Appl Phys Lett, 1999, 75(2): 184

[13]

Cullis A G, Canham L T. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature, 1991, 353(6342): 335

[14]

Sham T K, Jiang D T, Coulthard I. Origin of luminescence from porous silicon deduced by synchrotron-light-induced optical luminescence. Nature, 1993, 363: 331

[15]

Takeoka S. Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime. Phys Rev B, 2000, 62(24): 16820

[16]

Zhang H, Lin L, Jiang S. Fabrication of nc-Si/SiO2 structure by thermal oxidation method and its luminescence characteristics. Chin Opt Lett, 2009, 7(4): 332

[17]

Kim T W, Cho C H, Kim B H, et al. Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3. Appl Phys Lett, 2006, 88(12): 123102

[18]

Cao Y, Xu J, Ge Z, et al. Enhanced broadband spectral re- sponse and energy conversion efficiency for hetero-junction solar cells with graded-sized Si quantum dots/SiC multilayers. J Mater Chem C, 2015, 3(46): 12061

[19]

Rui Y, Li S, Xu J, et al. Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix. J Appl Phys, 2011, 110(6): 064322

[20]

Rui Y, Li S, Xu J, et al. Comparative study of electrolumines- cence from annealed amorphous SiC single layer and amorph- ous Si/SiC multilayers. J Non-Cryst Solids, 2012, 358(17): 2114

[21]

Song D, Cho E C, Cho Y H, et al. Evolution of Si (and SiC) nanocrystal precipitation in SiC matrix. Thin Solid Films, 2008, 516(12): 3824

[22]

Holmes J D, Ziegler K J, Doty R C, et al. Highly luminescent silicon nanocrystals with discrete optical transitions. J Am Chem Soc, 2001, 123: 3743

[23]

Pettigrew K A, Liu Q, Power P P, et al. Solution synthesis of alkyl- and alkyl/alkoxy-capped silicon nanoparticles via oxidation of Mg2Si. Chem Mater, 2003, 15: 4005

[24]

Niesar S, Pereira R N, Stegner A R, et al. Low-cost post-growth treatments of crystalline silicon nanoparticles improving surface and electronic properties. Adv Funct Mater, 2012, 22(6): 1190

[25]

Zhou S, Pi X, Ni Z, et al. Comparative study on the localized surface plasmon resonanace of boron and phosphorous doped silicon nanocrystals. ACS Nano, 2015, 9(1): 378

[26]

Pi X, Zhang L, Yang D. Enhancing the efficiency of multicrystalline silicon solar cells by the inkjet printing of silicon-quantum-dot ink. J Phys Chem C, 2012, 116(40): 21240

[27]

Yu T, Wang F, Xu Y, Ma L, et al. Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors. Adv Mater, 2016, 28(24): 4912

[28]

Liu C, Holman Z C, Kortshagen U R. Optimization of Si NC/P3HT hybrid solar cells. Adv Funct Mater, 2010, 20(13): 2157

[29]

Ding Y, Sugaya M, Liu Q, et al. Oxygen passivation of silicon nanocrystals: Influences on trap states, electron mobility, and hybrid solar cell performance. Nano Energy, 2014, 10: 322

[30]

Ni Z, Ma L, Du S, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano, 2017, 11(10): 9854

[31]

Ding Y, Gresback R, Liu Q, et al. Silicon nanocrystal conjugated polymer hybrid solar cells with improved performance. Nano Energy, 2014, 9: 25

[32]

Švrček V, Cook S, Kazaoui S, et al. Silicon nanocrystals and semiconducting single-walled carbon nanotubes applied to photovoltaic cells. J Phys Chem Lett, 2011, 2(14): 1646

[33]

Zhao S, Pi X, Mercier C, et al. Silicon-nanocrystal-incorporated ternary hybrid solar cells. Nano Energy, 2016, 26: 305

[34]

Ni Z, Pi X, Zhou S, et al. Size-dependent structures and optical absorption of boron-hyperdoped silicon nanocrystals. Adv Opt Mater, 2016, 4(5): 700

[35]

Lin T, Liu X, Zhou B, et al. A Solution-processed UV-sensitive photodiode produced using a new silicon nanocrystal ink. Adv Funct Mater, 2014, 24(38): 6016

[36]

Pi X, Li Q, Li D, et al. Spin-coating silicon-quantum-dot ink to improve solar cell efficiency. Sol Energy Maters Sol Cells, 2011, 95(10): 2941

[37]

Mastronardi M L, Henderson E J, Puzzo D P, et al. Silicon nanocrystal OLEDs: effect of organic capping group on performance. Small, 2012, 8(23): 3647

[38]

Dai X, Zhang Z, Jin Y, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 2014, 515(7525): 96

[39]

Pan J, Chen J, Huang Q, et al. Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs. ACS Photon, 2016, 3(2): 215

[40]

Dai X, Deng Y, Peng X, et al. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Adv Mater, 2017, 29(14): 1607022

[41]

Forrest S R, Bradley D D C, Thompson M E. Measuring the efficiency of organic light-emitting devices. Adv Mater, 2003, 15(13): 1043

[42]

Rogach A L, Gaponik N, Lupton J M, et al. Light-emitting diodes with semiconductor nanocrystals. Angew Chem Int Ed Engl, 2008, 47(35): 6538

[43]

Kwak J, Lim J, Park M, et al. High-power genuine ultraviolet light-emitting diodes based on colloidal nanocrystal quantum dots. Nano Lett, 2015, 15(6): 3793

[44]

Cho K, Lee E, Joo W, et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nat Photon, 2009, 3(6): 341

[45]

Bansal A K, Antolini F, Zhang S, et al. Highly luminescent colloidal CdS quantum dots with efficient near-infrared electroluminescence in light-emitting diodes. J Phys Chem C, 2016, 120(3): 1871

[46]

Lee K, Han C, Kang H, et al. Highly efficient, color-reproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer. ACS Nano, 2015, 9(11): 10941

[47]

Mashford B S, Stevenson M, Popovic Z, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat Photon, 2013, 7: 407

[48]

Zou Y, Ban M, Cui W, et al. A general solvent selection strategy for solution processed quantum dots targeting high performance light-emitting diode. Adv Funct Mater, 2017, 27(1): 1603325

[49]

Brovelli S, Chiodini N, Lorenzi R, et al. Fully inorganic oxide-in-oxide ultraviolet nanocrystal light emitting devices. Nat Commun, 2012, 3: 690

[50]

Shirasaki Y, Supran G J, Bawendi M G, et al. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photon, 2012, 7(1): 13

[51]

Tessler N, Medvedev V, Kazes M, et al. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science, 2002, 295(22): 1566

[52]

Cheng X, Lowe S B, Reece P J, et al. Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem Soc Rev, 2014, 43(8): 2680

[53]

Caruge J M, Halpert J E, Wood V, et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat Photon, 2008, 2(4): 247

[54]

Pi X D, Mangolini L, Campbell S A, et al. Room-temperature atmospheric oxidation of Si nanocrystals after HF etching. Phys Rev B, 2007, 75(8): 086423

[55]

Gupta A, Wiggers H. Surface chemistry and photoluminescence property of functionalized silicon nanoparticles. Physica E, 2009, 41(6): 1010

[56]

Anthony R J, Rowe D J, Stein M, et al. Routes to achieving high quantum yield luminescence from gas-phase-produced silicon nanocrystals. Adv Funct Mater, 2011, 21(21): 4042

[57]

Hua F, Swihart M T, Ruckenstein E. Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation. Langmuir, 2005, 21: 6054

[58]

Pi X, Yu T, Yang D. Water-dispersible silicon-quantum-dot-containing micelles self-assembled from an amphiphilic polymer. Particle & Particle Systems Characterization, 2014, 31(7): 751

[59]

Purkait T K, Iqbal M, Wahl M H, et al. Borane-catalyzed room-temperature hydrosilylation of alkenes/alkynes on silicon nanocrystal surfaces. J Am Chem Soc, 2014, 136(52): 17914

[60]

Kovalev D, Heckler H, Ben-Chorin M, et al. Breakdown of the k-conservation rule in Si nanoparticle. Phys Rev Lett, 1998, 81(13): 2803

[61]

Dasog M, Yang Z, Regli S, et al. Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano, 2013, 7(3): 2676

[62]

Nelles J, Sendor D, Ebbers A, et al. Functionalization of silicon nanoparticles via hydrosilylation with 1-alkenes. Colloid Polym Sci, 2007, 285(7): 729

[63]

Weeks S L, Macco B, van de Sanden M C, et al. Gas-phase hydrosilylation of plasma-synthesized silicon nanocrystals with short- and long-chain alkynes. Langmuir, 2012, 28(50): 17295

[64]

Jurbergs D, Rogojina E, Mangolini L, et al. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl Phys Lett, 2006, 88(23): 233116

[65]

Yang Z, Dasog M, Dobbie A R, et al. Highly luminescent covalently linked silicon nanocrystal/polystyrene hybrid functional materials: synthesis, properties, and processability. Adv Funct Mater, 2014, 24(10): 1345

[66]

Mastronardi M L, Chen K K, Liao K, et al. Size-dependent chemical reactivity of silicon nanocrystals with water and oxygen. J Phys Chem C, 2015, 119(1): 826

[67]

Rinck J, Schray D, Kubel C, et al. Size-dependent oxidation of monodisperse silicon nanocrystals with allylphenylsulfide surfaces. Small, 2015, 11(3): 335

[68]

Jariwala B N, Dewey O S, Stradins P, et al. In situ gas-phase hydrosilylation of plasma-synthesized silicon nanocrystals. ACS Appl Mater Interfaces, 2011, 3(8): 3033

[69]

Hessel C M, Reid D, Panthani M G, et al. Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem Mater, 2012, 24(2): 393

[70]

Mastronardi M L, Maier-Flaig F, Faulkner D, et al. Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. Nano Lett, 2012, 12(1): 337

[71]

Dasog M, Reyes G B, Titova L V, et al. Size vs. Surface tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano, 2014, 8(9): 9636

[72]

Locritani M, Yu Y, Bergamini G, et al. Silicon nanocrystals functionalized with pyrene units: efficient light-harvesting antennae with bright near-infrared emission. J Phys Chem Lett, 2014, 5(19): 3325

[73]

Li Q, Luo T Y, Zhou M, et al. Silicon nanoparticles with surface nitrogen: 90% quantum yield with narrow luminescence bandwidth and the ligand structure based energy law. ACS Nano, 2016, 10(9): 8385

[74]

Liu X, Ni Z, Zhao S, et al. Light-emitting diodes based on colloidal silicon quantum dots with octyl and phenylpropyl ligands. ACS Appl Mater Inter, 2018, 10(6): 5959

[75]

Maier-Flaig F, Rinck J, Stephan M, et al. Multicolor silicon light-emitting diodes (SiLEDs). Nano Lett, 2013, 13(2): 475

[76]

Maier-Flaig F, Kubel C, Rinck J, et al. Looking inside a working SiLED. Nano Lett, 2013, 13(8): 3539

[77]

Cheng K Y, Anthony R, Kortshagen U R, et al. Hybrid silicon nanocrystal-organic light-emitting devices for infrared electroluminescence. Nano Lett, 2010, 10(4): 1154

[78]

Puzzo D P, Henderson E J, Helander M G, et al. Visible colloidal nanocrystal silicon light-emitting diode. Nano Lett, 2011, 11(4): 1585

[79]

Cheng K Y, Anthony R, Kortshagen U R, et al. High-efficiency silicon nanocrystal light-emitting devices. Nano Lett, 2011, 11(5): 1952

[80]

Gu W, Liu X, Pi X, et al. Silicon-quantum-dot light-emitting diodes with interlayer-enhanced hole transport. IEEE Photon J, 2017, 9(2): 1

[81]

Zhao S, Liu X, Gu W, et al. Al2O3-interlayer-enhanced performance of all-inorganic silicon-quantum-dot near-infrared light-emitting diodes. IEEE Trans Electron Device, 2018, 65: 577

[82]

Yao L, Yu T, Ba L, et al. Efficient silicon quantum dots light emitting diodes with an inverted device structure. J Mater Chem C, 2016, 4: 673

[83]

Kim Y, Han T, Cho H, et al. Polyethylene imine as an ideal interlayer for highly efficient inverted polymer light-emitting diodes. Adv Funct Mater, 2014, 24: 3808

[1]

Xiaowu He, Yifeng Song, Ying Yu, Ben Ma, Zesheng Chen, Xiangjun Shang, Haiqiao Ni, Baoquan Sun, Xiuming Dou, Hao Chen, Hongyue Hao, Tongtong Qi, Shushan Huang, Hanqing Liu, Xiangbin Su, Xinliang Su, Yujun Shi, Zhichuan Niu. Quantum light source devices of In(Ga)As semiconductorself-assembled quantum dots. J. Semicond., 2019, 40(7): 071902. doi: 10.1088/1674-4926/40/7/071902

[2]

E. Garduno-Nolasco, M. Missous, D. Donoval, J. Kovac, M. Mikolasek. Temperature dependence of InAs/GaAs quantum dots solar photovoltaic devices. J. Semicond., 2014, 35(5): 054001. doi: 10.1088/1674-4926/35/5/054001

[3]

Hong Zhu, Yang Shen, Yanqing Li, Jianxin Tang. Recent advances in flexible and wearable organic optoelectronic devices. J. Semicond., 2018, 39(1): 011011. doi: 10.1088/1674-4926/39/1/011011

[4]

Zhou Xin, Gu Shulin, Zhu Shunming, Ye Jiandong, Liu Wei, Liu Songmin, Hu Liqun, Zheng Youdou, Zhang Rong, Shi Yi. Fabrication and Emission Properties of a n-ZnO/p-GaN Heterojunction Light-Emitting Diode. J. Semicond., 2006, 27(2): 249.

[5]

Wang Libin, Liu Zhiqiang, Chen Yu, Yi Xiaoyan, Ma Long, Pan Lingfeng, Wang Liangchen. Thermal Simulation and Analysis of High Power Flip-Chip Light-Emitting Diode System. J. Semicond., 2007, 28(S1): 504.

[6]

Liang Song, Zhu Hongliang, Pan Jiaoqing, Wang Wei. . J. Semicond., 2005, 26(11): 2074.

[7]

Maoxing Chen, Chen Xu, Kun Xu, Lei Zheng. Thermal simulation and analysis of flat surface flip-chip high power light-emitting diodes. J. Semicond., 2013, 34(12): 124005. doi: 10.1088/1674-4926/34/12/124005

[8]

Dawei Yan, Lisha Li, Jian Ren, Fuxue Wang, Guofeng Yang, Shaoqing Xiao, Xiaofeng Gu. Electron-leakage-related low-temperature light emission efficiency behavior in GaN-based blue light-emitting diodes. J. Semicond., 2014, 35(4): 044007. doi: 10.1088/1674-4926/35/4/044007

[9]

Zengcheng Li, Bo Feng, Biao Deng, Legong Liu, Yingnan Huang, Meixin Feng, Yu Zhou, Hanmin Zhao, Qian Sun, Huaibing Wang, Xiaoli Yang, Hui Yang. Light output improvement of GaN-based light-emitting diodes grown on Si (111) by a via-thin-film structure. J. Semicond., 2018, 39(4): 044002. doi: 10.1088/1674-4926/39/4/044002

[10]

Sun Hao, Han Jun, Li Jianjun, Deng Jun, Zou Deshu, Song Xiaowei, Song Xinyuan, Shen Guangdi. Influence of an Omni-Directional Reflector on the Luminous Efficiency of AlGaInP Light-Emitting Diodes. J. Semicond., 2007, 28(12): 1952.

[11]

Xinzhe Min, Pengchen Zhu, Shuai Gu, Jia Zhu. Research progress of low-dimensional perovskites: synthesis, properties and optoelectronic applications. J. Semicond., 2017, 38(1): 011004. doi: 10.1088/1674-4926/38/1/011004

[12]

Zhang Guanjie, Xu Bo, Chen Yonghai, Yao Jianghong, Lin Yaowang, Shu Yongchun, Pi Biao, Xing Xiaodong, Liu Rubin, Shu Qiang, Wang Zhanguo, Xu Jingjun. Raman Scattering of InAs Quantum Dots with Different Deposition Thicknesses. J. Semicond., 2006, 27(6): 1012.

[13]

Liang Zhimei, Wu Ju, Jin Peng, Lü Xueqin, Wang Zhanguo. The Origin of Multi-Peak Structures Observed in Photoluminescence Spectra of InAs/GaAs Quantum Dots. J. Semicond., 2008, 29(11): 2121.

[14]

Song Xiaowei, Li Jianjun, Han Jun, Deng Jun, Chen Yixin, Sun Hao, Jiang Wenjing, Shen Guangdi. Effects of Surface Texture on the Light Emission of Red LEDs. J. Semicond., 2008, 29(7): 1365.

[15]

K. Jaya Bala, A. John Peter. Differential optical gain in a GaInN/AlGaN quantum dot. J. Semicond., 2017, 38(6): 062001. doi: 10.1088/1674-4926/38/6/062001

[16]

Cuilan Zhao, Chunyu Cai, Jinglin Xiao. Influence of an anisotropic parabolic potential on the quantum dot qubit. J. Semicond., 2013, 34(11): 112002. doi: 10.1088/1674-4926/34/11/112002

[17]

Wang Yanzhen, Wu Nanjian. Simulation of Imperfection on Image-Charge Quantum Cellular Automaton Using Image Charge Effect. J. Semicond., 2005, 26(S1): 261.

[18]

Hao Chen, Xiuming Dou, Kun Ding, Baoquan Sun. Electrically driven uniaxial stress device for tuning in situ semiconductor quantum dot symmetry and exciton emission in cryostat. J. Semicond., 2019, 40(7): 072901. doi: 10.1088/1674-4926/40/7/072901

[19]

Shujie Pan, Victoria Cao, Mengya Liao, Ying Lu, Zizhuo Liu, Mingchu Tang, Siming Chen, Alwyn Seeds, Huiyun Liu. Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate. J. Semicond., 2019, 40(10): 101302. doi: 10.1088/1674-4926/40/10/101302

[20]

Abou El-Maaty M. Aly, A. Nasr. The effect of multi-intermediate bands on the behavior of an InAs1-xNx/GaAs1-ySby quantum dot solar cell. J. Semicond., 2015, 36(4): 042001. doi: 10.1088/1674-4926/36/4/042001

Search

Advanced Search >>

GET CITATION

S Y Zhao, X K Liu, X D Pi, D R Yang. Light-emitting diodes based on colloidal silicon quantum dots[J]. J. Semicond., 2018, 39(6): 061008. doi: 10.1088/1674-4926/39/6/061008.

Export: BibTex EndNote

Article Metrics

Article views: 1715 Times PDF downloads: 93 Times Cited by: 0 Times

History

Manuscript received: 07 November 2017 Manuscript revised: 25 December 2017 Online: Accepted Manuscript: 15 March 2018 Published: 01 June 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误