D K Panda, G Amarnath, T R Lenka, Small-signal model parameter extraction of E-mode N-polar GaN MOS-HEMT using optimization algorithms and its comparison[J]. J. Semicond., 2018, 39(7): 074001. doi: 10.1088/1674-4926/39/7/074001.
D. K. Panda^{ } , G. Amarnath^{ } and T. R. Lenka^{ , }
Abstract: An improved small-signal parameter extraction technique for short channel enhancement-mode N-polar GaN MOS-HEMT is proposed, which is a combination of a conventional analytical method and optimization techniques. The extrinsic parameters such as parasitic capacitance, inductance and resistance are extracted under the pinch-off condition. The intrinsic parameters of the small-signal equivalent circuit (SSEC) have been extracted including gate forward and backward conductance. Different optimization algorithms such as PSO, Quasi Newton and Firefly optimization algorithm is applied to the extracted parameters to minimize the error between modeled and measured S-parameters. The different optimized SSEC models have been validated by comparing the S-parameters and unity current-gain with TCAD simulations and available experimental data from the literature. It is observed that the Firefly algorithm based optimization approach accurately extracts the small-signal model parameters as compared to other optimization algorithm techniques with a minimum error percentage of 1.3%.
Abstract: An improved small-signal parameter extraction technique for short channel enhancement-mode N-polar GaN MOS-HEMT is proposed, which is a combination of a conventional analytical method and optimization techniques. The extrinsic parameters such as parasitic capacitance, inductance and resistance are extracted under the pinch-off condition. The intrinsic parameters of the small-signal equivalent circuit (SSEC) have been extracted including gate forward and backward conductance. Different optimization algorithms such as PSO, Quasi Newton and Firefly optimization algorithm is applied to the extracted parameters to minimize the error between modeled and measured S-parameters. The different optimized SSEC models have been validated by comparing the S-parameters and unity current-gain with TCAD simulations and available experimental data from the literature. It is observed that the Firefly algorithm based optimization approach accurately extracts the small-signal model parameters as compared to other optimization algorithm techniques with a minimum error percentage of 1.3%.
Key words:
Firefly, GaN, MOS-HEMT, PSO, SSEC, TCAD
References:
[1] |
Panda D K, Lenka T R. Modeling and simulation of enhancement mode p-GaN Gate AlGaN/GaN HEMT for RF circuit switch applications. J Semicond, 2017, 38(6): 064002 |
[2] |
Panda D K, Lenka T R. Oxide thickness dependent compact model of channel noise for E-mode AlGaN/GaN MOS-HEMT. AEU - Int J Electron Commun, 2017, 82: 467 |
[3] |
Jena K, Swain R, Lenka T R. Impact of barrier thickness on gate capacitance-modeling and comparative analysis of GaN based MOSHEMTs. J Semicond, 2015, 36(3): 034003 |
[4] |
Panda D K, Lenka T R. Effects of trap density on drain current LFN and its model development for E-mode GaN MOS-HEMT. Superlattices Microstruct, 2017, 112: 374 |
[5] |
Chen M. A 1–25 GHz GaN HEMT MMIC low-noise amplifier. IEEE Microwave Wireless Compon Lett, 20(10): 563 |
[6] |
Sun H F, Alt A R, Benedickter H, et al. High-speed and low-noise AlInN/GaN HEMTs on SiC. Phys Status Solidi A, 2011, 208(2): 429 |
[7] |
Chen M Q, Sutton W, Smorchkova, et al. A 1–25 GHz GaN HEMT MMIC low-noise amplifier. IEEE Microwave Wireless Compon Lett, 2010, 20(10): 563 |
[8] |
Sun H F, Alt A R, Benedickter H, et al. Low-noise microwave performance of 0.1 μm gate AlInN/GaN HEMTs on SiC. IEEE Microwave Wireless Compon Lett, 2010, 20(8): 453 |
[9] |
Li B, Wei L, Wen C. Static characteristics and short channel effect in enhancement-mode AlN/GaN/AlN N-polar MISFET with self-aligned source/drain regions. J Semicond, 2014, 35(12): 124006 |
[10] |
Singisetti U, Wong M H, Speck J S, et al. Enhancement-mode N-polar GaN MOS-HFET with 5-nm GaN channel, 510-mS/mm g_{m}, and 0.66- ohm·mm R_{on}’. IEEE Electron Device Lett, 2012, 33(1): 6 |
[11] |
Essaadali R, Jarndal A, Kouki A B, et al. A new GaN HEMT equivalent circuit modeling technique based on X-parameters. IEEE Trans Microwave Theory Tech, 2016, 64(9): 2758 |
[12] |
Alt A R, Marti D, Bolognesi C R. Transistor modeling: robust small-signal equivalent circuit extraction in various HEMT technologies. IEEE Microwave Mag, 2013, 14(4): 83 |
[13] |
Du J, Xu P, Wang K, et al. Small-signal modeling of AlGaN/GaN HEMTs with consideration of CPW capacitances. J Semicond, 2015, 36(3): 34009 |
[14] |
Crupi G, Schreurs D M M P, Caddemi A, et al. High-frequency extraction of the extrinsic capacitances for GaN HEMT technology. IEEE Microwave Wireless Compon Lett, 2011, 21(8): 445 |
[15] |
Resca D, Raffo A, Santarelli A, et al. Scalable equivalent circuit FET model for MMIC design identified through FW-EM analyses. IEEE Trans Microwave Theory Tech, 2009, 57(2): 245 |
[16] |
Snowden C M. Large-signal microwave characterization of AlGaAs/GaAs HBT's based on a physics-based electrothermal model. IEEE Trans Microwave Theory Tech, 1997, 45(1): 58 |
[17] |
Majumdar A, Chatterjee S, Chatterjee S, et al. Optimization of intrinsic elements from small-signalmodel of GaN HEMT by using PSO. IEEE Applied Electromagnetics Conference (AEMC), Guwahati, 2015: . 1 |
[18] |
Kumar R, Rajan A, Talukdar F A, et al. Optimization of 5.5-GHz CMOS LNA parameters using firefly algorithm. Neural Computing and Applications, 2016: 1 |
[19] |
Brady R G, Oxley C H, Brazil T J. An improved small-signal parameter-extraction algorithm for GaN HEMT devices. IEEE Trans Microwave Theory Tech, 2008, 56(7): 1535 |
[20] |
Dambrine G, Cappy A, Heliodore F, et al. A new method for determining the FET small-signal equivalent circuit. IEEE Trans Microwave Theory Tech, 1988, 36(7): 1151 |
[21] |
Jarndal A, Kompa G. A new small-signal modeling approach applied to GaN devices. IEEE Trans Microwave Theory Tech, 2005, 53(11): 3440 |
[22] |
Yanagawa S, Ishihara H, Ohtomo M. Analytical method for determining equivalent circuit parameters of GaAs FETs. IEEE Trans Microwave Theory Tech, 1996, 44(10): 1637 |
[23] |
Nidhi, Dasgupta S, Keller S, et al. N-Polar GaN/AlN MIS-HEMT with f_{MAX} of 204 GHz for Ka-band applications. IEEE Electron Device Lett, 2011, 32(12): 1683 |
[1] |
Panda D K, Lenka T R. Modeling and simulation of enhancement mode p-GaN Gate AlGaN/GaN HEMT for RF circuit switch applications. J Semicond, 2017, 38(6): 064002 |
[2] |
Panda D K, Lenka T R. Oxide thickness dependent compact model of channel noise for E-mode AlGaN/GaN MOS-HEMT. AEU - Int J Electron Commun, 2017, 82: 467 |
[3] |
Jena K, Swain R, Lenka T R. Impact of barrier thickness on gate capacitance-modeling and comparative analysis of GaN based MOSHEMTs. J Semicond, 2015, 36(3): 034003 |
[4] |
Panda D K, Lenka T R. Effects of trap density on drain current LFN and its model development for E-mode GaN MOS-HEMT. Superlattices Microstruct, 2017, 112: 374 |
[5] |
Chen M. A 1–25 GHz GaN HEMT MMIC low-noise amplifier. IEEE Microwave Wireless Compon Lett, 20(10): 563 |
[6] |
Sun H F, Alt A R, Benedickter H, et al. High-speed and low-noise AlInN/GaN HEMTs on SiC. Phys Status Solidi A, 2011, 208(2): 429 |
[7] |
Chen M Q, Sutton W, Smorchkova, et al. A 1–25 GHz GaN HEMT MMIC low-noise amplifier. IEEE Microwave Wireless Compon Lett, 2010, 20(10): 563 |
[8] |
Sun H F, Alt A R, Benedickter H, et al. Low-noise microwave performance of 0.1 μm gate AlInN/GaN HEMTs on SiC. IEEE Microwave Wireless Compon Lett, 2010, 20(8): 453 |
[9] |
Li B, Wei L, Wen C. Static characteristics and short channel effect in enhancement-mode AlN/GaN/AlN N-polar MISFET with self-aligned source/drain regions. J Semicond, 2014, 35(12): 124006 |
[10] |
Singisetti U, Wong M H, Speck J S, et al. Enhancement-mode N-polar GaN MOS-HFET with 5-nm GaN channel, 510-mS/mm g_{m}, and 0.66- ohm·mm R_{on}’. IEEE Electron Device Lett, 2012, 33(1): 6 |
[11] |
Essaadali R, Jarndal A, Kouki A B, et al. A new GaN HEMT equivalent circuit modeling technique based on X-parameters. IEEE Trans Microwave Theory Tech, 2016, 64(9): 2758 |
[12] |
Alt A R, Marti D, Bolognesi C R. Transistor modeling: robust small-signal equivalent circuit extraction in various HEMT technologies. IEEE Microwave Mag, 2013, 14(4): 83 |
[13] |
Du J, Xu P, Wang K, et al. Small-signal modeling of AlGaN/GaN HEMTs with consideration of CPW capacitances. J Semicond, 2015, 36(3): 34009 |
[14] |
Crupi G, Schreurs D M M P, Caddemi A, et al. High-frequency extraction of the extrinsic capacitances for GaN HEMT technology. IEEE Microwave Wireless Compon Lett, 2011, 21(8): 445 |
[15] |
Resca D, Raffo A, Santarelli A, et al. Scalable equivalent circuit FET model for MMIC design identified through FW-EM analyses. IEEE Trans Microwave Theory Tech, 2009, 57(2): 245 |
[16] |
Snowden C M. Large-signal microwave characterization of AlGaAs/GaAs HBT's based on a physics-based electrothermal model. IEEE Trans Microwave Theory Tech, 1997, 45(1): 58 |
[17] |
Majumdar A, Chatterjee S, Chatterjee S, et al. Optimization of intrinsic elements from small-signalmodel of GaN HEMT by using PSO. IEEE Applied Electromagnetics Conference (AEMC), Guwahati, 2015: . 1 |
[18] |
Kumar R, Rajan A, Talukdar F A, et al. Optimization of 5.5-GHz CMOS LNA parameters using firefly algorithm. Neural Computing and Applications, 2016: 1 |
[19] |
Brady R G, Oxley C H, Brazil T J. An improved small-signal parameter-extraction algorithm for GaN HEMT devices. IEEE Trans Microwave Theory Tech, 2008, 56(7): 1535 |
[20] |
Dambrine G, Cappy A, Heliodore F, et al. A new method for determining the FET small-signal equivalent circuit. IEEE Trans Microwave Theory Tech, 1988, 36(7): 1151 |
[21] |
Jarndal A, Kompa G. A new small-signal modeling approach applied to GaN devices. IEEE Trans Microwave Theory Tech, 2005, 53(11): 3440 |
[22] |
Yanagawa S, Ishihara H, Ohtomo M. Analytical method for determining equivalent circuit parameters of GaAs FETs. IEEE Trans Microwave Theory Tech, 1996, 44(10): 1637 |
[23] |
Nidhi, Dasgupta S, Keller S, et al. N-Polar GaN/AlN MIS-HEMT with f_{MAX} of 204 GHz for Ka-band applications. IEEE Electron Device Lett, 2011, 32(12): 1683 |
[1] |
Hao Yue, Yue Yuanzheng, Feng Qian, Zhang Jincheng, Ma Xiaohua, Ni Jinyu. GaN MOS-HEMT Using Ultrathin Al2O3 Dielectric with fmax of 30.8GHz. J. Semicond., 2007, 28(11): 1674. |
[2] |
Kanjalochan Jena, Raghunandan Swain, T. R. Lenka. Impact of barrier thickness on gate capacitance——modeling and comparative analysis of GaN based MOSHEMTs. J. Semicond., 2015, 36(3): 034003. doi: 10.1088/1674-4926/36/3/034003 |
[3] |
Chen Zhigang, Zhang Yang, Luo Weijun, Zhang Renping, Yang Fuhua, Wang Xiaoliang, Li Jinmin. A High Performance AlGaN/GaN HEMT with a New Method for T-Gate Layout Design. J. Semicond., 2008, 29(9): 1654. |
[4] |
Zeng Qingming, Li Xianjie, Zhou Zhou, Wang Yong, Wang Xiaoliang. Investigation of Undoped AlGaN/GaN Microwave Power HEMT. J. Semicond., 2005, 26(13): 151. |
[5] |
Hemant Pardeshi, Sudhansu Kumar Pati, Godwin Raj, N Mohankumar, Chandan Kumar Sarkar. Effect of underlap and gate length on device performance of an AlInN/GaN underlap MOSFET. J. Semicond., 2012, 33(12): 124001. doi: 10.1088/1674-4926/33/12/124001 |
[6] |
A. Divay, O. Latry, C. Duperrier, F. Temcamani. Ageing of GaN HEMT devices:which degradation indicators?. J. Semicond., 2016, 37(1): 014001. doi: 10.1088/1674-4926/37/1/014001 |
[7] |
D.K. Panda, T.R. Lenka. Modeling and simulation of enhancement mode p-GaN Gate AlGaN/GaN HEMT for RF circuit switch applications. J. Semicond., 2017, 38(6): 064002. doi: 10.1088/1674-4926/38/6/064002 |
[8] |
Wang Maojun, Shen Bo, Wang Yan, Huang Sen, Xu Fujun, Xu Jian, Yang Zhijian, Zhang Guoyi. High Temperature Performance of GaN and AIxGal-xN/GaN Heterostructures. J. Semicond., 2007, 28(S1): 376. |
[9] |
Li Ti, Pan Huapu, Xu Ke, Hu Xiaodong. Optimization of the Electron Blocking Layer in GaN Laser Diodes. J. Semicond., 2006, 27(8): 1458. |
[10] |
Chen Jun, Wang Jianfeng, Wang Hui, Zhao Degang, Zhu Jianjun, Zhang Shuming, Yang Hui. Dislocation Reduction in GaN on Sapphire by Epitaxial Lateral Overgrowth. J. Semicond., 2006, 27(3): 419. |
[11] |
O. Latry, A. Divay, D. Fadil, P. Dherbécourt. Extraction of physical Schottky parameters using the Lambert function in Ni/AlGaN/GaN HEMT devices with defined conduction phenomena. J. Semicond., 2017, 38(1): 014007. doi: 10.1088/1674-4926/38/1/014007 |
[12] |
Gao Zhiyuan, Hao Yue, Li Peixian, Zhang Jincheng. Influence of Threading Dislocations on the Luminescence Efficiency of GaN Heteroepitaxial Layers. J. Semicond., 2008, 29(3): 521. |
[13] |
Liu Guoguo, Huang Jun, Wei Ke, Liu Xinyu, He Zhijing. Post-Gate Process Annealing Effects of Recessed AlGaN/GaN HEMTs. J. Semicond., 2008, 29(12): 2326. |
[14] |
Wang Hui, Guo Xia, Liang Ting, Liu Shiwen, Gao Guo, Shen Guangdi. GaAs/GaN Direct Wafer Bonding Based on Hydrophilic Surface Treatment. J. Semicond., 2006, 27(6): 1042. |
[15] |
Liu Wenbao, Sun Xian, Wang Xiaolan, Zhang Shuang, Liu Zongshun, Zhao Degang, Yang Hui. Characteristics of Metal-Semiconductor-Metal Photodetectors Based on GaN. J. Semicond., 2007, 28(S1): 588. |
[16] |
Shao Xianjie, Lu Hai, Zhang Rong, Zheng Youdou, Li Zhonghui. Performance and Design of GaN-Based Transferred-Electron Devices. J. Semicond., 2008, 29(12): 2389. |
[17] |
Li Hui, He Guorong, Qu Hongwei, Shi Yan, Chong Ming, Cao Yulian, Chen Lianghui. Direct Bonding of n-GaAs and p-GaN Wafers. J. Semicond., 2007, 28(11): 1815. |
[18] |
Li Cuiyun, Zhu Hua, Mo Chunlan, Jiang Fengyi. Microstructure of an InGaN/GaN Multiple Quantum Well LED on Si (111) Substrate. J. Semicond., 2006, 27(11): 1950. |
[19] |
Zhang Ping, Liu Junlin, Zheng Changda, Jiang Fengyi. Influence of Etching Depth on Characteristics of GaN/Si Blue LEDs. J. Semicond., 2008, 29(3): 563. |
[20] |
Gao Lihua, Yang Yunke, Chen Haixin, Fu Song. Numerical Simulation of Gas Phase and Surface Reaction for Growth of GaN by MOCVD. J. Semicond., 2007, 28(S1): 245. |
D K Panda, G Amarnath, T R Lenka, Small-signal model parameter extraction of E-mode N-polar GaN MOS-HEMT using optimization algorithms and its comparison[J]. J. Semicond., 2018, 39(7): 074001. doi: 10.1088/1674-4926/39/7/074001.
Article views: 468 Times PDF downloads: 39 Times Cited by: 0 Times
Manuscript received: 06 June 2017 Manuscript revised: 20 November 2017 Online: Accepted Manuscript: 04 April 2018 Uncorrected proof: 07 May 2018 Published: 01 July 2018
Journal of Semiconductors © 2017 All Rights Reserved