SEMICONDUCTOR DEVICES

Room-temperature optically pumped InAs/GaAs quantum dots microdisk lasers on SiO2/Si chip

Pengyi Yue1, 2, Xiuming Dou1, , Xiangbin Su1, Zhichuan Niu1 and Baoquan Sun1,

+ Author Affiliations

 Corresponding author: Xiuming Dou, xmdou04@semi.ac.cn; Baoquan Sun, bqsun@semi.ac.cn

PDF

Turn off MathJax

Abstract: We report on room temperature continuous-wave optically pumped InAs/GaAs quantum dot whispering gallery mode microdisk lasers, heterogeneously integrated on silica/silicon chips. The microdisks are fabricated by photolithography and inductively coupled plasma etching. The lasing wavelength is approximately 1200 nm and the obtained lowest laser threshold is approximately 28 μW. The experimental results show an approach of possible integrated III–V optical active materials on silica/silicon chip for low threshold WGM microdisk lasers.

Key words: quantum dotwhispering gallery modelaser



[1]
Tian Z N, Yu F, Yu Y H, et al. Single-mode unidirectional microcavity laser. Opt Lett, 2017, 42(8): 1572 doi: 10.1364/OL.42.001572
[2]
Shi B, Zhu S, Li Q, et al. 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si. Appl Phys Lett, 2017, 110(12): 121109 doi: 10.1063/1.4979120
[3]
Tulek A, Akbulut D, Bayindir M. Ultralow threshold laser action from toroidal polymer microcavity. Appl Phys Lett, 2009, 94(20): 203302 doi: 10.1063/1.3141730
[4]
Grossmann T, Schleede S, Hauser M, et al. Low-threshold conical microcavity dye lasers. Appl Phys Lett, 2010, 97(6): 173
[5]
Wang Y, Ta V D, Leck K S, et al. Robust whispering-gallery-mode microbubble lasers from colloidal quantum dots. Nano Lett, 2017, 17(4): 2640 doi: 10.1021/acs.nanolett.7b00447
[6]
Wan Y T, Li Q, Liu A Y, et al. Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates. Appl Phys Lett, 2016, 108(22): 011104 doi: 10.1063/1.4955456
[7]
Shopova S I, Farca G, Rosenberger A T, et al. Microphere whispering-gallery-mode laser using HgTe quantum dots. Appl Phys Lett, 2004, 85(25): 6101 doi: 10.1063/1.1841459
[8]
Sugo M, Takanashi Y, Al-jassim M M, et al. Heteroepitaxial growth and characterization of InP on Si substrates. J Appl Phys, 1990, 68(2): 540 doi: 10.1063/1.346826
[9]
Shimizu Y, Okada Y. Growth of high-quality GaAs/Si films for use in solar cell applications. J Cryst Growth, 2004, 265(1/2): 99
[10]
Crosnier G, Sanchez D, Bouchoule S, et al. Hybrid indium phosphide-on-silicon nanolaser diode. Nat Photon, 2017, 11(5): 297 doi: 10.1038/nphoton.2017.56
[11]
Lv X, Zou L, Lin J, et al. Unidirectional-emission single-mode AlGaInAs–InP microcylinder lasers. IEEE Photon Technol Lett, 2012, 24(11): 963 doi: 10.1109/LPT.2012.2190892
[12]
Fedeli J M, Schrank F, Augendre E, et al. Photonic–electronic integration with bonding. IEEE J Sel Top Quantum Electron, 2014, 20(4): 350 doi: 10.1109/JSTQE.2013.2295713
[13]
Liang D, Fiorentino M, Okumura T, et al. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. Opt Express, 2009, 17(22): 20355 doi: 10.1364/OE.17.020355
[14]
Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photon, 2010, 4(8): 511 doi: 10.1038/nphoton.2010.167
[15]
Roelkens G, Van Thourhout D, Baets R, et al. Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit. Opt Express, 2006, 14(18): 8154 doi: 10.1364/OE.14.008154
[16]
Van Campenhout J, Rojo-Romeo P, Regreny P, et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt Express, 2007, 15(11): 6744 doi: 10.1364/OE.15.006744
[17]
Van Campenhout J, Liu L, Rojo Romeo P, et al. A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks. IEEE Photon Technol Lett, 2008, 20(16): 1345 doi: 10.1109/LPT.2008.926857
[18]
Athanasiou M, Smith R, Liu B, et al. Room temperature continuous-wave green lasing from an InGaN microdisk on silicon. Sci Rep, 2013, 4(4): 7250
[19]
Gao X M, Li J F, Hao Z Z, et al. Vertical microgoblet resonator with high sensitivity fabricated direct laser writing on a Si substrate. J Appl Phys, 2017, 121(6): 064502 doi: 10.1063/1.4975790
[20]
Bjȍrk G, Yamamoto Y. Analysis of semiconductor microcavity lasers using rate equations. IEEE J Quantum Electron, 1991, 27(11): 2386 doi: 10.1109/3.100877
[21]
Lebedev D V, Kulagina M M, Troshkov S L, et al. Excitonic lasing of strain-free InP(As) quantum dots in AlInAs microdisk. Appl Phys Lett, 2017, 110(12): 121101 doi: 10.1063/1.4979029
[22]
Tatebayashi J, Kako S, Ho J, et al. Room-temperature lasing in a single nanowire with quantum dots. Nat Photon, 2015, 9(8): 213
[23]
McCall S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers. Appl Phys Lett, 1992, 60(3): 289 doi: 10.1063/1.106688
[24]
Slusher R E, Levi A F J, Mohideen U, et al. Threshold characteristics of semiconductor microdisk lasers. Appl Phys Lett, 1993, 63(10): 1310 doi: 10.1063/1.109714
[25]
Vahala K J. Optical microcavities. Nature, 2003, 424(6950): 839 doi: 10.1038/nature01939
[26]
Aoki T, Parkins A S, Alton D J, et al. Efficient routing of single photons by one atom and a microtoroidal cavity. Phys Rev Lett, 2009, 102(8): 083601 doi: 10.1103/PhysRevLett.102.083601
[27]
Kovsh A R, Maleev N A, Zhukov A E, et al. InAs/InGaAs/ GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain. J Cryst Growth, 2003, 251(1): 729
Fig. 2.  (Color online) Detail processes of the microdisk fabrications. (a) QD sample structure of two-layer stack InAs/GaAs QDs. (b) Bonding the QD active layer on the silica chip and photolithography to define 5 μm diameter microdisk patterns. (c) Developing to acquire the microdisk patterns. (d) ICP etching InAs/GaAs QD active layer. (e) ICP etching silica layer. (f) SEM picture of the fabricated microdisk with a 5 μm diameter.

Fig. 1.  (Color online) Room temperature PL spectra of two- and three-layer stacked InAs/GaAs QD samples grown on GaAs substrates at the laser excitation power of 24 μW.

Fig. 3.  (Color online) Two-layer stacked QD microdisk sample. (a) PL emission spectra under different pump powers. The two lasing mode peaks studied are 1154.16 and 1181.72 nm, respectively. The reference background emission wavelength of 1163.28 nm is chosen. (b) Light-out versus light-in curve of the lasing mode peaks and background emission. The lasing mode peak intensities exhibit a superliner increase, while the background signal exhibits a liner increase. Inset is the light-out versus light-in curve with double logarithmic scale for the lasing mode peak of 1181.72 nm.

Fig. 4.  (Color online) Three-layer stacked QD microdisk sample. (a) PL emission spectra under different pump powers. The two lasing mode peaks studied are 1131.69 and 1162.01 nm, respectively, which correspond to TE29, 1 and TE28, 1 cavity modes. (b) Light-out versus light-in curves of the lasing mode peaks of 1131.69 and 1162.01 nm, corresponding to the lasing thresholds of 40.08 and 27.66 μW, respectively. Inset shows the FWHM of the peak of 1131.69 nm as a function of pump power. (c) Light-out versus light-in curve with the double logarithmic scale for both lasing mode peaks. (d) Calculated electric field distribution of TE29, 1 cavity mode.

[1]
Tian Z N, Yu F, Yu Y H, et al. Single-mode unidirectional microcavity laser. Opt Lett, 2017, 42(8): 1572 doi: 10.1364/OL.42.001572
[2]
Shi B, Zhu S, Li Q, et al. 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si. Appl Phys Lett, 2017, 110(12): 121109 doi: 10.1063/1.4979120
[3]
Tulek A, Akbulut D, Bayindir M. Ultralow threshold laser action from toroidal polymer microcavity. Appl Phys Lett, 2009, 94(20): 203302 doi: 10.1063/1.3141730
[4]
Grossmann T, Schleede S, Hauser M, et al. Low-threshold conical microcavity dye lasers. Appl Phys Lett, 2010, 97(6): 173
[5]
Wang Y, Ta V D, Leck K S, et al. Robust whispering-gallery-mode microbubble lasers from colloidal quantum dots. Nano Lett, 2017, 17(4): 2640 doi: 10.1021/acs.nanolett.7b00447
[6]
Wan Y T, Li Q, Liu A Y, et al. Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates. Appl Phys Lett, 2016, 108(22): 011104 doi: 10.1063/1.4955456
[7]
Shopova S I, Farca G, Rosenberger A T, et al. Microphere whispering-gallery-mode laser using HgTe quantum dots. Appl Phys Lett, 2004, 85(25): 6101 doi: 10.1063/1.1841459
[8]
Sugo M, Takanashi Y, Al-jassim M M, et al. Heteroepitaxial growth and characterization of InP on Si substrates. J Appl Phys, 1990, 68(2): 540 doi: 10.1063/1.346826
[9]
Shimizu Y, Okada Y. Growth of high-quality GaAs/Si films for use in solar cell applications. J Cryst Growth, 2004, 265(1/2): 99
[10]
Crosnier G, Sanchez D, Bouchoule S, et al. Hybrid indium phosphide-on-silicon nanolaser diode. Nat Photon, 2017, 11(5): 297 doi: 10.1038/nphoton.2017.56
[11]
Lv X, Zou L, Lin J, et al. Unidirectional-emission single-mode AlGaInAs–InP microcylinder lasers. IEEE Photon Technol Lett, 2012, 24(11): 963 doi: 10.1109/LPT.2012.2190892
[12]
Fedeli J M, Schrank F, Augendre E, et al. Photonic–electronic integration with bonding. IEEE J Sel Top Quantum Electron, 2014, 20(4): 350 doi: 10.1109/JSTQE.2013.2295713
[13]
Liang D, Fiorentino M, Okumura T, et al. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. Opt Express, 2009, 17(22): 20355 doi: 10.1364/OE.17.020355
[14]
Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photon, 2010, 4(8): 511 doi: 10.1038/nphoton.2010.167
[15]
Roelkens G, Van Thourhout D, Baets R, et al. Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit. Opt Express, 2006, 14(18): 8154 doi: 10.1364/OE.14.008154
[16]
Van Campenhout J, Rojo-Romeo P, Regreny P, et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt Express, 2007, 15(11): 6744 doi: 10.1364/OE.15.006744
[17]
Van Campenhout J, Liu L, Rojo Romeo P, et al. A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks. IEEE Photon Technol Lett, 2008, 20(16): 1345 doi: 10.1109/LPT.2008.926857
[18]
Athanasiou M, Smith R, Liu B, et al. Room temperature continuous-wave green lasing from an InGaN microdisk on silicon. Sci Rep, 2013, 4(4): 7250
[19]
Gao X M, Li J F, Hao Z Z, et al. Vertical microgoblet resonator with high sensitivity fabricated direct laser writing on a Si substrate. J Appl Phys, 2017, 121(6): 064502 doi: 10.1063/1.4975790
[20]
Bjȍrk G, Yamamoto Y. Analysis of semiconductor microcavity lasers using rate equations. IEEE J Quantum Electron, 1991, 27(11): 2386 doi: 10.1109/3.100877
[21]
Lebedev D V, Kulagina M M, Troshkov S L, et al. Excitonic lasing of strain-free InP(As) quantum dots in AlInAs microdisk. Appl Phys Lett, 2017, 110(12): 121101 doi: 10.1063/1.4979029
[22]
Tatebayashi J, Kako S, Ho J, et al. Room-temperature lasing in a single nanowire with quantum dots. Nat Photon, 2015, 9(8): 213
[23]
McCall S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers. Appl Phys Lett, 1992, 60(3): 289 doi: 10.1063/1.106688
[24]
Slusher R E, Levi A F J, Mohideen U, et al. Threshold characteristics of semiconductor microdisk lasers. Appl Phys Lett, 1993, 63(10): 1310 doi: 10.1063/1.109714
[25]
Vahala K J. Optical microcavities. Nature, 2003, 424(6950): 839 doi: 10.1038/nature01939
[26]
Aoki T, Parkins A S, Alton D J, et al. Efficient routing of single photons by one atom and a microtoroidal cavity. Phys Rev Lett, 2009, 102(8): 083601 doi: 10.1103/PhysRevLett.102.083601
[27]
Kovsh A R, Maleev N A, Zhukov A E, et al. InAs/InGaAs/ GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain. J Cryst Growth, 2003, 251(1): 729
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3894 Times PDF downloads: 75 Times Cited by: 0 Times

    History

    Received: 30 November 2017 Revised: 25 January 2018 Online: Uncorrected proof: 20 April 2018Accepted Manuscript: 23 April 2018Published: 09 August 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Pengyi Yue, Xiuming Dou, Xiangbin Su, Zhichuan Niu, Baoquan Sun. Room-temperature optically pumped InAs/GaAs quantum dots microdisk lasers on SiO2/Si chip[J]. Journal of Semiconductors, 2018, 39(8): 084003. doi: 10.1088/1674-4926/39/8/084003 P Y Yue, X M Dou, X B Su, Z C Niu, B Q Sun, Room-temperature optically pumped InAs/GaAs quantum dots microdisk lasers on SiO2/Si chip[J]. J. Semicond., 2018, 39(8): 084003. doi: 10.1088/1674-4926/39/8/084003.Export: BibTex EndNote
      Citation:
      Pengyi Yue, Xiuming Dou, Xiangbin Su, Zhichuan Niu, Baoquan Sun. Room-temperature optically pumped InAs/GaAs quantum dots microdisk lasers on SiO2/Si chip[J]. Journal of Semiconductors, 2018, 39(8): 084003. doi: 10.1088/1674-4926/39/8/084003

      P Y Yue, X M Dou, X B Su, Z C Niu, B Q Sun, Room-temperature optically pumped InAs/GaAs quantum dots microdisk lasers on SiO2/Si chip[J]. J. Semicond., 2018, 39(8): 084003. doi: 10.1088/1674-4926/39/8/084003.
      Export: BibTex EndNote

      Room-temperature optically pumped InAs/GaAs quantum dots microdisk lasers on SiO2/Si chip

      doi: 10.1088/1674-4926/39/8/084003
      Funds:

      Project supported by the National Key Research and Development Program of China (No. 2016YFA0301202) and the National Natural Science Foundation of China (Nos. 11474275, 61674135, 91536101).

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return