REVIEWS

Flexible and stretchable photodetectors and gas sensors for wearable healthcare based on solution-processable metal chalcogenides

Qi Yan, Liang Gao, Jiang Tang and Huan Liu

+ Author Affiliations

 Corresponding author: Huan Liu, Huan@hust.edu.cn

PDF

Turn off MathJax

Abstract: Wearable smart sensors are considered to be the new generation of personal portable devices for health monitoring. By attaching to the skin surface, these sensors are closely related to body signals (such as heart rate, blood oxygen saturation, breath markers, etc.) and ambient signals (such as ultraviolet radiation, inflammable and explosive, toxic and harmful gases), thus providing new opportunities for human activity monitoring and personal telemedicine care. Here we focus on photodetectors and gas sensors built from metal chalcogenide, which have made great progress in recent years. Firstly, we present an overview of healthcare applications based on photodetectors and gas sensors, and discuss the requirement associated with these applications in detail. We then discuss advantages and properties of solution-processable metal chalcogenides, followed by some recent achievements in health monitoring with photodetectors and gas sensors based on metal chalcogenides. Last we present further research directions and challenges to develop an integrated wearable platform for monitoring human activity and personal healthcare.

Key words: solution-processable metal chalcogenidesgas sensorphotodetectorhealthcare



[1]
Gary L A, Patrick J D. The disability paradox: high quality of life against all odds. Soc Sci Med, 1999, 48, 977 doi: 10.1016/S0277-9536(98)00411-0
[2]
Ren X, Chen C, Masaaki N, et al. Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J, 2011, 170, 395 doi: 10.1016/j.cej.2010.08.045
[3]
Ashraf D, Aboul E H. Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors, 2011, 11, 5561 doi: 10.3390/s110605561
[4]
Zheng Y L, Ding X R, Carmen C Y P, et al. Unobtrusive sensing and wearable devices for health informatics. IEEE Trans Biomed Eng, 2014, 61, 1538 doi: 10.1109/TBME.2014.2309951
[5]
Yasser K, Aminy E O, Claire M L, et al. Monitoring of vital signs with flexible and wearable medical devices. Adv Mater, 2016, 28, 4373 doi: 10.1002/adma.201504366
[6]
Jaemin K, Mincheol L, Hyung J S, et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun, 2014, 5, 5747 doi: 10.1038/ncomms6747
[7]
Joshua R W, Joseph W. Wearable electrochemical sensors and biosensors: a review. Electroanalysis, 2013, 25, 29 doi: 10.1002/elan.201200349
[8]
Li L, Lou Z, Chen D, et al. Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small, 2018, 14, 1702829 doi: 10.1002/smll.201702829
[9]
Lou Z, Wang L, Shen G. Recent advances in smart wearable sensing systems. Adv Mater Technol, 2018, 3, 1800444 doi: 10.1002/admt.201800444
[10]
Webb R C, Bonifas A P, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater, 2013, 12, 938 doi: 10.1038/nmat3755
[11]
Wang X, Gu Y, Xiong Z, et al. Electronic skin: silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater, 2014, 26, 1336 doi: 10.1002/adma.201304248
[12]
Morteza A, Aekachan P, Sangjun L, et al. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano, 2014, 8, 5154 doi: 10.1021/nn501204t
[13]
Wang X, Liu Z, Zhang T. Flexible sensing electronics for wearable/attachable health monitoring. Small, 2017, 13, 1602790 doi: 10.1002/smll.201602790
[14]
Xu X, Chen J, Cai S, et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv Mater, 2018, 30, 1803165 doi: 10.1002/adma.201803165
[15]
Gao L, Dong D, He J, et al. Wearable and sensitive heart-rate detectors based on PbS QDs and multiwalled carbon nanotube blend film. Appl Phys Lett, 2014, 105, 153702 doi: 10.1063/1.4898680
[16]
Setlow R B. The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl Acad Sci, 1974, 71, 3363 doi: 10.1073/pnas.71.9.3363
[17]
Saraiya M, Glanz K, Briss P A, et al. Interventions to prevent skin cancer by reducing exposure to ultraviolet radiations: a systematic review. Am J Preven Med, 2004, 27, 422 doi: 10.1016/j.amepre.2004.08.009
[18]
Narayanan D L, Saladi R N, Fox J L. Ultraviolet radiation and skin cancer. Int J Dermat, 2010, 49, 978 doi: 10.1111/j.1365-4632.2010.04474.x
[19]
Palo P, Lutgarde T, Jan A S, et al. Predictive value of clinic and ambulatory heart rate formortality in elderly subjects with systolic hypertension. Arch Inter Med, 2002, 162, 2313 doi: 10.1001/archinte.162.20.2313
[20]
Keytel R, Goedecke H, Noakes D, et al. Prediction of energy expenditure from heart rate monitoring during submaximal exercise. J Sports Sci, 2005, 23, 289 doi: 10.1080/02640410470001730089
[21]
Achten J, Jeukendrup E. Heart rate monitoring, applications and limitations. Sports Med, 2003, 33, 517 doi: 10.2165/00007256-200333070-00004
[22]
Hamootal D, Meir N, Dror F. Simulation of oxygen saturation measurement in a single blood vein. Opt Lett, 2016, 41, 4312 doi: 10.1364/OL.41.004312
[23]
Liu H, Li M, Oleksandr V, et al. Physically flexible, rapid-response gas sensor based on colloidal QDs solids. Adv Mater, 2014, 26, 2718 doi: 10.1002/adma.201304366
[24]
Li M, Zhang W, Shao G, et al. Sensitive NO2 gas sensors employing spray-coated QDs. Thin Solid Films, 2016, 618, 271 doi: 10.1016/j.tsf.2016.08.023
[25]
Paul U, William H S. SO2 in the atmosphere: a wealth of monitoring data, but few reaction rate studies. ACS Publications, 1969
[26]
Michal S, Inigo G, Reto P, et al. A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring. Adv Mater, 2018, 30, 1804098 doi: 10.1002/adma.201804098
[27]
Zimmerling R, Dammgen U, Kusters A, et al. Response of a grassland ecosystem to air pollutants. IV. the chemical climate: concentrations of relevant non-criteria pollutants (trace gases and aerosols). Environ Pollut, 1996, 91, 139 doi: 10.1016/0269-7491(95)00058-5
[28]
Odlyha M, Foster G. M, Cohen N. S, et al Microclimate monitoring of indoor environments using piezoelectric quartz crystal humidity sensors. J Environ Monit, 2000, 2, 127 doi: 10.1039/a909417b
[29]
Emil J B. Indoor pollution and its impact on respiratory health. Annals of Allergt Asthma and Immunology, 2001, 87, 33
[30]
Becker T, Muhlberger S, Bosch-von Braunmuhl C, et al. Air pollution monitoring using tin-oxide-based microreactor systems. Sens Actuators B, 2000, 69, 108 doi: 10.1016/S0925-4005(00)00516-5
[31]
Rajitha S, Swapna T. A security alert system using GSM for gas leakage. Int J VLSI Embed Syst, 2012, 03, 173
[32]
James E E, Alexander S. Carbon nanotube based gas sensors toward breath analysis. ChemPlusChem, 2016, 81, 1248 doi: 10.1002/cplu.201600478
[33]
Christopher O O, Mohamed Z, William I S, et al. Exhaled pentane levels in acute asthma. Chest, 1997, 111, 862 doi: 10.1378/chest.111.4.862
[34]
Zeev W W, Alan J B, Paul A S, et al. High breath pentane concentrations during acute myocardial infarction. Lancet, 1991, 337, 933 doi: 10.1016/0140-6736(91)91569-G
[35]
Rossana S K, Kevin D C. Potential applications of breath isoprene as a biomarker in modern medicine: a concise overview. Wien Klin Wochenschr, 2005, 117, 180 doi: 10.1007/s00508-005-0336-9
[36]
Dong L, Shen X, Deng C. Development of gas chromatography–mass spectrometry following headspace single-drop microextraction and simultaneous derivatization for fast determination of the diabetes biomarker, acetone in human blood samples. Analyt Chim Acta, 2006, 569, 91 doi: 10.1016/j.aca.2006.03.095
[37]
Hçgman M, Holmkvist T, Wegener T, et al. Extended NO analysis applied to patients with COPD, allergic asthma and allergic rhinitis. Respir Med, 2002, 96, 24 doi: 10.1053/rmed.2001.1204
[38]
Di N C, Paolesse R, Martinelli E, et al. Solid-state gas sensors for breath analysis: a review. Anal Chim Acta, 2014, 824, 1 doi: 10.1016/j.aca.2014.03.014
[39]
Gao M R, Xu Y F, Jiang J, et al. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev, 2013, 42, 2986 doi: 10.1039/c2cs35310e
[40]
Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chem Rev, 2005, 105, 1025 doi: 10.1021/cr030063a
[41]
Lai C H, Lu M Y, Chen L J. Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J Mater Chem, 2012, 22, 19 doi: 10.1039/C1JM13879K
[42]
Liu R, Duay J, Lee S B. Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commun, 2011, 47, 1384 doi: 10.1039/C0CC03158E
[43]
Galileo S, Kaushik R C, Jegadesan S, et al. Organic and inorganic blocking layers for solution-processed colloidal PbSe nanocrystal infrared photodetectors. Adv Funct Mater, 2011, 21, 167 doi: 10.1002/adfm.201001328
[44]
Amol S, Li X, Vladimir P, et al. Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids. Nano Lett, 2007, 7(10), 2999 doi: 10.1021/nl0713023
[45]
James W G, Katherine L R, Zhang J, et al. Synthesis and characterization of Au/Bi core/shell nanocrystals: a precursor toward II−VI nanowires. J Phys Chem B, 2004, 108, 9745 doi: 10.1021/jp0496856
[46]
Supriya A P, Hwang Y T, Vijaykumar V J, et al. Solution processed growth and photoelectrochemistry of Bi2S3 nanorods thin film. J Photochem Photobiol A, 2017, 332, 174 doi: 10.1016/j.jphotochem.2016.07.037
[47]
Sean K, Emmanuel L, Vuk B, et al. Mid-infrared HgTe colloidal QDs photodetectors. Nat Photonics, 2011, 5, 489 doi: 10.1038/nphoton.2011.142
[48]
Jung H Y, Jin J, Hyun M P, et al. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J Am Chem Soc, 2005, 127, 5662 doi: 10.1021/ja044593f
[49]
Byron G, Wu Y, Yin Y, et al. Single-crystalline Nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se. J Am Chem Soc, 2001, 123, 11500 doi: 10.1021/ja0166895
[50]
Manish C, Hyeon S S, Goki E, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5, 263 doi: 10.1038/nchem.1589
[51]
Huang X, Zeng Z, Zhang H. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev, 2013, 42, 1934 doi: 10.1039/c2cs35387c
[52]
Wang Q H, Kourosh K Z, Andras K, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7, 699 doi: 10.1038/nnano.2012.193
[53]
Xu M, Tao L, Shi M, et al. Graphene-like two-dimensional materials. Chem Rev, 2013, 113, 3766 doi: 10.1021/cr300263a
[54]
Valeria N, Manish C, Mercouri G K, et al. Liquid exfoliation of layered materials. Science, 2013, 340, 1226419 doi: 10.1126/science.1226419
[55]
Sun Y, Gao S, Xie Y. Atomically-thick two-dimensional crystals: electronic structure regulation and energy device construction. Chem Soc Rev, 2014, 43, 530 doi: 10.1039/C3CS60231A
[56]
Li H, Wu J, Yin Z, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res, 2014, 47, 1067 doi: 10.1021/ar4002312
[57]
Marseglia E A. Transition metal dichalcogenides and their intercalates. Int Rev Phys Chem, 1983, 3, 177 doi: 10.1080/01442358309353343
[58]
Wilson J A, Yoffe A D. The transition metal dichalcogenides discussion and interpretation of the observed optical. electrical and structural properties. Adv Phys, 1969, 18, 193 doi: 10.1080/00018736900101307
[59]
Jonathan N C, Mustafa L, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331, 568 doi: 10.1126/science.1194975
[60]
Seo J W, Jun Y W, Park S W, et al. Two-dimensional nanosheet crystals. Angewandte Chemie International Edition, 2007, 46, 8828 doi: 10.1002/anie.200703175
[61]
Zhang J, Boris D C, Ryan W C, et al. Preparation of Cd/Pb chalcogenide heterostructured janus particles via controllable cation exchange. ACS Nano, 2015, 9, 7151 doi: 10.1021/acsnano.5b01859
[62]
Dai X, Zhang Z, Jin Y, et al. Solution-processed, high-performance light-emitting diodes based on QDs. Nature, 2014, 515, 96 doi: 10.1038/nature13829
[63]
Liu Z, Peng S, Xie Q, et al. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process. Adv Mater, 2003, 15, 936 doi: 10.1002/adma.200304693
[64]
Yao W T, Yu S H, Wu Q S. From mesostructured wurtzite ZnS-nanowire/amine nanocomposites to ZnS nanowires exhibiting quantum size effects: a mild-solution chemistry approach. Adv Funct Mater, 2007, 17, 623 doi: 10.1002/adfm.200600239
[65]
Dong H, Steven M H, Yin Y, et al. Cation exchange reactions in ionic nanocrystals. Science, 2004, 306, 1009 doi: 10.1126/science.1103755
[66]
Vanitha P V, O’Brien P. Phase control in the synthesis of magnetic iron sulfide nanocrystals from a cubane-type Fe−S cluster. J Am Chem Soc, 2008, 130, 17256 doi: 10.1021/ja8078187
[67]
Liu H, Tang J, Illan J K, et al. Electron acceptor materials engineering in colloidal QDs solar cells. Adv Mater, 2011, 23, 3832 doi: 10.1002/adma.201101783
[68]
Yao K, Gong W W, Hu Y F, et al. Individual Bi2S3 nanowire-based room-temperature H2 sensor. J Phys Chem, 2008, 112, 8721 doi: 10.1021/jp8022293
[69]
Cihan K, Chulmin C, Alireza K, et al. MoS2 nanosheet–Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen. Adv Sci, 2015, 2, 1500004 doi: 10.1002/advs.201500004
[70]
Steven A M, Gerasimos K, Zhang S, et al. Solution-processed PbS QDs infrared photodetectors and photovoltaics. Nat Mater, 2005, 4, 138 doi: 10.1038/nmat1299
[71]
Kangho L, Riley G, Niall M, et al. High-performance sensors based on molybdenum disulfide thin films. Adv Mater, 2013, 25, 6699 doi: 10.1002/adma.201303230
[72]
Dhawale D S, Dubal D P, Jamadade V S, et al. Room temperature LPG sensor based on n-CdS/p-polyaniline heterojunction. Sens Actuators B, 2010, 145, 205 doi: 10.1016/j.snb.2009.11.063
[73]
Song Z, Huang Z, Liu J, et al. Fully stretchable and humidity-resistant QDs gas sensors. ACS Sens, 2018, 3, 1048 doi: 10.1021/acssensors.8b00263
[74]
Li M, Zhou D, Zhao J, et al. Resistive gas sensors based on colloidal QDs (CQD) solids for hydrogen sulfide detection. Sens Actuators B, 2015, 217, 198 doi: 10.1016/j.snb.2014.07.058
[75]
Zhu L, Feng C, Li F, et al. Excellent gas sensing and optical properties of single-crystalline cadmium sulfide nanowires. RSC Adv, 2014, 4, 61691 doi: 10.1039/C4RA11010B
Fig. 1.  (Color online) Photodetectors for healthcare monitoring. (a) Schematic illustration of the wearable photodetector as a real-time UV monitor[14]. Copyright 2018, Adv Mater. (b) Photographs of a wearable real-time UV sensor in real life[14]. Copyright 2018, Adv Mater. (c) Comparison between traditional heart-rate sensor probe (clipped at middle finger) and the wearable photodetector (worn at forefinger)[15]. Copyright 2014, Appl Phys Lett. (d) Image of a device laminated on the skin of forehead, with an operating m-ILED (wavelength 650 nm) under room light illumination and in the dark[16]. Copyright 2014, Nat Commun.

Fig. 2.  (Color online) Some solution-processed metal chalcogenides. (a) HRTEM of PbS CQDs[30]. Copyright 2016, Thin Solid Films. (b) Typical absorption spectra of PbSe Nanocrystal from different sizes and TEM image of PbSe[43]. Copyright 2011, Adv Funct Mater. (c) TEM image of solution-synthesized CdSe NWs, with (inset) an AFM image of a network of such NWs formed on a SiO2/Si substrate[44]. Copyright 2007, Nano Lett. (d) SEM images of Bi2S3 Nanorods[46]. Copyright 2017, J Photochem Photobiol A. (e) TEM image of HgTe CQDs with an absorption onset at 5 mm. Scale bar, 100 nm[47]. Copyright 2011, Nature Photonics. (f) TEM image of 5 nm quasi-spherical ZnS nanocrystals[48]. Copyright 2005, J Am Chem Soc. (g) SEM of Ag2Se[49]. Copyright 2001, J Am Chem Soc. (h) TEM of MoS2 nanosheets[59]. Copyright 2011, Science. (i) TEM of WS2 nanosheets[59]. Copyright 2011, Science.

Fig. 3.  (Color online) (a) Absorption spectra of PbS CQD film and response curves of the sensor to NO2 of different concentrations[30, 67]. Copyright 2014, Adv Mater. (b) Performance of Bi2S3 nanowire sensor[68]. Copyright 2008, J Phys Chem. (c) PbS QDs infrared photodetectors and photovoltaics[70]. Copyright 2005, Nat Mater. (d) Dark current-voltage, responsivity and measured detectivity characteristics of PbSe nanocrystal photodetectors[43]. Copyright 2011, Adv Funct Mater.

Fig. 4.  (Color online) (a) Schematic diagram of the device configuration of p-CuZnS/n-TiO2 NTAs with Ag contacts[14]. Copyright 2018, Adv Mater. (b) The on–off switching tests of the fiber-shaped PD at 3 V under 350 nm[14]. Copyright 2018, Adv Mater. (c) Heart-rate test of the PbS QD PDs under red LEDs[15]. Copyright 2014, Appl Phys Lett. (d) and (e) The original heart-rate signal measured through the CAB PDs in the red and infrared spectral ranges[15]. Copyright 2014, Appl Phys Lett.

Fig. 5.  (Color online) (a) Sensor response plots show percentile resistance change versus time of the MoS2 film with a bias voltage of 0.5 V, upon consequent NH3 exposures from 2 to 30 ppm[71]. Copyright 2013, Adv Mater. (b) Gas response (%) versus time of n-CdS/p-polyaniline heterojunction at a fixed voltage of 2 V and at a concentration of 1040 ppm LPG[72]. Copyright 2010, Sens Actuators B. (c) Gas sensor device attached on the finger joint with “paper” and “rock” state[73]. Copyright 2018, ACS Sensors. (d) Real-time sensing curves and sense response toward different concentrations of NO2 at room temperature[73]. Copyright 2018, ACS Sensors. (e) Response curves toward 50 ppm of H2S of the sensor at different temperatures[74]. Copyright 2015, Sens Actuators B. (f) Response–recovery curves of the gas sensor towards 20, 50, 100, and 200 ppm ethanol, respectively[75]. Copyright 2014, RSC Adv.

Table 1.   Respiratory gas markers and pathology.

Exhaled gas markerIllnessReference
PentaneAcute asthma, acute myocardial infarction[33, 34]
IsopreneCancer[35]
AcetoneDiabetes[36]
NOxLung inflammation[37]
NH3Kidney disease or ulcer[38]
DownLoad: CSV

Table 2.   Methods of synthesis of some metal chalcogenides.

MaterialsMorphology structureSynthetic methodReference
PbSQDsHot-injection method[30]
PbSQDsCation exchange method[61]
PbSeNanocrystallineSolution method[43]
CdSeNanowiresSolution-Liquid-Solid method[44]
CdSe–CdSCore-shell QDsSolution method[62]
Bi2S3NanorodsSolution method[46]
Bi2S3NanobeltsHydrothermal method[63]
HgTeQDsSolution method[47]
ZnSNanocrystallineSolution method[48]
ZnSNanowiresSolvent hot method[64]
Ag2SeNanowiresSolution method[49]
Ag2SeNanocrystallineCation exchange method[65]
Fe7S8NanocrystallineSingle-source precursor method[66]
MoS2NanosheetsLiquid exfoliation method[59]
WS2NanosheetsLiquid exfoliation method[59]
WS2NanosheetsSulfidation-induced method[61]
DownLoad: CSV
[1]
Gary L A, Patrick J D. The disability paradox: high quality of life against all odds. Soc Sci Med, 1999, 48, 977 doi: 10.1016/S0277-9536(98)00411-0
[2]
Ren X, Chen C, Masaaki N, et al. Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J, 2011, 170, 395 doi: 10.1016/j.cej.2010.08.045
[3]
Ashraf D, Aboul E H. Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors, 2011, 11, 5561 doi: 10.3390/s110605561
[4]
Zheng Y L, Ding X R, Carmen C Y P, et al. Unobtrusive sensing and wearable devices for health informatics. IEEE Trans Biomed Eng, 2014, 61, 1538 doi: 10.1109/TBME.2014.2309951
[5]
Yasser K, Aminy E O, Claire M L, et al. Monitoring of vital signs with flexible and wearable medical devices. Adv Mater, 2016, 28, 4373 doi: 10.1002/adma.201504366
[6]
Jaemin K, Mincheol L, Hyung J S, et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun, 2014, 5, 5747 doi: 10.1038/ncomms6747
[7]
Joshua R W, Joseph W. Wearable electrochemical sensors and biosensors: a review. Electroanalysis, 2013, 25, 29 doi: 10.1002/elan.201200349
[8]
Li L, Lou Z, Chen D, et al. Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small, 2018, 14, 1702829 doi: 10.1002/smll.201702829
[9]
Lou Z, Wang L, Shen G. Recent advances in smart wearable sensing systems. Adv Mater Technol, 2018, 3, 1800444 doi: 10.1002/admt.201800444
[10]
Webb R C, Bonifas A P, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater, 2013, 12, 938 doi: 10.1038/nmat3755
[11]
Wang X, Gu Y, Xiong Z, et al. Electronic skin: silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater, 2014, 26, 1336 doi: 10.1002/adma.201304248
[12]
Morteza A, Aekachan P, Sangjun L, et al. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano, 2014, 8, 5154 doi: 10.1021/nn501204t
[13]
Wang X, Liu Z, Zhang T. Flexible sensing electronics for wearable/attachable health monitoring. Small, 2017, 13, 1602790 doi: 10.1002/smll.201602790
[14]
Xu X, Chen J, Cai S, et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv Mater, 2018, 30, 1803165 doi: 10.1002/adma.201803165
[15]
Gao L, Dong D, He J, et al. Wearable and sensitive heart-rate detectors based on PbS QDs and multiwalled carbon nanotube blend film. Appl Phys Lett, 2014, 105, 153702 doi: 10.1063/1.4898680
[16]
Setlow R B. The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc Natl Acad Sci, 1974, 71, 3363 doi: 10.1073/pnas.71.9.3363
[17]
Saraiya M, Glanz K, Briss P A, et al. Interventions to prevent skin cancer by reducing exposure to ultraviolet radiations: a systematic review. Am J Preven Med, 2004, 27, 422 doi: 10.1016/j.amepre.2004.08.009
[18]
Narayanan D L, Saladi R N, Fox J L. Ultraviolet radiation and skin cancer. Int J Dermat, 2010, 49, 978 doi: 10.1111/j.1365-4632.2010.04474.x
[19]
Palo P, Lutgarde T, Jan A S, et al. Predictive value of clinic and ambulatory heart rate formortality in elderly subjects with systolic hypertension. Arch Inter Med, 2002, 162, 2313 doi: 10.1001/archinte.162.20.2313
[20]
Keytel R, Goedecke H, Noakes D, et al. Prediction of energy expenditure from heart rate monitoring during submaximal exercise. J Sports Sci, 2005, 23, 289 doi: 10.1080/02640410470001730089
[21]
Achten J, Jeukendrup E. Heart rate monitoring, applications and limitations. Sports Med, 2003, 33, 517 doi: 10.2165/00007256-200333070-00004
[22]
Hamootal D, Meir N, Dror F. Simulation of oxygen saturation measurement in a single blood vein. Opt Lett, 2016, 41, 4312 doi: 10.1364/OL.41.004312
[23]
Liu H, Li M, Oleksandr V, et al. Physically flexible, rapid-response gas sensor based on colloidal QDs solids. Adv Mater, 2014, 26, 2718 doi: 10.1002/adma.201304366
[24]
Li M, Zhang W, Shao G, et al. Sensitive NO2 gas sensors employing spray-coated QDs. Thin Solid Films, 2016, 618, 271 doi: 10.1016/j.tsf.2016.08.023
[25]
Paul U, William H S. SO2 in the atmosphere: a wealth of monitoring data, but few reaction rate studies. ACS Publications, 1969
[26]
Michal S, Inigo G, Reto P, et al. A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring. Adv Mater, 2018, 30, 1804098 doi: 10.1002/adma.201804098
[27]
Zimmerling R, Dammgen U, Kusters A, et al. Response of a grassland ecosystem to air pollutants. IV. the chemical climate: concentrations of relevant non-criteria pollutants (trace gases and aerosols). Environ Pollut, 1996, 91, 139 doi: 10.1016/0269-7491(95)00058-5
[28]
Odlyha M, Foster G. M, Cohen N. S, et al Microclimate monitoring of indoor environments using piezoelectric quartz crystal humidity sensors. J Environ Monit, 2000, 2, 127 doi: 10.1039/a909417b
[29]
Emil J B. Indoor pollution and its impact on respiratory health. Annals of Allergt Asthma and Immunology, 2001, 87, 33
[30]
Becker T, Muhlberger S, Bosch-von Braunmuhl C, et al. Air pollution monitoring using tin-oxide-based microreactor systems. Sens Actuators B, 2000, 69, 108 doi: 10.1016/S0925-4005(00)00516-5
[31]
Rajitha S, Swapna T. A security alert system using GSM for gas leakage. Int J VLSI Embed Syst, 2012, 03, 173
[32]
James E E, Alexander S. Carbon nanotube based gas sensors toward breath analysis. ChemPlusChem, 2016, 81, 1248 doi: 10.1002/cplu.201600478
[33]
Christopher O O, Mohamed Z, William I S, et al. Exhaled pentane levels in acute asthma. Chest, 1997, 111, 862 doi: 10.1378/chest.111.4.862
[34]
Zeev W W, Alan J B, Paul A S, et al. High breath pentane concentrations during acute myocardial infarction. Lancet, 1991, 337, 933 doi: 10.1016/0140-6736(91)91569-G
[35]
Rossana S K, Kevin D C. Potential applications of breath isoprene as a biomarker in modern medicine: a concise overview. Wien Klin Wochenschr, 2005, 117, 180 doi: 10.1007/s00508-005-0336-9
[36]
Dong L, Shen X, Deng C. Development of gas chromatography–mass spectrometry following headspace single-drop microextraction and simultaneous derivatization for fast determination of the diabetes biomarker, acetone in human blood samples. Analyt Chim Acta, 2006, 569, 91 doi: 10.1016/j.aca.2006.03.095
[37]
Hçgman M, Holmkvist T, Wegener T, et al. Extended NO analysis applied to patients with COPD, allergic asthma and allergic rhinitis. Respir Med, 2002, 96, 24 doi: 10.1053/rmed.2001.1204
[38]
Di N C, Paolesse R, Martinelli E, et al. Solid-state gas sensors for breath analysis: a review. Anal Chim Acta, 2014, 824, 1 doi: 10.1016/j.aca.2014.03.014
[39]
Gao M R, Xu Y F, Jiang J, et al. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev, 2013, 42, 2986 doi: 10.1039/c2cs35310e
[40]
Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes. Chem Rev, 2005, 105, 1025 doi: 10.1021/cr030063a
[41]
Lai C H, Lu M Y, Chen L J. Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J Mater Chem, 2012, 22, 19 doi: 10.1039/C1JM13879K
[42]
Liu R, Duay J, Lee S B. Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commun, 2011, 47, 1384 doi: 10.1039/C0CC03158E
[43]
Galileo S, Kaushik R C, Jegadesan S, et al. Organic and inorganic blocking layers for solution-processed colloidal PbSe nanocrystal infrared photodetectors. Adv Funct Mater, 2011, 21, 167 doi: 10.1002/adfm.201001328
[44]
Amol S, Li X, Vladimir P, et al. Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids. Nano Lett, 2007, 7(10), 2999 doi: 10.1021/nl0713023
[45]
James W G, Katherine L R, Zhang J, et al. Synthesis and characterization of Au/Bi core/shell nanocrystals: a precursor toward II−VI nanowires. J Phys Chem B, 2004, 108, 9745 doi: 10.1021/jp0496856
[46]
Supriya A P, Hwang Y T, Vijaykumar V J, et al. Solution processed growth and photoelectrochemistry of Bi2S3 nanorods thin film. J Photochem Photobiol A, 2017, 332, 174 doi: 10.1016/j.jphotochem.2016.07.037
[47]
Sean K, Emmanuel L, Vuk B, et al. Mid-infrared HgTe colloidal QDs photodetectors. Nat Photonics, 2011, 5, 489 doi: 10.1038/nphoton.2011.142
[48]
Jung H Y, Jin J, Hyun M P, et al. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J Am Chem Soc, 2005, 127, 5662 doi: 10.1021/ja044593f
[49]
Byron G, Wu Y, Yin Y, et al. Single-crystalline Nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se. J Am Chem Soc, 2001, 123, 11500 doi: 10.1021/ja0166895
[50]
Manish C, Hyeon S S, Goki E, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5, 263 doi: 10.1038/nchem.1589
[51]
Huang X, Zeng Z, Zhang H. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev, 2013, 42, 1934 doi: 10.1039/c2cs35387c
[52]
Wang Q H, Kourosh K Z, Andras K, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7, 699 doi: 10.1038/nnano.2012.193
[53]
Xu M, Tao L, Shi M, et al. Graphene-like two-dimensional materials. Chem Rev, 2013, 113, 3766 doi: 10.1021/cr300263a
[54]
Valeria N, Manish C, Mercouri G K, et al. Liquid exfoliation of layered materials. Science, 2013, 340, 1226419 doi: 10.1126/science.1226419
[55]
Sun Y, Gao S, Xie Y. Atomically-thick two-dimensional crystals: electronic structure regulation and energy device construction. Chem Soc Rev, 2014, 43, 530 doi: 10.1039/C3CS60231A
[56]
Li H, Wu J, Yin Z, et al. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res, 2014, 47, 1067 doi: 10.1021/ar4002312
[57]
Marseglia E A. Transition metal dichalcogenides and their intercalates. Int Rev Phys Chem, 1983, 3, 177 doi: 10.1080/01442358309353343
[58]
Wilson J A, Yoffe A D. The transition metal dichalcogenides discussion and interpretation of the observed optical. electrical and structural properties. Adv Phys, 1969, 18, 193 doi: 10.1080/00018736900101307
[59]
Jonathan N C, Mustafa L, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331, 568 doi: 10.1126/science.1194975
[60]
Seo J W, Jun Y W, Park S W, et al. Two-dimensional nanosheet crystals. Angewandte Chemie International Edition, 2007, 46, 8828 doi: 10.1002/anie.200703175
[61]
Zhang J, Boris D C, Ryan W C, et al. Preparation of Cd/Pb chalcogenide heterostructured janus particles via controllable cation exchange. ACS Nano, 2015, 9, 7151 doi: 10.1021/acsnano.5b01859
[62]
Dai X, Zhang Z, Jin Y, et al. Solution-processed, high-performance light-emitting diodes based on QDs. Nature, 2014, 515, 96 doi: 10.1038/nature13829
[63]
Liu Z, Peng S, Xie Q, et al. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process. Adv Mater, 2003, 15, 936 doi: 10.1002/adma.200304693
[64]
Yao W T, Yu S H, Wu Q S. From mesostructured wurtzite ZnS-nanowire/amine nanocomposites to ZnS nanowires exhibiting quantum size effects: a mild-solution chemistry approach. Adv Funct Mater, 2007, 17, 623 doi: 10.1002/adfm.200600239
[65]
Dong H, Steven M H, Yin Y, et al. Cation exchange reactions in ionic nanocrystals. Science, 2004, 306, 1009 doi: 10.1126/science.1103755
[66]
Vanitha P V, O’Brien P. Phase control in the synthesis of magnetic iron sulfide nanocrystals from a cubane-type Fe−S cluster. J Am Chem Soc, 2008, 130, 17256 doi: 10.1021/ja8078187
[67]
Liu H, Tang J, Illan J K, et al. Electron acceptor materials engineering in colloidal QDs solar cells. Adv Mater, 2011, 23, 3832 doi: 10.1002/adma.201101783
[68]
Yao K, Gong W W, Hu Y F, et al. Individual Bi2S3 nanowire-based room-temperature H2 sensor. J Phys Chem, 2008, 112, 8721 doi: 10.1021/jp8022293
[69]
Cihan K, Chulmin C, Alireza K, et al. MoS2 nanosheet–Pd nanoparticle composite for highly sensitive room temperature detection of hydrogen. Adv Sci, 2015, 2, 1500004 doi: 10.1002/advs.201500004
[70]
Steven A M, Gerasimos K, Zhang S, et al. Solution-processed PbS QDs infrared photodetectors and photovoltaics. Nat Mater, 2005, 4, 138 doi: 10.1038/nmat1299
[71]
Kangho L, Riley G, Niall M, et al. High-performance sensors based on molybdenum disulfide thin films. Adv Mater, 2013, 25, 6699 doi: 10.1002/adma.201303230
[72]
Dhawale D S, Dubal D P, Jamadade V S, et al. Room temperature LPG sensor based on n-CdS/p-polyaniline heterojunction. Sens Actuators B, 2010, 145, 205 doi: 10.1016/j.snb.2009.11.063
[73]
Song Z, Huang Z, Liu J, et al. Fully stretchable and humidity-resistant QDs gas sensors. ACS Sens, 2018, 3, 1048 doi: 10.1021/acssensors.8b00263
[74]
Li M, Zhou D, Zhao J, et al. Resistive gas sensors based on colloidal QDs (CQD) solids for hydrogen sulfide detection. Sens Actuators B, 2015, 217, 198 doi: 10.1016/j.snb.2014.07.058
[75]
Zhu L, Feng C, Li F, et al. Excellent gas sensing and optical properties of single-crystalline cadmium sulfide nanowires. RSC Adv, 2014, 4, 61691 doi: 10.1039/C4RA11010B
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4772 Times PDF downloads: 120 Times Cited by: 0 Times

    History

    Received: 30 July 2019 Revised: 19 October 2019 Online: Accepted Manuscript: 26 October 2019Uncorrected proof: 28 October 2019Published: 08 November 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Qi Yan, Liang Gao, Jiang Tang, Huan Liu. Flexible and stretchable photodetectors and gas sensors for wearable healthcare based on solution-processable metal chalcogenides[J]. Journal of Semiconductors, 2019, 40(11): 111604. doi: 10.1088/1674-4926/40/11/111604 Q Yan, L Gao, J Tang, H Liu, Flexible and stretchable photodetectors and gas sensors for wearable healthcare based on solution-processable metal chalcogenides[J]. J. Semicond., 2019, 40(11): 111604. doi: 10.1088/1674-4926/40/11/111604.Export: BibTex EndNote
      Citation:
      Qi Yan, Liang Gao, Jiang Tang, Huan Liu. Flexible and stretchable photodetectors and gas sensors for wearable healthcare based on solution-processable metal chalcogenides[J]. Journal of Semiconductors, 2019, 40(11): 111604. doi: 10.1088/1674-4926/40/11/111604

      Q Yan, L Gao, J Tang, H Liu, Flexible and stretchable photodetectors and gas sensors for wearable healthcare based on solution-processable metal chalcogenides[J]. J. Semicond., 2019, 40(11): 111604. doi: 10.1088/1674-4926/40/11/111604.
      Export: BibTex EndNote

      Flexible and stretchable photodetectors and gas sensors for wearable healthcare based on solution-processable metal chalcogenides

      doi: 10.1088/1674-4926/40/11/111604
      More Information
      • Corresponding author: Huan@hust.edu.cn
      • Received Date: 2019-07-30
      • Revised Date: 2019-10-19
      • Published Date: 2019-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return