COMMENTS AND OPINIONS

Research status and prospects of deep ultraviolet devices

Hideki Hirayama

+ Author Affiliations

 Corresponding author: Hideki Hirayama, E-mail: hirayama@riken.jp

PDF

Turn off MathJax



[1]
Khan A, Balakrishnan K, Katona T. Ultraviolet light-emitting diodes based on group three nitrides. Nat Photonics, 2008, 2, 77 doi: 10.1038/nphoton.2007.293
[2]
Li D, Jiang K, Sun X, et al. AlGaN photonics: recent advances in materials and ultraviolet devices. Adv Opt Photonics, 2018, 10, 43 doi: 10.1364/AOP.10.000043
[3]
Takano T, Mino T, Sakai J, et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl Phys Express, 2017, 10, 031002 doi: 10.7567/APEX.10.031002
[4]
Hodgkinson J, Tatam R P. Optical gas sensing: a review. Meas Sci Technol, 2013, 24, 012004 doi: 10.1088/0957-0233/24/1/012004
[5]
Allaria E, Castronovo D, Cinquegrana P, et al. Two-stage seeded soft-X-ray free-electron laser. Nat Photonics, 2013, 7, 913 doi: 10.1038/nphoton.2013.277
[6]
Kneissl M, Seong T Y, Han J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat Photonics, 2019, 13, 233 doi: 10.1038/s41566-019-0359-9
[7]
Zhang Z, Kushimoto M, Sakai T, et al. A 271.8 nm deep-ultraviolet laser diode for room temperature operation. Appl Phys Express, 2019, 12, 124003 doi: 10.7567/1882-0786/ab50e0
[8]
Ban K, Yamamoto J I, Takeda K, et al. Internal quantum efficiency of whole-composition-range AlGaN multi-quantum wells. Appl Phys Express, 2011, 4, 052101 doi: 10.1143/APEX.4.052101
[9]
Kneissl M, Kolbe T, Chua C, et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol, 2011, 26, 014036 doi: 10.1088/0268-1242/26/1/014036
[10]
Simon J, Protasenko V, Lian C, et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Sciences, 2009, 327, 60 doi: 10.1126/science.1183226
[11]
Chang H, Chen Z, Li W, et al. Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. Appl Phys Lett, 2019, 114, 091107 doi: 10.1063/1.5081112
[12]
Hirayama H, Yatabe T, Noguchi N, et al. 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl Phys Lett, 2007, 91, 71901 doi: 10.1063/1.2770662
[13]
Tian W, Yan W Y, Dai J N, et al. Effect of growth temperature of an AlN intermediate layer on the growth mode of AlN grown by MOCVD. J Phys D, 2013, 46, 065303 doi: 10.1088/0022-3727/46/6/065303
[14]
Shatalov M, Sun W, Lunev A, et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl Phys Express, 2012, 5, 082101 doi: 10.1143/APEX.5.082101
[15]
Djavid M, Mi Z. Ehancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures. Appl Phys Lett, 2005, 108, 051102 doi: 10.1063/1.4941239
[16]
Jeon S R, Ren Z, Cui G, et al. Investigation of Mg doping in high-Al content p-type Al xGa1–xN (0.3 $\textstyle{\ll}$ x $\textstyle{\ll}$ 0.5). Appl Phys Lett, 2005, 86, 082107 doi: 10.1063/1.1867565
[17]
Nakarmi M L, Kim K H, Li J, et al. Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl Phys Lett, 2003, 82, 3041 doi: 10.1063/1.1559444
[18]
Zhong H X, Shi J J, Zhang M, et al. Improving p-type doping efficiency in Al0.83Ga0.17N alloy substituted by nanoscale (AlN)5/(GaN)1 superlattice with MgGa-ON δ-codoping: Role of O-atom in GaN monolayer. AIP Adv, 2015, 5, 227 doi: 10.1063/1.4905884
Fig. 1.  (Color online) Schematic illustration of the DUV-LEDs structure.

Fig. 2.  (Color online) IV and edge emission IL characteristics of the measured UV-C LD. The inset figure shows the edge emission spectrum at 0.5 A forward current[7].

Fig. 3.  (Color online) IQE as a function of DD in an underlying layer under weak excitation with excess carrier density of 1 × 1018 cm−3.

Fig. 4.  (Color online) Hall-effect temperature-dependent (a) hole concentration, (b) hole mobilities, and (c) hole concentration and mobility measured down to T = 4 K.

[1]
Khan A, Balakrishnan K, Katona T. Ultraviolet light-emitting diodes based on group three nitrides. Nat Photonics, 2008, 2, 77 doi: 10.1038/nphoton.2007.293
[2]
Li D, Jiang K, Sun X, et al. AlGaN photonics: recent advances in materials and ultraviolet devices. Adv Opt Photonics, 2018, 10, 43 doi: 10.1364/AOP.10.000043
[3]
Takano T, Mino T, Sakai J, et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl Phys Express, 2017, 10, 031002 doi: 10.7567/APEX.10.031002
[4]
Hodgkinson J, Tatam R P. Optical gas sensing: a review. Meas Sci Technol, 2013, 24, 012004 doi: 10.1088/0957-0233/24/1/012004
[5]
Allaria E, Castronovo D, Cinquegrana P, et al. Two-stage seeded soft-X-ray free-electron laser. Nat Photonics, 2013, 7, 913 doi: 10.1038/nphoton.2013.277
[6]
Kneissl M, Seong T Y, Han J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat Photonics, 2019, 13, 233 doi: 10.1038/s41566-019-0359-9
[7]
Zhang Z, Kushimoto M, Sakai T, et al. A 271.8 nm deep-ultraviolet laser diode for room temperature operation. Appl Phys Express, 2019, 12, 124003 doi: 10.7567/1882-0786/ab50e0
[8]
Ban K, Yamamoto J I, Takeda K, et al. Internal quantum efficiency of whole-composition-range AlGaN multi-quantum wells. Appl Phys Express, 2011, 4, 052101 doi: 10.1143/APEX.4.052101
[9]
Kneissl M, Kolbe T, Chua C, et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol, 2011, 26, 014036 doi: 10.1088/0268-1242/26/1/014036
[10]
Simon J, Protasenko V, Lian C, et al. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Sciences, 2009, 327, 60 doi: 10.1126/science.1183226
[11]
Chang H, Chen Z, Li W, et al. Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. Appl Phys Lett, 2019, 114, 091107 doi: 10.1063/1.5081112
[12]
Hirayama H, Yatabe T, Noguchi N, et al. 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl Phys Lett, 2007, 91, 71901 doi: 10.1063/1.2770662
[13]
Tian W, Yan W Y, Dai J N, et al. Effect of growth temperature of an AlN intermediate layer on the growth mode of AlN grown by MOCVD. J Phys D, 2013, 46, 065303 doi: 10.1088/0022-3727/46/6/065303
[14]
Shatalov M, Sun W, Lunev A, et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl Phys Express, 2012, 5, 082101 doi: 10.1143/APEX.5.082101
[15]
Djavid M, Mi Z. Ehancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures. Appl Phys Lett, 2005, 108, 051102 doi: 10.1063/1.4941239
[16]
Jeon S R, Ren Z, Cui G, et al. Investigation of Mg doping in high-Al content p-type Al xGa1–xN (0.3 $\textstyle{\ll}$ x $\textstyle{\ll}$ 0.5). Appl Phys Lett, 2005, 86, 082107 doi: 10.1063/1.1867565
[17]
Nakarmi M L, Kim K H, Li J, et al. Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl Phys Lett, 2003, 82, 3041 doi: 10.1063/1.1559444
[18]
Zhong H X, Shi J J, Zhang M, et al. Improving p-type doping efficiency in Al0.83Ga0.17N alloy substituted by nanoscale (AlN)5/(GaN)1 superlattice with MgGa-ON δ-codoping: Role of O-atom in GaN monolayer. AIP Adv, 2015, 5, 227 doi: 10.1063/1.4905884
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3132 Times PDF downloads: 110 Times Cited by: 0 Times

    History

    Received: Revised: Online: Accepted Manuscript: 04 December 2019Uncorrected proof: 04 December 2019Published: 09 December 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hideki Hirayama. Research status and prospects of deep ultraviolet devices[J]. Journal of Semiconductors, 2019, 40(12): 120301. doi: 10.1088/1674-4926/40/12/120301 H Hirayama, Research status and prospects of deep ultraviolet devices[J]. J. Semicond., 2019, 40(12): 120301. doi: 10.1088/1674-4926/40/12/120301.Export: BibTex EndNote
      Citation:
      Hideki Hirayama. Research status and prospects of deep ultraviolet devices[J]. Journal of Semiconductors, 2019, 40(12): 120301. doi: 10.1088/1674-4926/40/12/120301

      H Hirayama, Research status and prospects of deep ultraviolet devices[J]. J. Semicond., 2019, 40(12): 120301. doi: 10.1088/1674-4926/40/12/120301.
      Export: BibTex EndNote

      Research status and prospects of deep ultraviolet devices

      doi: 10.1088/1674-4926/40/12/120301
      More Information
      • Author Bio:

        Hideki Hirayama Hideki Hirayama received his Ph.D. from Tokyo Institute of Technology in 1994. He joined RIKEN from 1994 and he was appointed Chief Scientist and Director of Quantum Optodevice Laboratory since 2012. His research interests include crystal growth of wide bandgap AlN-based nitride semiconductors and develop                                                  ment of deep-UV emitters

      • Corresponding author: E-mail: hirayama@riken.jp
      • Published Date: 2019-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return