NEWS AND VIEWS

Quantum-optical analogies of dimer structures

Jian Wang and Shuang Zheng

+ Author Affiliations

 Corresponding author: Jian Wang, Email: jwang@hust.edu.cn

PDF

Turn off MathJax



[1]
Longhi S. Quantum‐optical analogies using photonic structures. Laser & Photonics Reviews, 2009, 3(3), 243-261 doi: 10.1002/lpor.200810055
[2]
Feng L, Wong Z J, Ma R M, et al. Single-mode laser by parity-time symmetry breaking. Science, 2014, 346(6212), 972-975 doi: 10.1126/science.1258479
[3]
Miao P, Zhang Z, Sun J, et al. Orbital angular momentum microlaser. Science, 2016, 353(6298), 464-467 doi: 10.1126/science.aaf8533
[4]
Hodaei H, Miri M A, Heinrich M, et al. Parity-time–symmetric microring lasers. Science, 2014, 346(6212), 975-978 doi: 10.1126/science.1258480
[5]
Hodaei H, Miri M A, Hassan A U, et al. Single mode lasing in transversely multi‐moded PT‐symmetric microring resonators. Laser & Photonics Reviews, 2016, 10(3), 494-499 doi: 10.1002/lpor.201500292
[6]
Parto M, Wittek S, Hodaei H, et al. Edge-mode lasing in 1D topological active arrays. Physical Review Letters, 2018, 120(11), 113901 doi: 10.1103/PhysRevLett.120.113901
[7]
Hodaei H, Hassan A U, Wittek S, et al. Enhanced sensitivity at higher-order exceptional points. Nature, 2017, 548(7666), 187 doi: 10.1038/nature23280
[8]
Guo X, Zou C L, Jung H, et al. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Physical review letters, 2016, 117(12), 123902 doi: 10.1103/PhysRevLett.117.123902
[9]
Sato Y, Tanaka Y, Upham J, et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nature Photonics, 2012, 6(1), 56 doi: 10.1038/nphoton.2011.286
[10]
Zhang M, Wang C, Hu Y, et al. Electronically programmable photonic molecule. Nature Photonics, 2019, 13(1), 36 doi: 10.1038/s41566-018-0317-y
[11]
Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562(7725), 101 doi: 10.1038/s41586-018-0551-y
Fig. 1.  (Color online) Microwave-dressed photonic module. (a) The photonic molecule is realized by a pair of identical coupled optical microring resonators (resonant frequency ω1  = ω2). The system has two distinct energy levels—a symmetric and an antisymmetric optical mode. (b, c) When the applied microwave frequency is tuned to match the mode separation, dissipative coupling leads the two photonic levels to split into four levels. This effect is analogous to Autler–Townes splitting. (d) False-coloured scanning electron microscope image of the coupled microring resonators. (e) On-demand storage and retrieval of light using a photonic dark mode. Figure adapted from Ref. [10].

[1]
Longhi S. Quantum‐optical analogies using photonic structures. Laser & Photonics Reviews, 2009, 3(3), 243-261 doi: 10.1002/lpor.200810055
[2]
Feng L, Wong Z J, Ma R M, et al. Single-mode laser by parity-time symmetry breaking. Science, 2014, 346(6212), 972-975 doi: 10.1126/science.1258479
[3]
Miao P, Zhang Z, Sun J, et al. Orbital angular momentum microlaser. Science, 2016, 353(6298), 464-467 doi: 10.1126/science.aaf8533
[4]
Hodaei H, Miri M A, Heinrich M, et al. Parity-time–symmetric microring lasers. Science, 2014, 346(6212), 975-978 doi: 10.1126/science.1258480
[5]
Hodaei H, Miri M A, Hassan A U, et al. Single mode lasing in transversely multi‐moded PT‐symmetric microring resonators. Laser & Photonics Reviews, 2016, 10(3), 494-499 doi: 10.1002/lpor.201500292
[6]
Parto M, Wittek S, Hodaei H, et al. Edge-mode lasing in 1D topological active arrays. Physical Review Letters, 2018, 120(11), 113901 doi: 10.1103/PhysRevLett.120.113901
[7]
Hodaei H, Hassan A U, Wittek S, et al. Enhanced sensitivity at higher-order exceptional points. Nature, 2017, 548(7666), 187 doi: 10.1038/nature23280
[8]
Guo X, Zou C L, Jung H, et al. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Physical review letters, 2016, 117(12), 123902 doi: 10.1103/PhysRevLett.117.123902
[9]
Sato Y, Tanaka Y, Upham J, et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nature Photonics, 2012, 6(1), 56 doi: 10.1038/nphoton.2011.286
[10]
Zhang M, Wang C, Hu Y, et al. Electronically programmable photonic molecule. Nature Photonics, 2019, 13(1), 36 doi: 10.1038/s41566-018-0317-y
[11]
Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562(7725), 101 doi: 10.1038/s41586-018-0551-y
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2781 Times PDF downloads: 33 Times Cited by: 0 Times

    History

    Received: Revised: Online: Published: 01 February 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jian Wang, Shuang Zheng. Quantum-optical analogies of dimer structures[J]. Journal of Semiconductors, 2019, 40(2): 020402. doi: 10.1088/1674-4926/40/2/020402 J Wang, S Zheng, Quantum-optical analogies of dimer structures[J]. J. Semicond., 2019, 40(2): 020402. doi: 10.1088/1674-4926/40/2/020402.Export: BibTex EndNote
      Citation:
      Jian Wang, Shuang Zheng. Quantum-optical analogies of dimer structures[J]. Journal of Semiconductors, 2019, 40(2): 020402. doi: 10.1088/1674-4926/40/2/020402

      J Wang, S Zheng, Quantum-optical analogies of dimer structures[J]. J. Semicond., 2019, 40(2): 020402. doi: 10.1088/1674-4926/40/2/020402.
      Export: BibTex EndNote

      Quantum-optical analogies of dimer structures

      doi: 10.1088/1674-4926/40/2/020402
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return