J. Semicond. > Volume 40 > Issue 2 > Article Number: 022402

High performance active image sensor pixel design with circular structure oxide TFT

Rui Geng 1, , and Yuxin Gong 2,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: We report a high-performance active image sensor pixel design by utilizing amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with a circular structure. The TFT, configured with the inner electrode as source and outer electrode as drain, typically exhibits good saturation electrical characteristics, where the device has a constant drive current despite variations in drain voltage. Due to the very high output resistance exhibited by this asymmetric TFT structure with a circular shape, the pixel circuit considered here in common-drain configuration provides a higher gain of operation than a pixel circuit implemented with rectangular a-IGZO TFTs. They can be used as driving TFTs in active image sensor circuits. They are, therefore, good candidates for digital X-ray detectors in applications such as medical diagnostic procedures.

Key words: a-IGZO TFTactive image sensorcircular structurehigh gain

Abstract: We report a high-performance active image sensor pixel design by utilizing amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with a circular structure. The TFT, configured with the inner electrode as source and outer electrode as drain, typically exhibits good saturation electrical characteristics, where the device has a constant drive current despite variations in drain voltage. Due to the very high output resistance exhibited by this asymmetric TFT structure with a circular shape, the pixel circuit considered here in common-drain configuration provides a higher gain of operation than a pixel circuit implemented with rectangular a-IGZO TFTs. They can be used as driving TFTs in active image sensor circuits. They are, therefore, good candidates for digital X-ray detectors in applications such as medical diagnostic procedures.

Key words: a-IGZO TFTactive image sensorcircular structurehigh gain



References:

[1]

Kamiya T, Nomura K, Hosono H. Present status of amorphous IGZO thin-film transistors. Sci Technol Adv Mater, 2015, 11(4): 044305

[2]

Dayananda G K, Rai C S, Jayarama A, et al. Simulation model for electron irradiated IGZO thin film transistors. J Semicond, 2018, 39(2): 022002

[3]

Heo J S, Kim J H, Kim J K, et al. Photochemically activated flexible metal-oxide transistors and circuits using low impurity aqueous system. IEEE Electron Device Lett, 2015, 36(2): 162.

[4]

Petti L, Frutiger A, Münzenrieder N, et al. Flexible quasi-vertical In-Ga-Zn-O thin-film transistor with 300-nm channel length. IEEE Electron Device Lett, 2015, 36(5): 475.

[5]

Cantarella G, Münzenrieder N, Petti L, et al. Flexible In–Ga–Zn–O thin-film transistors on elastomeric substrate bent to 2.3% strain. IEEE Electron Device Lett, 2015, 36(8): 781.

[6]

Wang L T, Ou H, Chen J, et al. A numerical study of an amorphous silicon dual-gate photo thin-film transistor for low-dose X-ray imaging. J Display Technol, 2015, 11(8): 646.

[7]

Gelinck G H, Kumar A, Moet D, et al. X-ray detector-on-plastic with high sensitivity using low cost, solution-processed organic photodiodes. IEEE Trans Electron Devices, 2016, 63(1): 197.

[8]

Ghittorelli M, Torricelli F, Kovács-Vajna Z M. Physical modeling of amorphous InGaZnO thin-film transistors: the role of degenerate conduction. IEEE Trans Electron Devices, 2016, 63(6): 2417.

[9]

Shao Y, Xiao X, He X, et al. Low-voltage a-InGaZnO thin-film transistors with anodized thin HfO2 gate dielectric. IEEE Electron Device Lett, 2015, 36(6): 573.

[10]

Kleinman D A, Schawlow A L. Corbino disk. J Appl Phys, 1960, 31(12): 2176.

[11]

Byun Y H, Boer W D, Yang M, et al. An amorphous silicon TFT with annular-shaped channel and reduced gate-source capacitance. IEEE Trans Electron Devices, 1996, 43(5): 839.

[12]

Munteanu D, Cristoloveanu S, Hovel H. Circular pseudo-metal oxide semiconductor field effect transistor in silicon-on-insulator analytical model, simulation, and measurements. Electrochem Solid-State Lett, 1999, 2(5): 242.

[13]

Ker M D, Deng C K, Huang J L. On-panel output buffer with offset compensation technique for data driver in LTPS technology. J Display Technol, 2006, 2(2): 153.

[14]

Lin C L, Chen F H, Hung C C, et al. New a-IGZO pixel circuit composed of three transistors and one capacitor for use in high-speed-scan AMOLED displays. J Display Technol, 2015, 11(12): 1031.

[15]

Cheng M H, Zhao C, Huang C L, et al. Amorphous InSnZnO thin-film transistor voltage-mode active pixel sensor circuits for indirect X-ray imagers. IEEE Trans Electron Devices, 2016, 63(12): 4802.

[1]

Kamiya T, Nomura K, Hosono H. Present status of amorphous IGZO thin-film transistors. Sci Technol Adv Mater, 2015, 11(4): 044305

[2]

Dayananda G K, Rai C S, Jayarama A, et al. Simulation model for electron irradiated IGZO thin film transistors. J Semicond, 2018, 39(2): 022002

[3]

Heo J S, Kim J H, Kim J K, et al. Photochemically activated flexible metal-oxide transistors and circuits using low impurity aqueous system. IEEE Electron Device Lett, 2015, 36(2): 162.

[4]

Petti L, Frutiger A, Münzenrieder N, et al. Flexible quasi-vertical In-Ga-Zn-O thin-film transistor with 300-nm channel length. IEEE Electron Device Lett, 2015, 36(5): 475.

[5]

Cantarella G, Münzenrieder N, Petti L, et al. Flexible In–Ga–Zn–O thin-film transistors on elastomeric substrate bent to 2.3% strain. IEEE Electron Device Lett, 2015, 36(8): 781.

[6]

Wang L T, Ou H, Chen J, et al. A numerical study of an amorphous silicon dual-gate photo thin-film transistor for low-dose X-ray imaging. J Display Technol, 2015, 11(8): 646.

[7]

Gelinck G H, Kumar A, Moet D, et al. X-ray detector-on-plastic with high sensitivity using low cost, solution-processed organic photodiodes. IEEE Trans Electron Devices, 2016, 63(1): 197.

[8]

Ghittorelli M, Torricelli F, Kovács-Vajna Z M. Physical modeling of amorphous InGaZnO thin-film transistors: the role of degenerate conduction. IEEE Trans Electron Devices, 2016, 63(6): 2417.

[9]

Shao Y, Xiao X, He X, et al. Low-voltage a-InGaZnO thin-film transistors with anodized thin HfO2 gate dielectric. IEEE Electron Device Lett, 2015, 36(6): 573.

[10]

Kleinman D A, Schawlow A L. Corbino disk. J Appl Phys, 1960, 31(12): 2176.

[11]

Byun Y H, Boer W D, Yang M, et al. An amorphous silicon TFT with annular-shaped channel and reduced gate-source capacitance. IEEE Trans Electron Devices, 1996, 43(5): 839.

[12]

Munteanu D, Cristoloveanu S, Hovel H. Circular pseudo-metal oxide semiconductor field effect transistor in silicon-on-insulator analytical model, simulation, and measurements. Electrochem Solid-State Lett, 1999, 2(5): 242.

[13]

Ker M D, Deng C K, Huang J L. On-panel output buffer with offset compensation technique for data driver in LTPS technology. J Display Technol, 2006, 2(2): 153.

[14]

Lin C L, Chen F H, Hung C C, et al. New a-IGZO pixel circuit composed of three transistors and one capacitor for use in high-speed-scan AMOLED displays. J Display Technol, 2015, 11(12): 1031.

[15]

Cheng M H, Zhao C, Huang C L, et al. Amorphous InSnZnO thin-film transistor voltage-mode active pixel sensor circuits for indirect X-ray imagers. IEEE Trans Electron Devices, 2016, 63(12): 4802.

[1]

Binbin Wei, Jinguang Jiang. A low power high gain gain-controlled LNA + mixer for GNSS receivers. J. Semicond., 2013, 34(11): 115002. doi: 10.1088/1674-4926/34/11/115002

[2]

Wang Chuang, Qian Rong, Sun Xiaowei. K-Band Monolithic Low Noise Amplifier with High Gain. J. Semicond., 2006, 27(7): 1285.

[3]

Yiqiang Wu, Zhigong Wang, Jian Xu, Jian Wang, Ouli Zhang, Lu Tang. Design of a novel mixer with high gain and linearity improvement for DRM/DAB applications. J. Semicond., 2013, 34(1): 015005. doi: 10.1088/1674-4926/34/1/015005

[4]

Lianxi Liu, Jiao Zou, Yunfei En, Shubin Liu, Yue Niu, Zhangming Zhu, Yintang Yang. A high gain wide dynamic range transimpedance amplifier for optical receivers. J. Semicond., 2014, 35(1): 015001. doi: 10.1088/1674-4926/35/1/015001

[5]

Huang Qinghua, Liu Xunchun, Hao Mingli, Zhang Zongnan, Yang Hao. A Ka Broadband High Gain Monolithic LNA with a Noise Figure of 2dB. J. Semicond., 2008, 29(8): 1457.

[6]

Liu Yu, Wang Guoyu. A New CMOS Image Sensor with a High Fill Factor and the Dynamic Digital Double Sampling Technique. J. Semicond., 2006, 27(2): 313.

[7]

Xu Jiangtao, Yao Suying, Li Binqiao, Shi Zaifeng, Gao Jing. Design,Analysis,and Optimization of a CMOS Active Pixel Sensor. J. Semicond., 2006, 27(9): 1548.

[8]

Meng Zhiguo, Kwok Hoising, Wu Chunya, Wong Man, Xiong Shaozhen. Fabrication of a 125mm Poly-Si TFT Active-Matrix Driving Color AMOLED. J. Semicond., 2006, 27(8): 1514.

[9]

Li Guike, Feng Peng, Wu Nanjian. A novel monolithic ultraviolet image sensor based on a standard CMOS process. J. Semicond., 2011, 32(10): 105009. doi: 10.1088/1674-4926/32/10/105009

[10]

Liqiang Han, Suying Yao, Jiangtao Xu, Chao Xu, Zhiyuan Gao. Analysis of incomplete charge transfer effects in a CMOS image sensor. J. Semicond., 2013, 34(5): 054009. doi: 10.1088/1674-4926/34/5/054009

[11]

Chao Xu, Suying Yao, Jiangtao Xu, Zhiyuan Gao, Liqiang Han. A dynamic range extension scheme applied to a TDI CMOS image sensor. J. Semicond., 2014, 35(2): 024013. doi: 10.1088/1674-4926/35/2/024013

[12]

Yuanfu Zhao, Liyan Liu, Xiaohui Liu, Xiaofeng Jin, Xiang Li. Radiation hardened design and analysis of radiation effect for scientific CMOS image sensor. J. Semicond., 2015, 36(11): 114007. doi: 10.1088/1674-4926/36/11/114007

[13]

Zhe Chen, Shan Di, Cong Shi, Liyuan Liu, Nanjian Wu. A reconfigurable 256 × 256 image sensor controller that is compatible for depth measurement. J. Semicond., 2014, 35(10): 105007. doi: 10.1088/1674-4926/35/10/105007

[14]

Yu Junting, Li Binqiao, Yu Pingping, Xu Jiangtao, Mou Cun. Two-dimensional pixel image lag simulation and optimization in a 4-T CMOS image sensor. J. Semicond., 2010, 31(9): 094011. doi: 10.1088/1674-4926/31/9/094011

[15]

He Xiaofeng, Mo Taishan, Ma Chengyan, Ye Tianchun. An output amplitude configurable wideband automatic gain control with high gain step accuracy. J. Semicond., 2012, 33(2): 025009. doi: 10.1088/1674-4926/33/2/025009

[16]

Hou Yang, Zhang Jian, Li Lingyun, Sun Xiaowei. 60GHz Wideband LNA MMIC with High Gain. J. Semicond., 2008, 29(7): 1373.

[17]

Cai Li, Fu Zhongqian, Huang Lu. A low power high gain UWB LNA in 0.18-μm CMOS. J. Semicond., 2009, 30(11): 115004. doi: 10.1088/1674-4926/30/11/115004

[18]

Huang Hua, Zhang Haiying, Yang Hao, Yin Junjian, Zhu Min, Ye Tianchun. A Super-Low-Noise,High-Gain MMIC LNA. J. Semicond., 2006, 27(12): 2080.

[19]

Yourun Zhang, Jinfei Shi, Ying Liu, Chengchun Sun, Fei Guo, Bo Zhang. High current gain 4H-SiC bipolar junction transistor. J. Semicond., 2016, 37(4): 044005. doi: 10.1088/1674-4926/37/4/044005

[20]

Wang Han, Ye Qing. An OPAMP with High DC Gain in 0.18μm Digital CMOS. J. Semicond., 2006, 27(S1): 318.

Search

Advanced Search >>

GET CITATION

R Geng, Y X Gong, High performance active image sensor pixel design with circular structure oxide TFT[J]. J. Semicond., 2019, 40(2): 022402. doi: 10.1088/1674-4926/40/2/022402.

Export: BibTex EndNote

Article Metrics

Article views: 564 Times PDF downloads: 40 Times Cited by: 0 Times

History

Manuscript received: 16 July 2018 Manuscript revised: 14 September 2018 Online: Accepted Manuscript: 05 November 2018 Uncorrected proof: 14 January 2019 Published: 01 February 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误