J. Semicond. > Volume 40 > Issue 4 > Article Number: 042402

Improving the data retention of phase change memory by using a doping element in selected Ge2Sb2Te5

Yaoyao Lu 1, 2, , Daolin Cai 1, , , Yifeng Chen 1, , Shuai Yan 1, 2, , Lei Wu 1, 2, , Yuanguang Liu 1, 2, , Yang Li 1, 2, and Zhitang Song 1,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: The crystallization characteristics of a ubiquitous T-shaped phase change memory (PCM) cell, under SET current pulse and very small disturb current pulse, have been investigated by finite element modelling. As analyzed in this paper, the crystallization region under SET current pulse presents first on the corner of the bottom electron contact (BEC) and then promptly forms a filament shunting down the amorphous phase to achieve the low-resistance state, whereas the tiny disturb current pulse accelerates crystallization at the axis of symmetry in the phase change material. According to the different crystallization paths, a new structure of phase change material layer is proposed to improve the data retention for PCM without impeding SET operation. This structure only requires one or two additional process steps to dope nitrogen element in the center region of phase change material layer to increase the crystallization temperature in this confined region. The electrical-thermal characteristics of PCM cells with incremental doped radius have been analyzed and the best performance is presented when the doped radius is equal to the radius of the BEC.

Key words: phase change memorycrystallization processSET current pulsesmall disturb current pulsefinite element simulation

Abstract: The crystallization characteristics of a ubiquitous T-shaped phase change memory (PCM) cell, under SET current pulse and very small disturb current pulse, have been investigated by finite element modelling. As analyzed in this paper, the crystallization region under SET current pulse presents first on the corner of the bottom electron contact (BEC) and then promptly forms a filament shunting down the amorphous phase to achieve the low-resistance state, whereas the tiny disturb current pulse accelerates crystallization at the axis of symmetry in the phase change material. According to the different crystallization paths, a new structure of phase change material layer is proposed to improve the data retention for PCM without impeding SET operation. This structure only requires one or two additional process steps to dope nitrogen element in the center region of phase change material layer to increase the crystallization temperature in this confined region. The electrical-thermal characteristics of PCM cells with incremental doped radius have been analyzed and the best performance is presented when the doped radius is equal to the radius of the BEC.

Key words: phase change memorycrystallization processSET current pulsesmall disturb current pulsefinite element simulation



References:

[1]

Lai S. Current status of the phase change memory and its future. IEEE International Electron Devices Meeting, 2003, 255

[2]

Ovshinsky S R. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett, 1968, 21, 1450

[3]

Sun Z M, Zhou J, Ahuja R. Structure of phase change materials for data storage. Phys Rev Lett, 2006, 96, 055507

[4]

Raoux S, Welnic W, Ielmini D. Phase change materials and their application to nonvolatile memories. Chem Rev, 2009, 110, 240

[5]

Kohary K, Wright C D. Electric field induced crystallization in phase-change materials for memory applications. Appl Phys Lett, 2011, 98, 223102

[6]

Li J M, Yang H M, Lim K G. Field-dependent activation energy of nucleation and switching in phase change memory. Appl Phys Lett, 2012, 100, 263501

[7]

Lee B S, Bishop S G. phase change materials: optical and electrical properties of phase change materials. In: Springer Science + Business Media. New York, 2009, 189

[8]

Cai D L, Chen H P, Wang Q, et al. An 8-mb phase-change random access memory chip based on a resistor-on-via-stacked-plug storage cell. IEEE Electron Device Lett, 2012, 33, 1270

[9]

Liu Y, Song Z T, Ling Y, et al. Three-dimensional numerical simulation of phase-change memory cell with probe like bottom electrode structure. Jpn J Appl Phys, 2009, 48, 024502

[10]

Xu Z, Liu B, Chen Y F, et al. The improvement of nitrogen doped Ge2Sb2Te5 on the phase change memory resistance distributions. Solid-State Electron, 2016, 116, 119

[11]

Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation and growth. Trans Metall Soc AIME, 1939, 135, 416

[12]

Volmer M, Weber A. Keimbildung in übersättigten Gebilden. Zeitschrift für physikalische Chemie, 1926, 119, 227

[13]

Senkader S, Wright C D. Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices. J Appl Phys Lett, 2004, 95(2), 504

[14]

Bae J H, Kim B G, Byeon D S, et al. Simulation for thickness change of PRAM recording layer. J Ceram Soc Jpn, 2009, 117(5), 588

[15]

Gong Y F, Song Z T, Ling Y, et al. Simulation of voltage SET operation in phase-change random access memories with heater addition and ring-type contactor for low-power consumption by finite element modeling. Chin Phys Lett, 2010, 27, 068501

[1]

Lai S. Current status of the phase change memory and its future. IEEE International Electron Devices Meeting, 2003, 255

[2]

Ovshinsky S R. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett, 1968, 21, 1450

[3]

Sun Z M, Zhou J, Ahuja R. Structure of phase change materials for data storage. Phys Rev Lett, 2006, 96, 055507

[4]

Raoux S, Welnic W, Ielmini D. Phase change materials and their application to nonvolatile memories. Chem Rev, 2009, 110, 240

[5]

Kohary K, Wright C D. Electric field induced crystallization in phase-change materials for memory applications. Appl Phys Lett, 2011, 98, 223102

[6]

Li J M, Yang H M, Lim K G. Field-dependent activation energy of nucleation and switching in phase change memory. Appl Phys Lett, 2012, 100, 263501

[7]

Lee B S, Bishop S G. phase change materials: optical and electrical properties of phase change materials. In: Springer Science + Business Media. New York, 2009, 189

[8]

Cai D L, Chen H P, Wang Q, et al. An 8-mb phase-change random access memory chip based on a resistor-on-via-stacked-plug storage cell. IEEE Electron Device Lett, 2012, 33, 1270

[9]

Liu Y, Song Z T, Ling Y, et al. Three-dimensional numerical simulation of phase-change memory cell with probe like bottom electrode structure. Jpn J Appl Phys, 2009, 48, 024502

[10]

Xu Z, Liu B, Chen Y F, et al. The improvement of nitrogen doped Ge2Sb2Te5 on the phase change memory resistance distributions. Solid-State Electron, 2016, 116, 119

[11]

Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation and growth. Trans Metall Soc AIME, 1939, 135, 416

[12]

Volmer M, Weber A. Keimbildung in übersättigten Gebilden. Zeitschrift für physikalische Chemie, 1926, 119, 227

[13]

Senkader S, Wright C D. Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices. J Appl Phys Lett, 2004, 95(2), 504

[14]

Bae J H, Kim B G, Byeon D S, et al. Simulation for thickness change of PRAM recording layer. J Ceram Soc Jpn, 2009, 117(5), 588

[15]

Gong Y F, Song Z T, Ling Y, et al. Simulation of voltage SET operation in phase-change random access memories with heater addition and ring-type contactor for low-power consumption by finite element modeling. Chin Phys Lett, 2010, 27, 068501

[1]

Joshua M. Kundu, Patrick M. Karimi, Walter K. Njoroge. Crystallization kinetics of Sn40Se60 thin films for phase change memory applications. J. Semicond., 2015, 36(6): 063002. doi: 10.1088/1674-4926/36/6/063002

[2]

Ruru Huo, Daolin Cai, Bomy Chen, Yifeng Chen, Yuchan Wang, Yueqing Wang, Hongyang Wei, Qing Wang, Yangyang Xia, Dan Gao, Zhitang Song. Endurance characteristics of phase change memory cells. J. Semicond., 2016, 37(5): 054009. doi: 10.1088/1674-4926/37/5/054009

[3]

Feng Gaoming, Liu Bo, Wu Liangcai, Song Zhitang, Feng Songlin, Chen Bomy. Properties of W Sub-Microtube Heater Electrode Used for PhaseChange Memory. J. Semicond., 2007, 28(7): 1134.

[4]

Ma Ziwen, Tang Zirong, Liao Guanglan, Shi Tielin, Nie Lei, Zhou Ping. Finite Element Simulation and Process Optimization of Localized Laser Bonding. J. Semicond., 2007, 28(6): 995.

[5]

Wei Yiqun, Lin Xinnan, Jia Yuchao, Cui Xiaole, Zhang Xing, Song Zhitang. Contact size scaling of a W-contact phase-change memory cell based on numerical simulation. J. Semicond., 2012, 33(10): 104006. doi: 10.1088/1674-4926/33/10/104006

[6]

Yuan Guangjie, Chen Leng. Finite element simulation of hydrostatic stress in copper interconnects. J. Semicond., 2011, 32(5): 055011. doi: 10.1088/1674-4926/32/5/055011

[7]

Liu Biwei, Chen Shuming, Liang Bin, Liu Zheng. Coupled SET Pulse Injection in a Circuit Simulator in Ultra-Deep Submicron Technology. J. Semicond., 2008, 29(9): 1819.

[8]

Li Xi, Song Zhitang, Cai Daolin, Chen Xiaogang, Chen Houpeng. An SPICE model for phase-change memory simulations. J. Semicond., 2011, 32(9): 094011. doi: 10.1088/1674-4926/32/9/094011

[9]

Xiao Hong, Houpeng Chen, Zhitang Song, Daolin Cai, Xi Li. A low jitter PLL clock used for phase change memory. J. Semicond., 2013, 34(2): 025012. doi: 10.1088/1674-4926/34/2/025012

[10]

Pongthavornkamol Tiwat, Lei Pang, Xinhua Wang, Sen Huang, Guoguo Liu, Tingting Yuan, Xinyu Liu. Optimized power simulation of AlGaN/GaN HEMT for continuous wave and pulse applications. J. Semicond., 2015, 36(7): 074006. doi: 10.1088/1674-4926/36/7/074006

[11]

Liu Qibin, Zhang Kailiang, Wang Liangyong, Song Zhitang, Feng Songlin. CMP and Electrochemical Characterization of Ge2Sb2Te5 Filmin Polishing Slurry. J. Semicond., 2006, 27(S1): 161.

[12]

Yaling Zhou, Xiaofeng Wang, Yingchun Fu, Xiaodong Wang, Fuhua Yang. Investigation and solution of low yield problem for phase change memory with lateral fully-confined structure. J. Semicond., 2016, 37(8): 084005. doi: 10.1088/1674-4926/37/8/084005

[13]

Wei Yiqun, Lin Xinnan, Jia Yuchao, Cui Xiaole, He Jin, Zhang Xing. A SPICE model for a phase-change memory cell based on the analytical conductivity model. J. Semicond., 2012, 33(11): 114004. doi: 10.1088/1674-4926/33/11/114004

[14]

Zhou Chunyuan, Zhang Lei, Qian He. A uniform phase noise QVCO with a feedback current source. J. Semicond., 2012, 33(7): 075001. doi: 10.1088/1674-4926/33/7/075001

[15]

Sun Yong, Lai Fengchang, Ye Yizheng. Current mode ADC design in a 0.5-μm CMOS process. J. Semicond., 2009, 30(6): 065002. doi: 10.1088/1674-4926/30/6/065002

[16]

Zhang Lei, Yu Zhiping, He Xiangqing. A Statistical Method for Characterizing CMOS Process Fluctuations in Subthreshold Current Mirrors. J. Semicond., 2008, 29(1): 82.

[17]

Yi Pang, Xiang Li, Baiqin Zhao. Influence of the thickness change of the wave-guide layers on the threshold current of GaAs-based laser diode. J. Semicond., 2016, 37(8): 084007. doi: 10.1088/1674-4926/37/8/084007

[18]

Xingkuo Wang, Jia Cheng, Kesheng Wang, Yiyong Yang, Yuchun Sun, Minglu Cao, Linhong Ji. Finite element analysis on factors influencing the clamping force in an electrostatic chuck. J. Semicond., 2014, 35(9): 094011. doi: 10.1088/1674-4926/35/9/094011

[19]

Li Zhiming, Xu Shengrui, Zhang Jincheng, Chang Yongming, Ni Jingyu, Zhou Xiaowei, Hao Yue. Finite element analysis of the temperature field in a vertical MOCVD reactor by induction heating. J. Semicond., 2009, 30(11): 113004. doi: 10.1088/1674-4926/30/11/113004

[20]

Juntao Li, Bo Liu, Zhitang Song, Dongning Yao, Gaoming Feng, Aodong He, Cheng Peng, Songlin Feng. Reactive ion etching of Si2Sb2Te5 in CF4/Ar plasma for a nonvolatile phase-change memory device. J. Semicond., 2013, 34(5): 056001. doi: 10.1088/1674-4926/34/5/056001

Search

Advanced Search >>

GET CITATION

Y Y Lu, D L Cai, Y F Chen, S Yan, L Wu, Y G Liu, Y Li, Z T Song, Improving the data retention of phase change memory by using a doping element in selected Ge2Sb2Te5[J]. J. Semicond., 2019, 40(4): 042402. doi: 10.1088/1674-4926/40/4/042402.

Export: BibTex EndNote

Article Metrics

Article views: 424 Times PDF downloads: 27 Times Cited by: 0 Times

History

Manuscript received: 19 October 2018 Manuscript revised: Online: Accepted Manuscript: 18 February 2019 Uncorrected proof: 28 February 2019 Published: 08 April 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误