REVIEWS

Error suppression techniques for energy-efficient high-resolution SAR ADCs

Jiaxin Liu1, Xiyuan Tang2, Linxiao Shen2, Shaolan Li3, Zhelu Li2, 4, Wenjuan Guo2 and Nan Sun1, 2,

+ Author Affiliations

 Corresponding author: Nan Sun, Email: nansun@tsinghua.edu.cn

PDF

Turn off MathJax

Abstract: The successive approximation register (SAR) is one of the most energy-efficient analog-to-digital converter (ADC) architecture for medium-resolution applications. However, its high energy efficiency quickly diminishes when the target resolution increases. This is because a SAR ADC suffers from several major error source, including the sampling kT/C noise, the comparator noise, and the DAC mismatch. These errors are increasing hard to address in high-resolution SAR ADCs. This paper reviews recent advances on error suppression techniques for SAR ADCs, including the sampling kT/C noise reduction, the noise-shaping (NS) SAR, and the mismatch error shaping (MES). These techniques aim to boost the resolution of SAR ADCs while maintaining their superior energy efficiency.

Key words: SAR ADCkT/C noise cancellationnoise shaping (NS)mismatch error shaping (MES)



[1]
Montanaro J, Witek R T, Anne K, et al. A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor. IEEE J Solid-State Circuits, 1996, 31, 1703 doi: 10.1109/JSSC.1996.542315
[2]
Nuzzo P, de Bernardinis F, Terreni P, et al. Noise analysis of regenerative comparators for reconfigurable ADC architectures. IEEE Trans Circuits Syst I, 2008, 55, 1441 doi: 10.1109/TCSI.2008.917991
[3]
Shen L X, Sun N, Shen Y, et al. A two-step ADC with a continuous-time SAR-based first stage. IEEE J Solid-State Circuits, 2019, 54, 3375 doi: 10.1109/JSSC.2019.2933951
[4]
Liu J X, Tang X Y, Zhao W D, et al. A 13b 0.005 mm2 40 MS/s SAR ADC with kT/C Noise Cancellation. 2020 IEEE International Solid- State Circuits Conference (ISSCC), 2020, 258
[5]
Poujois R, Baylac B, Barbier D, et al. Low-level MOS transistor amplifier using storage techniques. 1973 IEEE International Solid-State Circuits Conference, 1973, 152
[6]
Razavi B, Wooley B A. Design techniques for high-speed, high-resolution comparators. IEEE J Solid-State Circuits, 1992, 27, 1916 doi: 10.1109/4.173122
[7]
White M H, Lampe D R, Blaha F C, et al. Characterization of surface channel CCD image arrays at low light levels. IEEE J Solid-State Circuits, 1974, 9, 1 doi: 10.1109/JSSC.1974.1050448
[8]
Sugiki T, Ohsawa S, Miura H, et al. A 60 mW 10 b CMOS image sensor with column-to-column FPN reduction. 2000 IEEE International Solid-State Circuits Conference, 2000, 108
[9]
Yoshihara S, Nitta Y, Kikuchi M, et al. A 1/1.8-inch 6.4 MPixel 60 frames/s CMOS image sensor with seamless mode change. IEEE J Solid-State Circuits, 2006, 41, 2998 doi: 10.1109/JSSC.2006.884868
[10]
Kapusta R, Zhu H Y, Lyden C. Sampling circuits that break the kT/C thermal noise limit. IEEE J Solid-State Circuits, 2014, 49, 1694 doi: 10.1109/JSSC.2014.2320465
[11]
Li Z L, Dutta A, Mukherjee A, et al. A SAR ADC with reduced kT/C noise by decoupling noise PSD and BW. 2020 IEEE Symposium on VLSI Circuits, 2020, 1
[12]
Fredenburg J A, Flynn M P. A 90-MS/s 11-MHz-bandwidth 62-dB SNDR noise-shaping SAR ADC. IEEE J Solid-State Circuits, 2012, 47, 2898 doi: 10.1109/JSSC.2012.2217874
[13]
Shu Y S, Kuo L T, Lo T Y. An oversampling SAR ADC with DAC mismatch error shaping achieving 105 dB SFDR and 101 dB SNDR over 1 kHz BW in 55 nm CMOS. 2016 IEEE Int Solid-State Circuits Conf ISSCC, 2016, 458
[14]
Obata K, Matsukawa K, Miki T, et al. A 97.99 dB SNDR, 2 kHz BW, 37.1 μW noise-shaping SAR ADC with dynamic element matching and modulation dither effect. 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), 2016, 1
[15]
Tang X Y, Yang X X, Zhao W D, et al. 9.5 A 13.5b-ENOB second-order noise-shaping SAR with PVT-robust closed-loop dynamic amplifier. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 162
[16]
Liu C C, Huang M C. A 0.46 mW 5 MHz-BW 79.7 dB-SNDR noise-shaping SAR ADC with dynamic-amplifier-based FIR-IIR filter. 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, 466
[17]
Li S L, Qiao B, Gandara M, et al. A 13-ENOB second-order noise-shaping SAR ADC realizing optimized NTF zeros using the error-feedback structure. IEEE J Solid-State Circuits, 2018, 53, 3484 doi: 10.1109/JSSC.2018.2871081
[18]
Jie L, Zheng B Y, Flynn M P. A calibration-free time-interleaved fourth-order noise-shaping SAR ADC. IEEE J Solid-State Circuits, 2019, 54, 3386 doi: 10.1109/JSSC.2019.2938626
[19]
Jie L, Zheng B, Chen H W, et al. 9.4 A 4th-order cascaded-noise-shaping SAR ADC with 88 dB SNDR over 100 kHz bandwidth. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 160
[20]
Chen Z J, Miyahara M, Matsuzawa A. A 9.35-ENOB, 14.8 fJ/conv.-step fully-passive noise-shaping SAR ADC. 2015 Symposium on VLSI Circuits (VLSI Circuits), 2015, C64
[21]
Guo W J, Sun N. A 12b-ENOB 61μW noise-shaping SAR ADC with a passive integrator. ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, 2016, 405
[22]
Zhuang H Y, Guo W J, Liu J X, et al. A second-order noise-shaping SAR ADC with passive integrator and tri-level voting. IEEE J Solid-State Circuits, 2019, 54, 1636 doi: 10.1109/JSSC.2019.2900150
[23]
Liu J X, Li S L, Guo W J, et al. A 0.029-mm2 17-fJ/conversion-step third-order CT ΔΣ ADC with a single OTA and second-order noise-shaping SAR quantizer. IEEE J Solid-State Circuits, 2019, 54, 428 doi: 10.1109/JSSC.2018.2879955
[24]
Chen Z J, Miyahara M, Matsuzawa A. A 2nd order fully-passive noise-shaping SAR ADC with embedded passive gain. 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2016, 309
[25]
Lin Y Z, Lin C, Tsou S C, et al. A 40 MHz-BW 320 MS/s passive noise-shaping SAR ADC with passive signal-residue summation in 14 nm FinFET. 2019 IEEE International Solid- State Circuits Conference (ISSCC), 2019, 330
[26]
Liu J X, Wang X, Gao Z J, et al. 9.3 A 40 kHz-BW 90 dB-SNDR noise-shaping SAR with 4 × passive gain and 2nd-order mismatch error shaping. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 158
[27]
Liu J X, Hsu C K, Tang X Y, et al. Error-feedback mismatch error shaping for high-resolution data converters. IEEE Trans Circuits Syst I, 2019, 66, 1342 doi: 10.1109/TCSI.2018.2879582
[28]
Liu J, Wen G, Sun N. Second-order DAC MES for SAR ADCs. Electron Lett, 2017, 53, 1570 doi: 10.1049/el.2017.3138
Fig. 1.  Generic block diagram of a SAR ADC.

Fig. 2.  A sampling circuit with kT/C noise.

Fig. 3.  Strong-ARM latch[1].

Fig. 4.  A SAR ADC with DAC mismatch: (a) operation scheme, (b) behavioral operation model.

Fig. 5.  Two-step SAR ADC with a continuous-time first stage[3].

Fig. 6.  SAR ADC with kT/C noise cancellation[4].

Fig. 7.  kT/C noise reduction by decoupling Noise PSD and bandwidth[11].

Fig. 8.  Generic block diagram of a NS- SAR ADC.

Fig. 9.  NS-SAR ADC with close-loop amplifier-based noise-shaping filter[12].

Fig. 10.  Closed-Loop Dynamic Amplifier-based noise-shaping filter[15].

Fig. 11.  Open-loop dynamic amplifier-based NS-SAR[16].

Fig. 12.  NS-SAR ADC with EF structure and open-loop dynamic amplifier[17].

Fig. 13.  (a) Simplified core schematic and (b) 3-input-pair comparator of the second-order NS-SAR ADC[22].

Fig. 14.  (Color online) Operation of the NS SAR ADC in Ref. [26]: (a) integration phase, (b) conversion phase.

Fig. 15.  (Color online) A SAR ADC with first-order EF MES[13].

Fig. 16.  (Color online) Second-order EF MES with digital prediction[26].

[1]
Montanaro J, Witek R T, Anne K, et al. A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor. IEEE J Solid-State Circuits, 1996, 31, 1703 doi: 10.1109/JSSC.1996.542315
[2]
Nuzzo P, de Bernardinis F, Terreni P, et al. Noise analysis of regenerative comparators for reconfigurable ADC architectures. IEEE Trans Circuits Syst I, 2008, 55, 1441 doi: 10.1109/TCSI.2008.917991
[3]
Shen L X, Sun N, Shen Y, et al. A two-step ADC with a continuous-time SAR-based first stage. IEEE J Solid-State Circuits, 2019, 54, 3375 doi: 10.1109/JSSC.2019.2933951
[4]
Liu J X, Tang X Y, Zhao W D, et al. A 13b 0.005 mm2 40 MS/s SAR ADC with kT/C Noise Cancellation. 2020 IEEE International Solid- State Circuits Conference (ISSCC), 2020, 258
[5]
Poujois R, Baylac B, Barbier D, et al. Low-level MOS transistor amplifier using storage techniques. 1973 IEEE International Solid-State Circuits Conference, 1973, 152
[6]
Razavi B, Wooley B A. Design techniques for high-speed, high-resolution comparators. IEEE J Solid-State Circuits, 1992, 27, 1916 doi: 10.1109/4.173122
[7]
White M H, Lampe D R, Blaha F C, et al. Characterization of surface channel CCD image arrays at low light levels. IEEE J Solid-State Circuits, 1974, 9, 1 doi: 10.1109/JSSC.1974.1050448
[8]
Sugiki T, Ohsawa S, Miura H, et al. A 60 mW 10 b CMOS image sensor with column-to-column FPN reduction. 2000 IEEE International Solid-State Circuits Conference, 2000, 108
[9]
Yoshihara S, Nitta Y, Kikuchi M, et al. A 1/1.8-inch 6.4 MPixel 60 frames/s CMOS image sensor with seamless mode change. IEEE J Solid-State Circuits, 2006, 41, 2998 doi: 10.1109/JSSC.2006.884868
[10]
Kapusta R, Zhu H Y, Lyden C. Sampling circuits that break the kT/C thermal noise limit. IEEE J Solid-State Circuits, 2014, 49, 1694 doi: 10.1109/JSSC.2014.2320465
[11]
Li Z L, Dutta A, Mukherjee A, et al. A SAR ADC with reduced kT/C noise by decoupling noise PSD and BW. 2020 IEEE Symposium on VLSI Circuits, 2020, 1
[12]
Fredenburg J A, Flynn M P. A 90-MS/s 11-MHz-bandwidth 62-dB SNDR noise-shaping SAR ADC. IEEE J Solid-State Circuits, 2012, 47, 2898 doi: 10.1109/JSSC.2012.2217874
[13]
Shu Y S, Kuo L T, Lo T Y. An oversampling SAR ADC with DAC mismatch error shaping achieving 105 dB SFDR and 101 dB SNDR over 1 kHz BW in 55 nm CMOS. 2016 IEEE Int Solid-State Circuits Conf ISSCC, 2016, 458
[14]
Obata K, Matsukawa K, Miki T, et al. A 97.99 dB SNDR, 2 kHz BW, 37.1 μW noise-shaping SAR ADC with dynamic element matching and modulation dither effect. 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), 2016, 1
[15]
Tang X Y, Yang X X, Zhao W D, et al. 9.5 A 13.5b-ENOB second-order noise-shaping SAR with PVT-robust closed-loop dynamic amplifier. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 162
[16]
Liu C C, Huang M C. A 0.46 mW 5 MHz-BW 79.7 dB-SNDR noise-shaping SAR ADC with dynamic-amplifier-based FIR-IIR filter. 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, 466
[17]
Li S L, Qiao B, Gandara M, et al. A 13-ENOB second-order noise-shaping SAR ADC realizing optimized NTF zeros using the error-feedback structure. IEEE J Solid-State Circuits, 2018, 53, 3484 doi: 10.1109/JSSC.2018.2871081
[18]
Jie L, Zheng B Y, Flynn M P. A calibration-free time-interleaved fourth-order noise-shaping SAR ADC. IEEE J Solid-State Circuits, 2019, 54, 3386 doi: 10.1109/JSSC.2019.2938626
[19]
Jie L, Zheng B, Chen H W, et al. 9.4 A 4th-order cascaded-noise-shaping SAR ADC with 88 dB SNDR over 100 kHz bandwidth. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 160
[20]
Chen Z J, Miyahara M, Matsuzawa A. A 9.35-ENOB, 14.8 fJ/conv.-step fully-passive noise-shaping SAR ADC. 2015 Symposium on VLSI Circuits (VLSI Circuits), 2015, C64
[21]
Guo W J, Sun N. A 12b-ENOB 61μW noise-shaping SAR ADC with a passive integrator. ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, 2016, 405
[22]
Zhuang H Y, Guo W J, Liu J X, et al. A second-order noise-shaping SAR ADC with passive integrator and tri-level voting. IEEE J Solid-State Circuits, 2019, 54, 1636 doi: 10.1109/JSSC.2019.2900150
[23]
Liu J X, Li S L, Guo W J, et al. A 0.029-mm2 17-fJ/conversion-step third-order CT ΔΣ ADC with a single OTA and second-order noise-shaping SAR quantizer. IEEE J Solid-State Circuits, 2019, 54, 428 doi: 10.1109/JSSC.2018.2879955
[24]
Chen Z J, Miyahara M, Matsuzawa A. A 2nd order fully-passive noise-shaping SAR ADC with embedded passive gain. 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2016, 309
[25]
Lin Y Z, Lin C, Tsou S C, et al. A 40 MHz-BW 320 MS/s passive noise-shaping SAR ADC with passive signal-residue summation in 14 nm FinFET. 2019 IEEE International Solid- State Circuits Conference (ISSCC), 2019, 330
[26]
Liu J X, Wang X, Gao Z J, et al. 9.3 A 40 kHz-BW 90 dB-SNDR noise-shaping SAR with 4 × passive gain and 2nd-order mismatch error shaping. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 158
[27]
Liu J X, Hsu C K, Tang X Y, et al. Error-feedback mismatch error shaping for high-resolution data converters. IEEE Trans Circuits Syst I, 2019, 66, 1342 doi: 10.1109/TCSI.2018.2879582
[28]
Liu J, Wen G, Sun N. Second-order DAC MES for SAR ADCs. Electron Lett, 2017, 53, 1570 doi: 10.1049/el.2017.3138
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5396 Times PDF downloads: 377 Times Cited by: 0 Times

    History

    Received: 07 July 2020 Revised: 23 September 2020 Online: Accepted Manuscript: 14 October 2020Uncorrected proof: 14 October 2020Published: 03 November 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jiaxin Liu, Xiyuan Tang, Linxiao Shen, Shaolan Li, Zhelu Li, Wenjuan Guo, Nan Sun. Error suppression techniques for energy-efficient high-resolution SAR ADCs[J]. Journal of Semiconductors, 2020, 41(11): 111403. doi: 10.1088/1674-4926/41/11/111403 J X Liu, X Y Tang, L X Shen, S L Li, Z L Li, W J Guo, N Sun, Error suppression techniques for energy-efficient high-resolution SAR ADCs[J]. J. Semicond., 2020, 41(11): 111403. doi: 10.1088/1674-4926/41/11/111403.Export: BibTex EndNote
      Citation:
      Jiaxin Liu, Xiyuan Tang, Linxiao Shen, Shaolan Li, Zhelu Li, Wenjuan Guo, Nan Sun. Error suppression techniques for energy-efficient high-resolution SAR ADCs[J]. Journal of Semiconductors, 2020, 41(11): 111403. doi: 10.1088/1674-4926/41/11/111403

      J X Liu, X Y Tang, L X Shen, S L Li, Z L Li, W J Guo, N Sun, Error suppression techniques for energy-efficient high-resolution SAR ADCs[J]. J. Semicond., 2020, 41(11): 111403. doi: 10.1088/1674-4926/41/11/111403.
      Export: BibTex EndNote

      Error suppression techniques for energy-efficient high-resolution SAR ADCs

      doi: 10.1088/1674-4926/41/11/111403
      More Information
      • Corresponding author: Email: nansun@tsinghua.edu.cn
      • Received Date: 2020-07-07
      • Revised Date: 2020-09-23
      • Published Date: 2020-11-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return