REVIEWS

The strategies for preparing blue perovskite light-emitting diodes

Jianxun Lu and Zhanhua Wei

+ Author Affiliations

 Corresponding author: Zhanhua Wei, Email: weizhanhua@hqu.edu.cn

PDF

Turn off MathJax

Abstract: Metal halide perovskites have attracted tremendous interest due to their excellent optical and electrical properties, and they find many promising applications in the optoelectronic fields of solar cells, light-emitting diodes, and photodetectors. Thanks to the contributions of international researchers, significant progress has been made for perovskite light-emitting diodes (Pero-LEDs). The external quantum efficiencies (EQEs) of Pero-LEDs with emission of green, red, and near-infrared have all exceeded 20%. However, the blue Pero-LEDs still lag due to the poor film quality and deficient device structure. Herein, we summarize the strategies for preparing blue-emitting perovskites and categorize them into two: compositional engineering and size controlling of the emitting units. The advantages and disadvantages of both strategies are discussed, and a perspective of preparing high-performance blue-emitting perovskite is proposed. The challenges and future directions of blue Pero-LEDs fabrication are also discussed.

Key words: perovskitebluelight-emitting diodes



[1]
Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9, 687 doi: 10.1038/nnano.2014.149
[2]
Cho H, Jeong S H, Park M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350, 1222 doi: 10.1126/science.aad1818
[3]
Kim Y H, Cho H, Heo J H, et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv Mater, 2015, 27, 1248 doi: 10.1002/adma.201403751
[4]
Wang N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photonics, 2016, 10, 699 doi: 10.1038/nphoton.2016.185
[5]
Yuan M, Quan L N, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol, 2016, 11, 872 doi: 10.1038/nnano.2016.110
[6]
Xu W, Hu Q, Bai S, et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat Photonics, 2019, 13, 418 doi: 10.1038/s41566-019-0390-x
[7]
Lin K, Lu J, Xie L, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245 doi: 10.1038/s41586-018-0575-3
[8]
Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics, 2018, 12, 681 doi: 10.1038/s41566-018-0260-y
[9]
Wang Q, Wang X, Yang Z, et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat Commun, 2019, 10, 5633 doi: 10.1038/s41467-019-13580-w
[10]
Fang T, Zhang F, Yuan S, et al. Recent advances and prospects toward blue perovskite materials and light-emitting diodes. Informat, 2019, 1, 211 doi: 10.1002/inf2.12019
[11]
Kumawat N K, Dey A, Kumar A, et al. Band gap tuning of CH3NH3Pb(Br(1– x)Cl x)3 hybrid perovskite for blue electroluminescence. ACS Appl Mater Interfaces, 2015, 7, 13119 doi: 10.1021/acsami.5b02159
[12]
Sadhanala A, Ahmad S, Zhao B, et al. Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications. Nano Lett, 2015, 15, 6095 doi: 10.1021/acs.nanolett.5b02369
[13]
Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater, 2015, 27, 7162 doi: 10.1002/adma.201502567
[14]
Bohn B J, Tong Y, Gramlich M, et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett, 2018, 18, 5231 doi: 10.1021/acs.nanolett.8b02190
[15]
Liang D, Peng Y, Fu Y, et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano, 2016, 10, 6897 doi: 10.1021/acsnano.6b02683
[16]
Kumar S, Jagielski J, Yakunin S, et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano, 2016, 10, 9720 doi: 10.1021/acsnano.6b05775
[17]
Liu Y, Cui J, Du K, et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat Photonics, 2019, 13, 760 doi: 10.1038/s41566-019-0505-4
[18]
Tsai H, Nie W, Blancon J C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536, 312 doi: 10.1038/nature18306
[19]
Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354, 206 doi: 10.1126/science.aah5557
[20]
Bartel C J, Sutton C, Goldsmith B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci Adv, 2019, 5, eaav0693 doi: 10.1126/sciadv.aav0693
[21]
Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature, 2000, 404, 59 doi: 10.1038/35003535
[22]
Gangishetty M K, Hou S, Quan Q, et al. Reducing architecture limitations for efficient blue perovskite light-emitting diodes. Adv Mater, 2018, 30, e1706226 doi: 10.1002/adma.201706226
[23]
Deng W, Xu X, Zhang X, et al. Organometal halide perovskite quantum dot light-emitting diodes. Adv Funct Mater, 2016, 26, 4797 doi: 10.1002/adfm.201601054
[24]
Elstner M, Porezag D, Jungnickel G, et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B, 1998, 58, 7260 doi: 10.1103/PhysRevB.58.7260
[25]
Todorović P, Ma D, Chen B, et al. Spectrally tunable and stable electroluminescence enabled by rubidium doping of CsPbBr3 nanocrystals. Adv Opt Mater, 2019, 7, 1901440 doi: 10.1002/adom.201901440
[26]
Jiang Y, Qin C, Cui M, et al. Spectra stable blue perovskite light-emitting diodes. Nat Commun, 2019, 10, 1868 doi: 10.1038/s41467-019-09794-7
[27]
Leng M, Yang Y, Chen Z, et al. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Lett, 2018, 18, 6076 doi: 10.1021/acs.nanolett.8b03090
[28]
Tan Z, Li J, Zhang C, et al. Highly efficient blue-emitting bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv Funct Mater, 2018, 28, 1801131 doi: 10.1002/adfm.201801131
[29]
Chen P, Meng Y, Ahmadi M, et al. Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes. Nano Energy, 2018, 50, 615 doi: 10.1016/j.nanoen.2018.06.008
[30]
Xing J, Zhao Y, Askerka M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat Commun, 2018, 9, 3541 doi: 10.1038/s41467-018-05909-8
[31]
Shang Y, Li G, Liu W, et al. Quasi-2D Inorganic CsPbBr3 perovskite for efficient and stable light-emitting diodes. Adv Funct Mater, 2018, 28, 1801193 doi: 10.1002/adfm.201801193
[32]
Yang D, Zou Y, Li P, et al. Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes. Nano Energy, 2018, 47, 235 doi: 10.1016/j.nanoen.2018.03.019
[33]
Meng F, Liu X, Cai X, et al. Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes via FABr-modified multi-cation hot-injection method. Nanoscale, 2019, 11, 1295 doi: 10.1039/C8NR07907B
[34]
Zou Y, Xu H, Li S, et al. Spectral-stable blue emission from moisture-treated low-dimensional lead bromide-based perovskite films. ACS Photonics, 2019, 6, 1728 doi: 10.1021/acsphotonics.9b00435
[35]
Tan Z, Luo J, Yang L, et al. Spectrally stable ultra-pure blue perovskite light-emitting diodes boosted by square-wave alternating voltage. Adv Opt Mater, 2020, 8, 1901094 doi: 10.1002/adom.201901094
[36]
Ren Z, Xiao X, Ma R, et al. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv Funct Mater, 2019, 29, 1905339 doi: 10.1002/adfm.201905339
[37]
Wang Q, Ren J, Peng X F, et al. Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites. ACS Appl Mater Interfaces, 2017, 9, 29901 doi: 10.1021/acsami.7b07458
[38]
Kim H P, Kim J, Kim B S, et al. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Adv Opt Mater, 2017, 5, 1600920 doi: 10.1002/adom.201600920
[39]
Hou S, Gangishetty M K, Quan Q, et al. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule, 2018, 2, 2421 doi: 10.1016/j.joule.2018.08.005
[40]
Deng W, Jin X, Lv Y, et al. 2D Ruddlesden–Popper perovskite nanoplate based deep-blue light-emitting diodes for light communication. Adv Funct Mater, 2019, 29, 1903861 doi: 10.1002/adfm.201903861
[41]
Yuan S, Wang Z K, Xiao L X, et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv Mater, 2019, 31, e1904319 doi: 10.1002/adma.201904319
[42]
Li G, Rivarola F W R, Davis N J L K, et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv Mater, 2016, 28, 3528 doi: 10.1002/adma.201600064
[43]
Pan J, Quan L N, Zhao Y, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater, 2016, 28, 8718 doi: 10.1002/adma.201600784
[44]
Leng M, Yang Y, Zeng K, et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Adv Funct Mater, 2018, 28, 1704446 doi: 10.1002/adfm.201704446
[45]
Vashishtha P, Ng M, Shivarudraiah S B, et al. High efficiency blue and green light-emitting diodes using ruddlesden-popper inorganic mixed halide perovskites with butylammonium interlayers. Chem Mater, 2019, 31, 83 doi: 10.1021/acs.chemmater.8b02999
[46]
Ochsenbein S T, Krieg F, Shynkarenko Y, et al. Engineering color-stable blue light-emitting diodes with lead halide perovskite nanocrystals. ACS Appl Mater Interfaces, 2019, 11, 21655 doi: 10.1021/acsami.9b02472
[47]
Yang F, Chen H, Zhang R, et al. Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals. Adv Funct Mater, 2020, 30, 1908760 doi: 10.1002/adfm.201908760
[48]
Pan G C, Bai X, Xu W, et al. Bright blue light emission of Ni2+ ions doped CsPbCl xBr3– x perovskite quantum dots enabling efficient light-emitting devices. ACS Appl Mater Interfaces, 2020, 12, 14195 doi: 10.1021/acsami.0c01074
[49]
Lu W, Chen C, Han D, et al. Nonlinear optical properties of colloidal CH3NH3PbBr3 and CsPbBr3 quantum dots: A comparison study using Z-scan technique. Adv Opt Mater, 2016, 4, 1732 doi: 10.1002/adom.201600322
[50]
Zhang F, Xiao C, Li Y, et al. Gram-scale synthesis of blue-emitting CH3NH3PbBr3 quantum dots through phase transfer strategy. Front Chem, 2018, 6, 444 doi: 10.3389/fchem.2018.00444
Fig. 1.  (Color online) Blue-emitting perovskites prepared by composition engineering. (a) Normalized absorbance and (b) photoluminescence of MAPb(Br1−xClx)3 (0 ≤ x ≤ 1). Reproduced with permission from Ref. [11]. Copyright 2015, American Chemical Society. (c) The curves of electroluminescence of Pero-LEDs based on MAPb(Br1−xClx)3 (0 ≤ x ≤ 1). Reproduced with permission from Ref. [12]. Copyright 2015, American Chemical Society. (d) UV–vis absorption and steady-state PL spectra of PEA2(RbxCs1−x)2Pb3Br10 (0 ≤ x ≤ 1) perovskites. (e) The PL spectra evolution of PEA2(Rb0.6Cs0.4)2Pb3Br10 perovskites after continuous thermal treatment (100 °C) for different times. (f) The EL spectra of Pero-LEDs based on PEA2(Rb0.6Cs0.4)2Pb3Br10 perovskites at different voltage bias. Reproduced with permission from Ref. [26]. Copyright 2019 Springer Nature.

Fig. 2.  (Color online) Blue-emitting perovskites prepared by forming the 2D and quasi-2D structure. (a) Crystal structure of 2-phenylethylammonium lead bromide, (PEA)2PbBr4, which is a 2D layered perovskite, and (b) the corresponding PL and EL peaks located at 407 and 410 nm, respectively. The weak EL peak at 375 nm is from TPBi, consistent with its PL (gray curve). Reproduced with permission from Ref. [15]. Copyright 2016, American Chemical Society. (c) The EL spectra of Pero-LEDs based on the quasi-2D perovskites of (EA)2MAn−1PbnBr3n+1 (MA : EA = 1 : 0, 1 : 1, and 1 : 1.3 respectively). Reproduced with permission from Ref. [37]. Copyright 2017, American Chemical Society. (d) Schematic of charge carrier cascade in the quasi-2D perovskite of PA2(CsPbBr3)n−1PbBr4 MQWs, and (e) the EL spectra of corresponding Pero-LEDs under different voltage bias. Reproduced with permission from Ref. [29]. Copyright 2018, Elsevier Ltd. (f) The stable EL spectra of Pero-LED based on quasi-2D perovskite of PEA2An−1PbnBr3n+1 under different voltage bias. Reproduced with permission from Ref. [30]. Copyright 2018 Springer Nature. (g) The diagram of carriers transfer between perovskite quantum wells (2D) and bulk perovskite part (3D), the Cs4PbBr6 facilitate carriers centralization. (h) The stability test under 10 mA/cm2 of the device with different amounts of Cs4PbBr6 additive and the traditional MAPbBr3 devices, and the EL spectra curves of 0 and 12 h are almost completely coincident. Reproduced with permission from Ref. [31]. Copyright 2018, WILEY-VCH.

Fig. 3.  (Color online) Blue-emitting perovskites prepared by controlling the size of perovskite crystals. (a) Size-dependent PL spectra and photographs of monodisperse perovskite CsPbBr3 QDs. Reproduced with permission from Ref. [13]. Copyright 2015, WILEY-VCH. (b) Photographs of CsPbBr3 NPs dispersion obtained at different temperatures and corresponding UV–vis absorption and PL emission spectra. Reproduced with permission from Ref. [32]. Copyright 2018, Elsevier Ltd. (c) PL (solid lines) and absorption (dashed lines) spectra of CsPbBr3 NPs colloids for varying NPs thickness. Reproduced with permission from Ref. [14]. Copyright 2018, American Chemical Society. (d) The STEM-HAADF image of a cross-sectional Pero-LEDs based on the ultra-thin perovskite of PBABry(Cs0.7FA0.3PbBr3). (e) The corresponding EQE and (f) EL spectra with the operation voltage increasing. Reproduced with permission from Ref. [17]. Copyright 2019, Springer Nature.

Fig. 4.  (Color online) Blue-emitting perovskites prepared by applying several methods simultaneously. (a) Composition-tunable PL spectra of perovskite CsPbX3 QDs by adding the different halides. Reproduced with permission from Ref. [13]. Copyright 2015, WILEY-VCH. The EL spectra of Pero-LEDs based on the perovskites of (b) (Rb0.33Cs0.67)0.42FA0.58PbBr3 and (c) (Rb0.33Cs0.67)0.42FA0.58PbBr1.75Cl1.25. Reproduced with permission from Ref. [33]. Copyright 2019, The Royal Society of Chemistry. (d) The luminance-bias and (e) EQE-current density curves of CsPbBr3 : PEACl (1 : 1) devices with different ratios of YCl3. And (f) the EL spectrum stability test of a Pero-LED based on CsPbBr3 : PEACl : 2%YCl3 with continuous bias of 3.2 V for 120 min. Reproduced with permission from Ref. [9]. Copyright 2019 Springer Nature.

Fig. 5.  (Color online) The recorded EQEs of blue-emitting Pero-LEDs in recent years.

Table 1.   Performance summary of blue-emitting perovskites and the corresponding Pero-LEDs.

StrategiesPerovskitePL peak (nm)EL peak (nm)Lvmax (cd /m2)EQEmax (%)YearRef.
Compositional engineeringFilmMAPb(Br1–xClx)3408–53547523 * 10–42015Kumawat et al.[11]
FilmMAPb(Br1–xClx)3428–543427–5702015Sadhanala et al.[12]
FilmCs10(MA0.17FA0.83)100–xPb-
Br1.5Cl1.5
47535671.72017Kim et al.[38]
FilmCsMnyPb1–yBrxCl3–x4662452.122018Hou et al.[39]
CrystalCs2SnCl6:Bi4552018Tan et al.[28]
Size control of the emitting unitsQDsCsPbBr3470–5152015Song et al.[13]
NPs(PEA)2PbBr44074100.042016Liang et al.[15]
NPs2D n(MAPbBr3), n = 1/3/5436/456/489432/456/4921/2/8.50.004/0.024/
0.2
2016Kumar et al.[16]
QDsCsPbBr34602016Lu et al.[49]
Film(EA)2MAn–1PbnBr3n+1473, 485473, 4852002.62017Wang et al.[37]
NPsCsPbBr3442–459480250.12018Yang et al.[32]
FilmPEA2CsPb2Br7@Cs4PbBr650032594.512018Shang et al.[31]
FilmPA2(CsPbBr3)n–1PbBr4425–525505~1043.62018Chen et al.[29]
NPs2D CsPbBr3432–497464380.0572018Bohn et al.[14]
FilmPEA2An−1PbnBr3n+148049024801.52018Xing et al.[30]
QDsCH3NH2PbBr3440453322018Zhang et al.[50]
FilmPEA2Csn−1PbnBr3n+1
@Cs4PbBr6
484450.132019Zou et al.[34]
FilmPA2(CsPbBr3)n−1PbBr448849243591.452019Ren et al.[36]
NPs(PEA)2PbBr4408410147.60.312019Deng et al.[40]
FilmPBABry(Cs0.7FA0.3PbBr3)483549.52019Liu et al.[17]
FilmP-PDA,PEACsn–1PbnBr3n+14652112.62019Yuan et al.[41]
Compositional engineering and Size control of the emitting unitsQDsCsPb(Br1–xClx)3420–5004557420.072015Song et al.[13]
NCsCsPbBr1.5Cl1.54704808.70.00742016Li et al.[42]
QDsCsPbBr1.5Cl1.5/ CsPbBr2.4Cl0.6450/459445/4952673/26521.38/1.132016Deng et al.[23]
QDsCsPb(Br1–xClx)3490351.92016Pan et al.[43]
QDsCs3Bi2Br94102017Leng et al.[44]
NCsCsPbBrxCl3–x4691110.52018Gangishetty et al.[22]
FilmBA2Csn−1Pbn(Br/Cl)3n+1464/486465/487962/33402.4/6.22018Vashishtha et al.[45]
QDs(Rb0.33Cs0.67)0.42FA0.58-
PbBr3/ (Rb0.33Cs0.67)0.42-
FA0.58PbBr1.75Cl1.25
500/476502/466103/403.6/0.612018Meng et al.[33]
QDsMA3Bi2(Cl/Br2)94222018Leng et al.[27]
FilmPEA2(CsPbBr2.1Cl0.9)n–1Pb-
Br4
48037805.72019Li et al.[42]
FilmPEA2(Rb0.6Cs0.4)2Pb3Br10/
PEA2(Rb0.4Cs0.6)2Pb3Br10
475/4901.35/1.482019Jiang et al.[26]
NCsCsPb(Br/Cl)34614633181.22019Ochsenbein et al.[46]
QDsRbxCs1–xPbBr3460–500490/464183/630.87/0.112019Todorovic et al.[25]
FilmPOEA–CsPbBr1.65Cl1.35468468122.10.712019Tan et al.[35]
FilmCsPbBr3:PEACl:2%YCl34854859040112019Wang et al.[9]
NCsCsPb(Br/Cl)3477871.962020Yang et al.[47]
QDsCsPbCl0.99Br2.01:2.5%NiCl24706122.42020Pan et al.[48]
NPs (nanoplates), NCs (nanocrystals), QDs (quantum dots), MA (methylamine), FA (formamidine), EA (ethylamine), BA (butylamine), PEA (phenylethylamine), PA (propylamine), PBA (phenylbutylammonium), P-PDABr2 (polyammonium bromide [1,4-Bis(aminomethyl)benzene bromide), POEA (2-phenoxyethylamine).
DownLoad: CSV
[1]
Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9, 687 doi: 10.1038/nnano.2014.149
[2]
Cho H, Jeong S H, Park M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350, 1222 doi: 10.1126/science.aad1818
[3]
Kim Y H, Cho H, Heo J H, et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv Mater, 2015, 27, 1248 doi: 10.1002/adma.201403751
[4]
Wang N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photonics, 2016, 10, 699 doi: 10.1038/nphoton.2016.185
[5]
Yuan M, Quan L N, Comin R, et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol, 2016, 11, 872 doi: 10.1038/nnano.2016.110
[6]
Xu W, Hu Q, Bai S, et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat Photonics, 2019, 13, 418 doi: 10.1038/s41566-019-0390-x
[7]
Lin K, Lu J, Xie L, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245 doi: 10.1038/s41586-018-0575-3
[8]
Chiba T, Hayashi Y, Ebe H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics, 2018, 12, 681 doi: 10.1038/s41566-018-0260-y
[9]
Wang Q, Wang X, Yang Z, et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat Commun, 2019, 10, 5633 doi: 10.1038/s41467-019-13580-w
[10]
Fang T, Zhang F, Yuan S, et al. Recent advances and prospects toward blue perovskite materials and light-emitting diodes. Informat, 2019, 1, 211 doi: 10.1002/inf2.12019
[11]
Kumawat N K, Dey A, Kumar A, et al. Band gap tuning of CH3NH3Pb(Br(1– x)Cl x)3 hybrid perovskite for blue electroluminescence. ACS Appl Mater Interfaces, 2015, 7, 13119 doi: 10.1021/acsami.5b02159
[12]
Sadhanala A, Ahmad S, Zhao B, et al. Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications. Nano Lett, 2015, 15, 6095 doi: 10.1021/acs.nanolett.5b02369
[13]
Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater, 2015, 27, 7162 doi: 10.1002/adma.201502567
[14]
Bohn B J, Tong Y, Gramlich M, et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett, 2018, 18, 5231 doi: 10.1021/acs.nanolett.8b02190
[15]
Liang D, Peng Y, Fu Y, et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano, 2016, 10, 6897 doi: 10.1021/acsnano.6b02683
[16]
Kumar S, Jagielski J, Yakunin S, et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano, 2016, 10, 9720 doi: 10.1021/acsnano.6b05775
[17]
Liu Y, Cui J, Du K, et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat Photonics, 2019, 13, 760 doi: 10.1038/s41566-019-0505-4
[18]
Tsai H, Nie W, Blancon J C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536, 312 doi: 10.1038/nature18306
[19]
Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354, 206 doi: 10.1126/science.aah5557
[20]
Bartel C J, Sutton C, Goldsmith B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci Adv, 2019, 5, eaav0693 doi: 10.1126/sciadv.aav0693
[21]
Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature, 2000, 404, 59 doi: 10.1038/35003535
[22]
Gangishetty M K, Hou S, Quan Q, et al. Reducing architecture limitations for efficient blue perovskite light-emitting diodes. Adv Mater, 2018, 30, e1706226 doi: 10.1002/adma.201706226
[23]
Deng W, Xu X, Zhang X, et al. Organometal halide perovskite quantum dot light-emitting diodes. Adv Funct Mater, 2016, 26, 4797 doi: 10.1002/adfm.201601054
[24]
Elstner M, Porezag D, Jungnickel G, et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B, 1998, 58, 7260 doi: 10.1103/PhysRevB.58.7260
[25]
Todorović P, Ma D, Chen B, et al. Spectrally tunable and stable electroluminescence enabled by rubidium doping of CsPbBr3 nanocrystals. Adv Opt Mater, 2019, 7, 1901440 doi: 10.1002/adom.201901440
[26]
Jiang Y, Qin C, Cui M, et al. Spectra stable blue perovskite light-emitting diodes. Nat Commun, 2019, 10, 1868 doi: 10.1038/s41467-019-09794-7
[27]
Leng M, Yang Y, Chen Z, et al. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Lett, 2018, 18, 6076 doi: 10.1021/acs.nanolett.8b03090
[28]
Tan Z, Li J, Zhang C, et al. Highly efficient blue-emitting bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Adv Funct Mater, 2018, 28, 1801131 doi: 10.1002/adfm.201801131
[29]
Chen P, Meng Y, Ahmadi M, et al. Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes. Nano Energy, 2018, 50, 615 doi: 10.1016/j.nanoen.2018.06.008
[30]
Xing J, Zhao Y, Askerka M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat Commun, 2018, 9, 3541 doi: 10.1038/s41467-018-05909-8
[31]
Shang Y, Li G, Liu W, et al. Quasi-2D Inorganic CsPbBr3 perovskite for efficient and stable light-emitting diodes. Adv Funct Mater, 2018, 28, 1801193 doi: 10.1002/adfm.201801193
[32]
Yang D, Zou Y, Li P, et al. Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes. Nano Energy, 2018, 47, 235 doi: 10.1016/j.nanoen.2018.03.019
[33]
Meng F, Liu X, Cai X, et al. Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes via FABr-modified multi-cation hot-injection method. Nanoscale, 2019, 11, 1295 doi: 10.1039/C8NR07907B
[34]
Zou Y, Xu H, Li S, et al. Spectral-stable blue emission from moisture-treated low-dimensional lead bromide-based perovskite films. ACS Photonics, 2019, 6, 1728 doi: 10.1021/acsphotonics.9b00435
[35]
Tan Z, Luo J, Yang L, et al. Spectrally stable ultra-pure blue perovskite light-emitting diodes boosted by square-wave alternating voltage. Adv Opt Mater, 2020, 8, 1901094 doi: 10.1002/adom.201901094
[36]
Ren Z, Xiao X, Ma R, et al. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv Funct Mater, 2019, 29, 1905339 doi: 10.1002/adfm.201905339
[37]
Wang Q, Ren J, Peng X F, et al. Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites. ACS Appl Mater Interfaces, 2017, 9, 29901 doi: 10.1021/acsami.7b07458
[38]
Kim H P, Kim J, Kim B S, et al. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Adv Opt Mater, 2017, 5, 1600920 doi: 10.1002/adom.201600920
[39]
Hou S, Gangishetty M K, Quan Q, et al. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule, 2018, 2, 2421 doi: 10.1016/j.joule.2018.08.005
[40]
Deng W, Jin X, Lv Y, et al. 2D Ruddlesden–Popper perovskite nanoplate based deep-blue light-emitting diodes for light communication. Adv Funct Mater, 2019, 29, 1903861 doi: 10.1002/adfm.201903861
[41]
Yuan S, Wang Z K, Xiao L X, et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv Mater, 2019, 31, e1904319 doi: 10.1002/adma.201904319
[42]
Li G, Rivarola F W R, Davis N J L K, et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv Mater, 2016, 28, 3528 doi: 10.1002/adma.201600064
[43]
Pan J, Quan L N, Zhao Y, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater, 2016, 28, 8718 doi: 10.1002/adma.201600784
[44]
Leng M, Yang Y, Zeng K, et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Adv Funct Mater, 2018, 28, 1704446 doi: 10.1002/adfm.201704446
[45]
Vashishtha P, Ng M, Shivarudraiah S B, et al. High efficiency blue and green light-emitting diodes using ruddlesden-popper inorganic mixed halide perovskites with butylammonium interlayers. Chem Mater, 2019, 31, 83 doi: 10.1021/acs.chemmater.8b02999
[46]
Ochsenbein S T, Krieg F, Shynkarenko Y, et al. Engineering color-stable blue light-emitting diodes with lead halide perovskite nanocrystals. ACS Appl Mater Interfaces, 2019, 11, 21655 doi: 10.1021/acsami.9b02472
[47]
Yang F, Chen H, Zhang R, et al. Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals. Adv Funct Mater, 2020, 30, 1908760 doi: 10.1002/adfm.201908760
[48]
Pan G C, Bai X, Xu W, et al. Bright blue light emission of Ni2+ ions doped CsPbCl xBr3– x perovskite quantum dots enabling efficient light-emitting devices. ACS Appl Mater Interfaces, 2020, 12, 14195 doi: 10.1021/acsami.0c01074
[49]
Lu W, Chen C, Han D, et al. Nonlinear optical properties of colloidal CH3NH3PbBr3 and CsPbBr3 quantum dots: A comparison study using Z-scan technique. Adv Opt Mater, 2016, 4, 1732 doi: 10.1002/adom.201600322
[50]
Zhang F, Xiao C, Li Y, et al. Gram-scale synthesis of blue-emitting CH3NH3PbBr3 quantum dots through phase transfer strategy. Front Chem, 2018, 6, 444 doi: 10.3389/fchem.2018.00444
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5114 Times PDF downloads: 225 Times Cited by: 0 Times

    History

    Received: 08 March 2020 Revised: 28 March 2020 Online: Accepted Manuscript: 23 April 2020Uncorrected proof: 24 April 2020Published: 13 May 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jianxun Lu, Zhanhua Wei. The strategies for preparing blue perovskite light-emitting diodes[J]. Journal of Semiconductors, 2020, 41(5): 051203. doi: 10.1088/1674-4926/41/5/051203 J X Lu, Z H Wei, The strategies for preparing blue perovskite light-emitting diodes[J]. J. Semicond., 2020, 41(5): 051203. doi: 10.1088/1674-4926/41/5/051203.Export: BibTex EndNote
      Citation:
      Jianxun Lu, Zhanhua Wei. The strategies for preparing blue perovskite light-emitting diodes[J]. Journal of Semiconductors, 2020, 41(5): 051203. doi: 10.1088/1674-4926/41/5/051203

      J X Lu, Z H Wei, The strategies for preparing blue perovskite light-emitting diodes[J]. J. Semicond., 2020, 41(5): 051203. doi: 10.1088/1674-4926/41/5/051203.
      Export: BibTex EndNote

      The strategies for preparing blue perovskite light-emitting diodes

      doi: 10.1088/1674-4926/41/5/051203
      More Information
      • Corresponding author: Email: weizhanhua@hqu.edu.cn
      • Received Date: 2020-03-08
      • Revised Date: 2020-03-28
      • Published Date: 2020-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return