ARTICLES

Light-emitting diodes based on all-inorganic copper halide perovskite with self-trapped excitons

Nian Liu, Xue Zhao, Mengling Xia, Guangda Niu, Qingxun Guo, Liang Gao and Jiang Tang

+ Author Affiliations

 Corresponding author: Qingxun Guo, guojlu@163.com

PDF

Turn off MathJax

Abstract: Light-emitting diodes based on lead halide perovskite have attracted great attention due to their outstanding performance. However, their application is plagued by the toxicity of Pb and the poor stability. Herein novel copper-based all inorganic perovskite CsCu2I3 with much enhanced stability has been reported with a potential photoluminescence quantum yield (PLQY) over 20% and self-trapped excitons (STE). By taking advantage of its extraordinary thermal stability, we successfully fabricate high-quality CsCu2I3 film through direct vacuum-based deposition (VBD) of CsCu2I3 powder. The resulting film shows almost the same PLQY with the synthesized powder, as well as excellent uniformity and stability. The perovskite light-emitting diodes (Pe-LED) based on the evaporated CsCu2I3 emitting layer achieve a luminescence of 10 cd/m2 and an external quantum efficiency (EQE) of 0.02%. To the best of our knowledge, this is the first CsCu2I3 Pe-LED fabricated by VBD with STE property, which offers a new avenue for lead-free Pe-LED.

Key words: light-emitting diodescopper halide perovskitevacuum-based evaporationself-trapped exciton



[1]
Quan L N, Rand B P, Friend R H, et al. Perovskites for next-generation optical sources. Chem Rev, 2019, 119, 7444 doi: 10.1021/acs.chemrev.9b00107
[2]
Fakharuddin A, Shabbir U, Qiu W, et al. Inorganic and layered perovskites for optoelectronic devices. Adv Mater, 2019, 31(47), e1807095 doi: 10.1002/adma.201807095
[3]
Luo D, Chen Q, Qiu Y, et al. Device engineering for all-inorganic perovskite light-emitting diodes. Nanomaterials, 2019, 9(7), 1007 doi: 10.3390/nano9071007
[4]
Lu M, Zhang Y, Wang S, et al. Metal halide perovskite light-emitting devices: promising technology for next-generation displays. Adv Funct Mater, 2019, 29(30), 1902008 doi: 10.1002/adfm.201902008
[5]
Wang Q, Wang X, Yang Z, et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat Commun, 2019, 10(1), 5633 doi: 10.1038/s41467-019-13580-w
[6]
Ban M, Zou Y, Rivett J P H, et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat Commun, 2018, 9(1), 3892 doi: 10.1038/s41467-018-06425-5
[7]
Zhao X, Tan Z K. Large-area near-infrared perovskite light-emitting diodes. Nat Photon, 2019, 14, 215 doi: 10.1038/s41566-019-0559-3
[8]
Cao Y, Wang N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726), 249 doi: 10.1038/s41586-018-0576-2
[9]
Lin K, Xing J, Quan L, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562, 245 doi: 10.1038/s41586-018-0575-3
[10]
Cho H, Kim Y H, Wolf C, et al. Improving the stability of metal halide perovskite materials and light-emitting diodes. Adv Mater, 2018, 30(42), e1704587 doi: 10.1002/adma.201704587
[11]
Cheng P, Sun L, Feng L, et al. Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals. Angew Chem Int Ed Engl, 2019, 58(45), 16087 doi: 10.1002/anie.201909129
[12]
Jun T, Sim K, Iimura S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv Mater, 2018, 30(43), e1804547 doi: 10.1002/adma.201804547
[13]
Luo J, Wang X, Li S, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732), 541 doi: 10.1038/s41586-018-0691-0
[14]
Vashishtha P, Nutan G V, Griffith B E, et al. Cesium copper iodide tailored nanoplates and nanorods for blue, yellow, and white emission. Chem Mater, 2019, 31(21), 9003 doi: 10.1021/acs.chemmater.9b03250
[15]
Benin B M, Dirin D N, Morad V, et al. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides. Angew Chem Int Ed Engl, 2018, 57(35), 11329 doi: 10.1002/anie.201806452
[16]
Hu Y, Wang Q, Shi Y L, et al. Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. J Mater Chem C, 2017, 5(32), 8144 doi: 10.1039/C7TC02477K
[17]
Lin R, Guo Q, Zhu Q, et al. All-inorganic CsCu2I3 single crystal with high-PLQY (≈15.7%) intrinsic white-light emission via strongly localized 1D excitonic recombination. Adv Mater, 2019, 31, 1905079 doi: 10.1002/adma.201905079
[18]
Chen W, Zhang J, Xu G, et al. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv Mater, 2018, 30(21), e1800855 doi: 10.1002/adma.201800855
[19]
Zhu X, Yang D, Yang R, et al. Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation. Nanoscale, 2017, 9(34), 12316 doi: 10.1039/C7NR04501H
[20]
Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467), 395 doi: 10.1038/nature12509
[21]
Dohner E R, Jaffe A, Bradshaw L R, et al. Intrinsic white-light emission from layered hybrid perovskites. J Am Chem Soc, 2014, 136(38), 13154 doi: 10.1021/ja507086b
[22]
Smith M D, Watson B L, Dauskardt R H, et al. Broadband emission with a massive stokes shift from sulfonium Pb–Br hybrids. Chem Mater, 2017, 29(17), 7083 doi: 10.1021/acs.chemmater.7b02594
[23]
Wang S, Yao Y, Kong J, et al. Highly efficient white-light emission in a polar two-dimensional hybrid perovskite. Chem Commun, 2018, 54(32), 4053 doi: 10.1039/C8CC01663A
[24]
Krishnamurthy S, Naphade R, Mir Wasim J, et al. Molecular and self-trapped excitonic contributions to the broadband luminescence in diamine-based low-dimensional hybrid perovskite systems. Adv Optical Mater, 2018, 1800751 doi: 10.1002/adom.201800751
[25]
Li S, Hu Q, Luo J, et al. Self-trapped exciton to dopant energy transfer in rare earth doped lead-free double perovskite. Adv Opt Mater, 2019, 7, 1901098 doi: 10.1002/adom.201901098
[26]
Li S, Luo J, Liu J, et al. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. J Phys Chem Lett, 2019, 10(8), 1999 doi: 10.1021/acs.jpclett.8b03604
[27]
Smith M D, Karunadasa H I. White-light emission from layered halide perovskites. Acc Chem Res, 2018, 51(3), 619 doi: 10.1021/acs.accounts.7b00433
[28]
Li J, Du P, Li S, et al. High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition. Adv Funct Mater, 2019, 29(51), 1903607 doi: 10.1002/adfm.201903607
[29]
Du P, Li J, Wang L, et al. Vacuum-deposited blue inorganic perovskite light-emitting diodes. ACS Appl Mater Interfaces, 2019, 11(50), 47083 doi: 10.1021/acsami.9b17164
[30]
Ma Z, Shi Z, Qin C, et al. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano, 2020, 14(4), 4475 doi: 10.1021/acsnano.9b10148
Fig. 1.  (Color online) (a) Optical images of synthesized CsCu2I3 powder under natural light and excited by ultraviolet light. (b) PLQY of the CsCu2I3 powder.

Fig. 2.  (Color online) (a) XRD patterns of the CsCu2I3 film and powder. (b) Schematic of CsCu2I3 crystal structure. (c) PLE and PL spectra of the CsCu2I3 film. (d) Schematic of the energy level structure of STE.

Fig. 3.  (Color online) (a) Structure of CsCu2I3 Pe-LED. (b) Schematic of VBD for CsCu2I3 film. (c) SEM image of CsCu2I3 film. (d) Energy level diagram of CsCu2I3 device.

Fig. 4.  (Color online) (a) Current density–voltage (J–V) and luminance–voltage (L–V) curves of the CsCu2I3 Pe-LED. (b) EQE curve of the CsCu2I3 Pe-LED. (c) The CIE color coordinate of the CsCu2I3 PeLED.

[1]
Quan L N, Rand B P, Friend R H, et al. Perovskites for next-generation optical sources. Chem Rev, 2019, 119, 7444 doi: 10.1021/acs.chemrev.9b00107
[2]
Fakharuddin A, Shabbir U, Qiu W, et al. Inorganic and layered perovskites for optoelectronic devices. Adv Mater, 2019, 31(47), e1807095 doi: 10.1002/adma.201807095
[3]
Luo D, Chen Q, Qiu Y, et al. Device engineering for all-inorganic perovskite light-emitting diodes. Nanomaterials, 2019, 9(7), 1007 doi: 10.3390/nano9071007
[4]
Lu M, Zhang Y, Wang S, et al. Metal halide perovskite light-emitting devices: promising technology for next-generation displays. Adv Funct Mater, 2019, 29(30), 1902008 doi: 10.1002/adfm.201902008
[5]
Wang Q, Wang X, Yang Z, et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat Commun, 2019, 10(1), 5633 doi: 10.1038/s41467-019-13580-w
[6]
Ban M, Zou Y, Rivett J P H, et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat Commun, 2018, 9(1), 3892 doi: 10.1038/s41467-018-06425-5
[7]
Zhao X, Tan Z K. Large-area near-infrared perovskite light-emitting diodes. Nat Photon, 2019, 14, 215 doi: 10.1038/s41566-019-0559-3
[8]
Cao Y, Wang N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726), 249 doi: 10.1038/s41586-018-0576-2
[9]
Lin K, Xing J, Quan L, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562, 245 doi: 10.1038/s41586-018-0575-3
[10]
Cho H, Kim Y H, Wolf C, et al. Improving the stability of metal halide perovskite materials and light-emitting diodes. Adv Mater, 2018, 30(42), e1704587 doi: 10.1002/adma.201704587
[11]
Cheng P, Sun L, Feng L, et al. Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals. Angew Chem Int Ed Engl, 2019, 58(45), 16087 doi: 10.1002/anie.201909129
[12]
Jun T, Sim K, Iimura S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv Mater, 2018, 30(43), e1804547 doi: 10.1002/adma.201804547
[13]
Luo J, Wang X, Li S, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732), 541 doi: 10.1038/s41586-018-0691-0
[14]
Vashishtha P, Nutan G V, Griffith B E, et al. Cesium copper iodide tailored nanoplates and nanorods for blue, yellow, and white emission. Chem Mater, 2019, 31(21), 9003 doi: 10.1021/acs.chemmater.9b03250
[15]
Benin B M, Dirin D N, Morad V, et al. Highly emissive self-trapped excitons in fully inorganic zero-dimensional tin halides. Angew Chem Int Ed Engl, 2018, 57(35), 11329 doi: 10.1002/anie.201806452
[16]
Hu Y, Wang Q, Shi Y L, et al. Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. J Mater Chem C, 2017, 5(32), 8144 doi: 10.1039/C7TC02477K
[17]
Lin R, Guo Q, Zhu Q, et al. All-inorganic CsCu2I3 single crystal with high-PLQY (≈15.7%) intrinsic white-light emission via strongly localized 1D excitonic recombination. Adv Mater, 2019, 31, 1905079 doi: 10.1002/adma.201905079
[18]
Chen W, Zhang J, Xu G, et al. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv Mater, 2018, 30(21), e1800855 doi: 10.1002/adma.201800855
[19]
Zhu X, Yang D, Yang R, et al. Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation. Nanoscale, 2017, 9(34), 12316 doi: 10.1039/C7NR04501H
[20]
Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467), 395 doi: 10.1038/nature12509
[21]
Dohner E R, Jaffe A, Bradshaw L R, et al. Intrinsic white-light emission from layered hybrid perovskites. J Am Chem Soc, 2014, 136(38), 13154 doi: 10.1021/ja507086b
[22]
Smith M D, Watson B L, Dauskardt R H, et al. Broadband emission with a massive stokes shift from sulfonium Pb–Br hybrids. Chem Mater, 2017, 29(17), 7083 doi: 10.1021/acs.chemmater.7b02594
[23]
Wang S, Yao Y, Kong J, et al. Highly efficient white-light emission in a polar two-dimensional hybrid perovskite. Chem Commun, 2018, 54(32), 4053 doi: 10.1039/C8CC01663A
[24]
Krishnamurthy S, Naphade R, Mir Wasim J, et al. Molecular and self-trapped excitonic contributions to the broadband luminescence in diamine-based low-dimensional hybrid perovskite systems. Adv Optical Mater, 2018, 1800751 doi: 10.1002/adom.201800751
[25]
Li S, Hu Q, Luo J, et al. Self-trapped exciton to dopant energy transfer in rare earth doped lead-free double perovskite. Adv Opt Mater, 2019, 7, 1901098 doi: 10.1002/adom.201901098
[26]
Li S, Luo J, Liu J, et al. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. J Phys Chem Lett, 2019, 10(8), 1999 doi: 10.1021/acs.jpclett.8b03604
[27]
Smith M D, Karunadasa H I. White-light emission from layered halide perovskites. Acc Chem Res, 2018, 51(3), 619 doi: 10.1021/acs.accounts.7b00433
[28]
Li J, Du P, Li S, et al. High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition. Adv Funct Mater, 2019, 29(51), 1903607 doi: 10.1002/adfm.201903607
[29]
Du P, Li J, Wang L, et al. Vacuum-deposited blue inorganic perovskite light-emitting diodes. ACS Appl Mater Interfaces, 2019, 11(50), 47083 doi: 10.1021/acsami.9b17164
[30]
Ma Z, Shi Z, Qin C, et al. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano, 2020, 14(4), 4475 doi: 10.1021/acsnano.9b10148
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4256 Times PDF downloads: 177 Times Cited by: 0 Times

    History

    Received: 01 March 2020 Revised: 07 April 2020 Online: Accepted Manuscript: 16 April 2020Uncorrected proof: 20 April 2020Published: 13 May 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Nian Liu, Xue Zhao, Mengling Xia, Guangda Niu, Qingxun Guo, Liang Gao, Jiang Tang. Light-emitting diodes based on all-inorganic copper halide perovskite with self-trapped excitons[J]. Journal of Semiconductors, 2020, 41(5): 052204. doi: 10.1088/1674-4926/41/5/052204 N Liu, X Zhao, M L Xia, G D Niu, Q X Guo, L Gao, J Tang, Light-emitting diodes based on all-inorganic copper halide perovskite with self-trapped excitons[J]. J. Semicond., 2020, 41(5): 052204. doi: 10.1088/1674-4926/41/5/052204.Export: BibTex EndNote
      Citation:
      Nian Liu, Xue Zhao, Mengling Xia, Guangda Niu, Qingxun Guo, Liang Gao, Jiang Tang. Light-emitting diodes based on all-inorganic copper halide perovskite with self-trapped excitons[J]. Journal of Semiconductors, 2020, 41(5): 052204. doi: 10.1088/1674-4926/41/5/052204

      N Liu, X Zhao, M L Xia, G D Niu, Q X Guo, L Gao, J Tang, Light-emitting diodes based on all-inorganic copper halide perovskite with self-trapped excitons[J]. J. Semicond., 2020, 41(5): 052204. doi: 10.1088/1674-4926/41/5/052204.
      Export: BibTex EndNote

      Light-emitting diodes based on all-inorganic copper halide perovskite with self-trapped excitons

      doi: 10.1088/1674-4926/41/5/052204
      More Information
      • Corresponding author: guojlu@163.com
      • Received Date: 2020-03-01
      • Revised Date: 2020-04-07
      • Published Date: 2020-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return