ARTICLES

Graphene plasmonic nanoresonators/graphene heterostructures for efficient room-temperature infrared photodetection

Tian Sun1, Weiliang Ma1, Donghua Liu2, Xiaozhi Bao3, Babar Shabbir6, Jian Yuan4, Shaojuan Li5, Dacheng Wei2, and Qiaoliang Bao6,

+ Author Affiliations

 Corresponding author: Dacheng Wei, Email: weidc@fudan.edu.cn; Qiaoliang Bao, Qiaoliang.Bao@gmail.com

PDF

Turn off MathJax

Abstract: High-performance infrared (IR) photodetectors made by low dimensional materials promise a wide range of applications in communication, security and biomedicine. Moreover, light-harvesting effects based on novel plasmonic materials and their combinations with two-dimensional (2D) materials have raised tremendous interest in recent years, as they may potentially help the device complement or surpass currently commercialized IR photodetectors. Graphene is a particularly attractive plasmonic material because graphene plasmons are electrically tunable with a high degree of electromagnetic confinement in the mid-infrared (mid-IR) to terahertz regime and the field concentration can be further enhanced by forming nanostructures. Here, we report an efficient mid-IR room-temperature photodetector enhanced by plasmonic effect in graphene nanoresonators (GNRs)/graphene heterostructure. The plasmon polaritons in GNRs are size-dependent with strong field localization. Considering that the size and density of GNRs are controllable by chemical vapor deposition method, our work opens a cost-effective and scalable pathway to fabricate efficient IR optoelectronic devices with wavelength tunability.

Key words: graphene plasmonsnanoresonatorss-SNOMmid-infrared photodetectors



[1]
Schneider H, Fuchs F, Dischler B, et al. Intersubband absorption and infrared photodetection at 3.5 and 4.2 μm in GaAs quantum wells. Appl Phys Lett, 1991, 58, 2234 doi: 10.1063/1.104936
[2]
Naumann A, Navarro-González M, Peddireddi S, et al. Fourier transform infrared microscopy and imaging: Detection of fungi in wood. Fungal Genet Biol, 2005, 42, 829 doi: 10.1016/j.fgb.2005.06.003
[3]
Lao Y F, Unil Perera A G, Li L H, et al. Tunable hot-carrier photodetection beyond the bandgap spectral limit. Nat Photonics, 2014, 8, 412 doi: 10.1038/nphoton.2014.80
[4]
Chen X L, Lu X B, Deng B C, et al. Widely tunable black phosphorus mid-infrared photodetector. Nat Commun, 2017, 8, 1672 doi: 10.1038/s41467-017-01978-3
[5]
Freitag M, Low T, Zhu W J, et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat Commun, 2013, 4, 1951 doi: 10.1038/ncomms2951
[6]
Amani M, Regan E, Bullock J, et al. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano, 2017, 11, 11724 doi: 10.1021/acsnano.7b07028
[7]
Lin Y M, Dimitrakopoulos C, Jenkins K A, et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 2010, 327, 662 doi: 10.1126/science.1184289
[8]
Bao Q L, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6, 3677 doi: 10.1021/nn300989g
[9]
Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat Mater, 2012, 11, 865 doi: 10.1038/nmat3417
[10]
Sensale-Rodriguez B, Yan R S, Kelly M M, et al. Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun, 2012, 3, 780 doi: 10.1038/ncomms1787
[11]
Mueller T, Xia F N, Avouris P. Graphene photodetectors for high-speed optical communications. Nat Photonics, 2010, 4, 297 doi: 10.1038/nphoton.2010.40
[12]
Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8, 497 doi: 10.1038/nnano.2013.100
[13]
Wang X D, Wang P, Wang J L, et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv Mater, 2015, 27, 6575 doi: 10.1002/adma.201503340
[14]
Long M S, Wang P, Fang H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater, 2019, 29, 1803807 doi: 10.1002/adfm.201803807
[15]
Rao G, Freitag M, Chiu H Y, et al. Raman and photocurrent imaging of electrical stress-induced p–n junctions in graphene. ACS Nano, 2011, 5, 5848 doi: 10.1021/nn201611r
[16]
Freitag M, Low T, Xia F N, et al. Photoconductivity of biased graphene. Nat Photonics, 2013, 7, 53 doi: 10.1038/nphoton.2012.314
[17]
Buscema M, Island J O, Groenendijk D J, et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev, 2015, 44, 3691 doi: 10.1039/C5CS00106D
[18]
Zhou X, Hu X Z, Yu J, et al. 2D layered material-based van der Waals heterostructures for optoelectronics. Adv Funct Mater, 2018, 28, 1706587 doi: 10.1002/adfm.201706587
[19]
Huo N J, Konstantatos G. Recent progress and future prospects of 2D-based photodetectors. Adv Mater, 2018, 30, 1801164 doi: 10.1002/adma.201801164
[20]
Knight M W, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas. Science, 2011, 332, 702 doi: 10.1126/science.1203056
[21]
Fang Z Y, Liu Z, Wang Y M, et al. Graphene-antenna sandwich photodetector. Nano Lett, 2012, 12, 3808 doi: 10.1021/nl301774e
[22]
Ju L, Geng B S, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol, 2011, 6, 630 doi: 10.1038/nnano.2011.146
[23]
Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater, 2010, 9, 205 doi: 10.1038/nmat2629
[24]
Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nat Mater, 2008, 7, 442 doi: 10.1038/nmat2162
[25]
Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature, 2002, 418, 159 doi: 10.1038/nature00899
[26]
Boltasseva A, Atwater H A. Low-loss plasmonic metamaterials. Science, 2011, 331, 290 doi: 10.1126/science.1198258
[27]
Novotny L, Hecht B. Principles of nano-optics. Cambridge: Cambridge University Press, 2009
[28]
Khurgin J B, Boltasseva A. Reflecting upon the losses in plasmonics and metamaterials. MRS Bull, 2012, 37, 768 doi: 10.1557/mrs.2012.173
[29]
Khurgin J B, Sun G. In search of the elusive lossless metal. Appl Phys Lett, 2010, 96, 181102 doi: 10.1063/1.3425890
[30]
Chen J N, Badioli M, Alonso-González P, et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 2012, 487, 77 doi: 10.1038/nature11254
[31]
Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012, 487, 82 doi: 10.1038/nature11253
[32]
Ni G X, McLeod A S, Sun Z, et al. Fundamental limits to graphene plasmonics. Nature, 2018, 557, 530 doi: 10.1038/s41586-018-0136-9
[33]
Fang Z Y, Wang Y M, Schlather A E, et al. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett, 2014, 14, 299 doi: 10.1021/nl404042h
[34]
Yan H G, Low T, Zhu W J, et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics, 2013, 7, 394 doi: 10.1038/nphoton.2013.57
[35]
Nikitin A Y, Alonso-González P, Vélez S, et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat Photonics, 2016, 10, 239 doi: 10.1038/nphoton.2016.44
[36]
Yang X X, Zhai F, Hu H, et al. Far-field spectroscopy and near-field optical imaging of coupled plasmon-phonon polaritons in 2D van der waals heterostructures. Adv Mater, 2016, 28, 2931 doi: 10.1002/adma.201505765
[37]
Xu Q Y, Ma T, Danesh M, et al. Effects of edge on graphene plasmons as revealed by infrared nanoimaging. Light: Sci Appl, 2017, 6, e16204 doi: 10.1038/lsa.2016.204
[38]
Liu D H, Chen X S, Hu Y B, et al. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nat Commun, 2018, 9, 193 doi: 10.1038/s41467-017-02627-5
[39]
Chen X Z, Hu D B, Mescall R, et al. Modern scattering-type scanning near-field optical microscopy for advanced material research. Adv Mater, 2019, 31, 1804774 doi: 10.1002/adma.201804774
Fig. 1.  (Color online) Characterization results of GNRs: AFM, HRTEM image and Raman spectrum, density and size distribution. (a) Representation of growth process of GNRs. The GNRs were obtained on the SiO2/Si substrate by qe-PECVD. Upper image: Schematic illustration of the GNRs. (b) Atomic force microscope (AFM) image of GNRs. (c) The Raman spectrum shows the characteristic band (D, G, 2D) of GNRs. (d) A HRTEM image of GNRs. Scale bar: 100 nm. An enlarged HRTEM image. Scale bar: 20 nm. (e) The controlled density of GNRs, the AFM image indicate two different densities. Scale bar: 200 nm. (f) Statistical distribution of the diameter of GNRs with Gaussian fits overlaid.

Fig. 2.  (Color online) Schematics and mid-IR “hot-spot” of GNRs imaging with s-SNOM. (a) Simplified schematics of s-SNOM measurements: The Pt-coated tip is illuminated by mid-IR light and interacts with GNRs to launch and detect a graphene plasmon and their localized F-P modes in GNRs. (b) Near-field amplitude image of GNRs at λ0 = 10.69 and 10.78 μm. The various “hot-spot” (localized graphene plasmon modes) in GNRs and clear wavelength dependence of modes in single GNR. (c) The center normalized near-field amplitude s(ω) shows strong dependence on the diameter of GNRs. The experimental points are all taken from the s-SNOM imaging. (d) Line profiles of the near-field amplitude s(ω) normalized to the SiO2 substrate. The experimental profiles are taken from (b) (that is, all of these profiles are taken along the same line as shown in (b), indicating the graphene modes show strong dependence on excitation wavelength. (e) Calculated near-field distributions Ez above the GNRs. The strong enhanced near-field Ez shows dependence on diameter of GNR at λ0 = 11.2 μm. (f) Calculated near-field distributions Ez above the GNRs. The strong enhanced near-field Ez indicates strong dependence on wavelength of incident mid-IR light at fixed diameter of GNR (D = 100 nm).

Fig. 3.  (Color online) Room temperature mid-IR photodetector based on GNRs/graphene heterostructure. (a) Optical image of heterostructure mid-IR photodetector with efficient interdigitated antenna electrodes, Scale bar: 50 μm. (b) Schematic illustration of the mid-IR photodetector. All electrical measurement is conducted under 11.2 μm light illumination. (c) Dependence of photocurrent on source–drain voltage (VSD) and (d) time-dependent photocurrent response (VSD = 1 V, VG = 0 V) for pure graphene photodetector (black), GNRs/G heterostructure photodetector with different GNRs density. Large D: large density > 40 GNRs/μm2. Low D: low density < 20 GNRs/μm2. Scale bar: 300 nm. Inset: AFM image of different GNRs density. GNRs/G: GNRs/graphene. (e) Photocurrent as the function of VSD with different incident power and (f) time-dependent photocurrent response for GNRs/G heterostructure photodetector with large GNRs density (VSD = 1 V, VG = 0 V).

[1]
Schneider H, Fuchs F, Dischler B, et al. Intersubband absorption and infrared photodetection at 3.5 and 4.2 μm in GaAs quantum wells. Appl Phys Lett, 1991, 58, 2234 doi: 10.1063/1.104936
[2]
Naumann A, Navarro-González M, Peddireddi S, et al. Fourier transform infrared microscopy and imaging: Detection of fungi in wood. Fungal Genet Biol, 2005, 42, 829 doi: 10.1016/j.fgb.2005.06.003
[3]
Lao Y F, Unil Perera A G, Li L H, et al. Tunable hot-carrier photodetection beyond the bandgap spectral limit. Nat Photonics, 2014, 8, 412 doi: 10.1038/nphoton.2014.80
[4]
Chen X L, Lu X B, Deng B C, et al. Widely tunable black phosphorus mid-infrared photodetector. Nat Commun, 2017, 8, 1672 doi: 10.1038/s41467-017-01978-3
[5]
Freitag M, Low T, Zhu W J, et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat Commun, 2013, 4, 1951 doi: 10.1038/ncomms2951
[6]
Amani M, Regan E, Bullock J, et al. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano, 2017, 11, 11724 doi: 10.1021/acsnano.7b07028
[7]
Lin Y M, Dimitrakopoulos C, Jenkins K A, et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 2010, 327, 662 doi: 10.1126/science.1184289
[8]
Bao Q L, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6, 3677 doi: 10.1021/nn300989g
[9]
Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat Mater, 2012, 11, 865 doi: 10.1038/nmat3417
[10]
Sensale-Rodriguez B, Yan R S, Kelly M M, et al. Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun, 2012, 3, 780 doi: 10.1038/ncomms1787
[11]
Mueller T, Xia F N, Avouris P. Graphene photodetectors for high-speed optical communications. Nat Photonics, 2010, 4, 297 doi: 10.1038/nphoton.2010.40
[12]
Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8, 497 doi: 10.1038/nnano.2013.100
[13]
Wang X D, Wang P, Wang J L, et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv Mater, 2015, 27, 6575 doi: 10.1002/adma.201503340
[14]
Long M S, Wang P, Fang H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater, 2019, 29, 1803807 doi: 10.1002/adfm.201803807
[15]
Rao G, Freitag M, Chiu H Y, et al. Raman and photocurrent imaging of electrical stress-induced p–n junctions in graphene. ACS Nano, 2011, 5, 5848 doi: 10.1021/nn201611r
[16]
Freitag M, Low T, Xia F N, et al. Photoconductivity of biased graphene. Nat Photonics, 2013, 7, 53 doi: 10.1038/nphoton.2012.314
[17]
Buscema M, Island J O, Groenendijk D J, et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev, 2015, 44, 3691 doi: 10.1039/C5CS00106D
[18]
Zhou X, Hu X Z, Yu J, et al. 2D layered material-based van der Waals heterostructures for optoelectronics. Adv Funct Mater, 2018, 28, 1706587 doi: 10.1002/adfm.201706587
[19]
Huo N J, Konstantatos G. Recent progress and future prospects of 2D-based photodetectors. Adv Mater, 2018, 30, 1801164 doi: 10.1002/adma.201801164
[20]
Knight M W, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas. Science, 2011, 332, 702 doi: 10.1126/science.1203056
[21]
Fang Z Y, Liu Z, Wang Y M, et al. Graphene-antenna sandwich photodetector. Nano Lett, 2012, 12, 3808 doi: 10.1021/nl301774e
[22]
Ju L, Geng B S, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol, 2011, 6, 630 doi: 10.1038/nnano.2011.146
[23]
Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater, 2010, 9, 205 doi: 10.1038/nmat2629
[24]
Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nat Mater, 2008, 7, 442 doi: 10.1038/nmat2162
[25]
Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature, 2002, 418, 159 doi: 10.1038/nature00899
[26]
Boltasseva A, Atwater H A. Low-loss plasmonic metamaterials. Science, 2011, 331, 290 doi: 10.1126/science.1198258
[27]
Novotny L, Hecht B. Principles of nano-optics. Cambridge: Cambridge University Press, 2009
[28]
Khurgin J B, Boltasseva A. Reflecting upon the losses in plasmonics and metamaterials. MRS Bull, 2012, 37, 768 doi: 10.1557/mrs.2012.173
[29]
Khurgin J B, Sun G. In search of the elusive lossless metal. Appl Phys Lett, 2010, 96, 181102 doi: 10.1063/1.3425890
[30]
Chen J N, Badioli M, Alonso-González P, et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature, 2012, 487, 77 doi: 10.1038/nature11254
[31]
Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012, 487, 82 doi: 10.1038/nature11253
[32]
Ni G X, McLeod A S, Sun Z, et al. Fundamental limits to graphene plasmonics. Nature, 2018, 557, 530 doi: 10.1038/s41586-018-0136-9
[33]
Fang Z Y, Wang Y M, Schlather A E, et al. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett, 2014, 14, 299 doi: 10.1021/nl404042h
[34]
Yan H G, Low T, Zhu W J, et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics, 2013, 7, 394 doi: 10.1038/nphoton.2013.57
[35]
Nikitin A Y, Alonso-González P, Vélez S, et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat Photonics, 2016, 10, 239 doi: 10.1038/nphoton.2016.44
[36]
Yang X X, Zhai F, Hu H, et al. Far-field spectroscopy and near-field optical imaging of coupled plasmon-phonon polaritons in 2D van der waals heterostructures. Adv Mater, 2016, 28, 2931 doi: 10.1002/adma.201505765
[37]
Xu Q Y, Ma T, Danesh M, et al. Effects of edge on graphene plasmons as revealed by infrared nanoimaging. Light: Sci Appl, 2017, 6, e16204 doi: 10.1038/lsa.2016.204
[38]
Liu D H, Chen X S, Hu Y B, et al. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nat Commun, 2018, 9, 193 doi: 10.1038/s41467-017-02627-5
[39]
Chen X Z, Hu D B, Mescall R, et al. Modern scattering-type scanning near-field optical microscopy for advanced material research. Adv Mater, 2019, 31, 1804774 doi: 10.1002/adma.201804774
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3537 Times PDF downloads: 65 Times Cited by: 0 Times

    History

    Received: 07 June 2020 Revised: 27 June 2020 Online: Accepted Manuscript: 30 June 2020Uncorrected proof: 01 July 2020Published: 02 July 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Tian Sun, Weiliang Ma, Donghua Liu, Xiaozhi Bao, Babar Shabbir, Jian Yuan, Shaojuan Li, Dacheng Wei, Qiaoliang Bao. Graphene plasmonic nanoresonators/graphene heterostructures for efficient room-temperature infrared photodetection[J]. Journal of Semiconductors, 2020, 41(7): 072907. doi: 10.1088/1674-4926/41/7/072907 T Sun, W L Ma, D H Liu, X Z Bao, B Shabbir, J Yuan, S J Li, D C Wei, Q L Bao, Graphene plasmonic nanoresonators/graphene heterostructures for efficient room-temperature infrared photodetection[J]. J. Semicond., 2020, 41(7): 072907. doi: 10.1088/1674-4926/41/7/072907.Export: BibTex EndNote
      Citation:
      Tian Sun, Weiliang Ma, Donghua Liu, Xiaozhi Bao, Babar Shabbir, Jian Yuan, Shaojuan Li, Dacheng Wei, Qiaoliang Bao. Graphene plasmonic nanoresonators/graphene heterostructures for efficient room-temperature infrared photodetection[J]. Journal of Semiconductors, 2020, 41(7): 072907. doi: 10.1088/1674-4926/41/7/072907

      T Sun, W L Ma, D H Liu, X Z Bao, B Shabbir, J Yuan, S J Li, D C Wei, Q L Bao, Graphene plasmonic nanoresonators/graphene heterostructures for efficient room-temperature infrared photodetection[J]. J. Semicond., 2020, 41(7): 072907. doi: 10.1088/1674-4926/41/7/072907.
      Export: BibTex EndNote

      Graphene plasmonic nanoresonators/graphene heterostructures for efficient room-temperature infrared photodetection

      doi: 10.1088/1674-4926/41/7/072907
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return