ARTICLES

Low-threshold lasing in a plasmonic laser using nanoplate InGaN/GaN

Ting Zhi1, 2, Tao Tao3, 4, , Xiaoyan Liu1, 2, Junjun Xue1, 2, Jin Wang1, 2, Zhikuo Tao1, 2, Yi Li5, 6, Zili Xie3, 4 and Bin Liu3, 4

+ Author Affiliations

 Corresponding author: Tao Tao, ttao@nju.edu.cn

PDF

Turn off MathJax

Abstract: Plasmonic nanolaser as a new type of ultra-small laser, has gain wide interests due to its breaking diffraction limit of light and fast carrier dynamics characters. Normally, the main problem that need to be solved for plasmonic nanolaser is high loss induced by optical and ohmic losses, which leads to the low quality factor. In this work, InGaN/GaN nanoplate plasmonic nanolaser with large interface area were designed and fabricated, where the overlap between SPs and excitons can be enhanced. The lasing threshold is calculated to be ~6.36 kW/cm2, where the full width at half maximum (FWHM) drops from 27 to 4 nm. And the fast decay time at 502 nm (sharp peak of stimulated lasing) is estimated to be 0.42 ns. Enhanced lasing characters are mainly attributed to the strong confinement of electromagnetic wave in the low refractive index material, which improve the near field coupling between SPs and excitons. Such plasmonic laser should be useful in data storage applications, biological application, light communication, especially for optoelectronic devices integrated into a system on a chip.

Key words: surface plasmonplasmonic laserGaN



[1]
Goh X M, Zheng Y H, Tan S J, et al. Three-dimensional plasmonic stereoscopic prints in full colour. Nat Commun, 2014, 5, 1 doi: 10.1038/ncomms6361
[2]
Murphy E. Enabling optical communication. Nature Photon, 2010, 4, 287 doi: 10.1038/nphoton.2010.107
[3]
Chen Y C, Chen Q S, Fan X D. Lasing in blood. Optica, 2016, 3, 809 doi: 10.1364/OPTICA.3.000809
[4]
Tchernycheva M, Messanvi A, de Luna Bugallo A, et al. Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors. Nano Lett, 2014, 14, 3515 doi: 10.1021/nl501124s
[5]
Hill M T, Oei Y S, Smalbrugge B, et al. Lasing in metallic-coated nanocavities. Nat Photonics, 2007, 1, 589 doi: 10.1038/nphoton.2007.171
[6]
Chang S W, Lin T R, Chuang S L. Theory of plasmonic fabry-perot nanolasers. Opt Express, 2010, 18, 15039 doi: 10.1364/OE.18.015039
[7]
McCall S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers. Appl Phys Lett, 1992, 60, 289 doi: 10.1063/1.106688
[8]
Ma R M, Wei X L, Dai L, et al. Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity. Nano Lett, 2009, 9, 2697 doi: 10.1021/nl901190v
[9]
Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett, 2003, 90, 027402 doi: 10.1103/PhysRevLett.90.027402
[10]
Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461, 629 doi: 10.1038/nature08364
[11]
Ma R M, Oulton R F, Sorger V J, et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat Mater, 2011, 10, 110 doi: 10.1038/nmat2919
[12]
Lu Y J, Wang C Y, Kim J, et al. All-color plasmonic nanolasers with ultralow thresholds: Autotuning mechanism for single-mode lasing. Nano Lett, 2014, 14, 4381 doi: 10.1021/nl501273u
[13]
González-Tudela A, Huidobro P A, Martín-Moreno L, et al. Theory of strong coupling between quantum emitters and propagating surface plasmons. Phys Rev Lett, 2013, 110, 126801 doi: 10.1103/PhysRevLett.110.126801
[14]
Eaton S W, Fu A, Wong A B, et al. Semiconductor nanowire lasers. Nat Rev Mater, 2016, 1, 1 doi: 10.1038/natrevmats.2016.28
[15]
Liu S L, Sheng B W, Wang X Q, et al. Molecular beam epitaxy of single-crystalline aluminum film for low threshold ultraviolet plasmonic nanolasers. Appl Phys Lett, 2018, 112, 231904 doi: 10.1063/1.5033941
[16]
Ma Y G, Guo X, Wu X Q, et al. Semiconductor nanowire lasers. Adv Opt Photon, 2013, 5, 216 doi: 10.1364/AOP.5.000216
[17]
Zhang Q, Li G, Liu X, et al. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat Commun, 2014, 5, 4953 doi: 10.1038/ncomms5953
[18]
Tian P F, McKendry J J D, Gu E D, et al. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays. Opt Express, 2016, 24, 699 doi: 10.1364/OE.24.000699
[19]
Tao T, Zhi T, Liu B, et al. Manipulable and hybridized, ultralow-threshold lasing in a plasmonic laser using elliptical InGaN/GaN nanorods. Adv Funct Mater, 2017, 27, 1703198 doi: 10.1002/adfm.201703198
[20]
Tao T, Zhi T, Liu B, et al. Electron-beam-driven III-nitride plasmonic nanolasers in the deep-UV and visible region. Small, 2020, 16, 1906205 doi: 10.1002/smll.201906205
[21]
Liu B, Smith R, Athanasiou M, et al. Temporally and spatially resolved photoluminescence investigation of ( $11\bar{2}2$ ) semi-polar InGaN/GaN multiple quantum wells grown on nanorod templates. Appl Phys Lett, 2014, 105, 261103 doi: 10.1063/1.4905191
[22]
Liu B, Zhang R, Xie Z L, et al. Nonpolar m-plane thin film GaN and InGaN/GaN light-emitting diodes on LiAlO2(100) substrates. Appl Phys Lett, 2007, 91, 253506 doi: 10.1063/1.2825419
Fig. 1.  (Color online) (a) Schematic of the nano-plate based SPASER sample, where a thin nano-plate atop silver layer separated by a 10 nm SiO2 gap. (b) SEM image of nano-plate arrays. (c) SEM image of SPASER with single nano-plate (200 nm in width, 1 μm in length, 3μm in height).

Fig. 2.  (Color online) (a) The PL spectra of nano-plate without Ag film under different optical pumping power density. (b) Corresponding L–L curve of the PL peak intensity and the FWHM in the log–log scale as a function of optical pumping power density. (c) PL emission of SPASER with increasing the same optical pumping power density. (d) Corresponding L–L curve and FWHM of the dominant lasing peak at 502 nm as a function of the excited power density.

Fig. 3.  (Color online) (a) Simulated electric field distribution of plasmonic laser at 502 nm. (b) Simulated electric field distribution of the Nano-plate gain material without Ag film at 520 nm.

Fig. 4.  (Color online) TRPL spectra of SPASER at the peak of 502 nm (red line) and InGaN/GaN nano-plate at the peak of 520 nm (black line).

[1]
Goh X M, Zheng Y H, Tan S J, et al. Three-dimensional plasmonic stereoscopic prints in full colour. Nat Commun, 2014, 5, 1 doi: 10.1038/ncomms6361
[2]
Murphy E. Enabling optical communication. Nature Photon, 2010, 4, 287 doi: 10.1038/nphoton.2010.107
[3]
Chen Y C, Chen Q S, Fan X D. Lasing in blood. Optica, 2016, 3, 809 doi: 10.1364/OPTICA.3.000809
[4]
Tchernycheva M, Messanvi A, de Luna Bugallo A, et al. Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors. Nano Lett, 2014, 14, 3515 doi: 10.1021/nl501124s
[5]
Hill M T, Oei Y S, Smalbrugge B, et al. Lasing in metallic-coated nanocavities. Nat Photonics, 2007, 1, 589 doi: 10.1038/nphoton.2007.171
[6]
Chang S W, Lin T R, Chuang S L. Theory of plasmonic fabry-perot nanolasers. Opt Express, 2010, 18, 15039 doi: 10.1364/OE.18.015039
[7]
McCall S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers. Appl Phys Lett, 1992, 60, 289 doi: 10.1063/1.106688
[8]
Ma R M, Wei X L, Dai L, et al. Light coupling and modulation in coupled nanowire ring-Fabry-Pérot cavity. Nano Lett, 2009, 9, 2697 doi: 10.1021/nl901190v
[9]
Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett, 2003, 90, 027402 doi: 10.1103/PhysRevLett.90.027402
[10]
Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461, 629 doi: 10.1038/nature08364
[11]
Ma R M, Oulton R F, Sorger V J, et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat Mater, 2011, 10, 110 doi: 10.1038/nmat2919
[12]
Lu Y J, Wang C Y, Kim J, et al. All-color plasmonic nanolasers with ultralow thresholds: Autotuning mechanism for single-mode lasing. Nano Lett, 2014, 14, 4381 doi: 10.1021/nl501273u
[13]
González-Tudela A, Huidobro P A, Martín-Moreno L, et al. Theory of strong coupling between quantum emitters and propagating surface plasmons. Phys Rev Lett, 2013, 110, 126801 doi: 10.1103/PhysRevLett.110.126801
[14]
Eaton S W, Fu A, Wong A B, et al. Semiconductor nanowire lasers. Nat Rev Mater, 2016, 1, 1 doi: 10.1038/natrevmats.2016.28
[15]
Liu S L, Sheng B W, Wang X Q, et al. Molecular beam epitaxy of single-crystalline aluminum film for low threshold ultraviolet plasmonic nanolasers. Appl Phys Lett, 2018, 112, 231904 doi: 10.1063/1.5033941
[16]
Ma Y G, Guo X, Wu X Q, et al. Semiconductor nanowire lasers. Adv Opt Photon, 2013, 5, 216 doi: 10.1364/AOP.5.000216
[17]
Zhang Q, Li G, Liu X, et al. A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat Commun, 2014, 5, 4953 doi: 10.1038/ncomms5953
[18]
Tian P F, McKendry J J D, Gu E D, et al. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays. Opt Express, 2016, 24, 699 doi: 10.1364/OE.24.000699
[19]
Tao T, Zhi T, Liu B, et al. Manipulable and hybridized, ultralow-threshold lasing in a plasmonic laser using elliptical InGaN/GaN nanorods. Adv Funct Mater, 2017, 27, 1703198 doi: 10.1002/adfm.201703198
[20]
Tao T, Zhi T, Liu B, et al. Electron-beam-driven III-nitride plasmonic nanolasers in the deep-UV and visible region. Small, 2020, 16, 1906205 doi: 10.1002/smll.201906205
[21]
Liu B, Smith R, Athanasiou M, et al. Temporally and spatially resolved photoluminescence investigation of ( $11\bar{2}2$ ) semi-polar InGaN/GaN multiple quantum wells grown on nanorod templates. Appl Phys Lett, 2014, 105, 261103 doi: 10.1063/1.4905191
[22]
Liu B, Zhang R, Xie Z L, et al. Nonpolar m-plane thin film GaN and InGaN/GaN light-emitting diodes on LiAlO2(100) substrates. Appl Phys Lett, 2007, 91, 253506 doi: 10.1063/1.2825419
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1523 Times PDF downloads: 64 Times Cited by: 0 Times

    History

    Received: 02 September 2021 Revised: 30 September 2021 Online: Accepted Manuscript: 26 October 2021Uncorrected proof: 27 October 2021Published: 03 December 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ting Zhi, Tao Tao, Xiaoyan Liu, Junjun Xue, Jin Wang, Zhikuo Tao, Yi Li, Zili Xie, Bin Liu. Low-threshold lasing in a plasmonic laser using nanoplate InGaN/GaN[J]. Journal of Semiconductors, 2021, 42(12): 122803. doi: 10.1088/1674-4926/42/12/122803 T Zhi, T Tao, X Y Liu, J J Xue, J Wang, Z K Tao, Y Li, Z L Xie, B Liu, Low-threshold lasing in a plasmonic laser using nanoplate InGaN/GaN[J]. J. Semicond., 2021, 42(12): 122803. doi: 10.1088/1674-4926/42/12/122803.Export: BibTex EndNote
      Citation:
      Ting Zhi, Tao Tao, Xiaoyan Liu, Junjun Xue, Jin Wang, Zhikuo Tao, Yi Li, Zili Xie, Bin Liu. Low-threshold lasing in a plasmonic laser using nanoplate InGaN/GaN[J]. Journal of Semiconductors, 2021, 42(12): 122803. doi: 10.1088/1674-4926/42/12/122803

      T Zhi, T Tao, X Y Liu, J J Xue, J Wang, Z K Tao, Y Li, Z L Xie, B Liu, Low-threshold lasing in a plasmonic laser using nanoplate InGaN/GaN[J]. J. Semicond., 2021, 42(12): 122803. doi: 10.1088/1674-4926/42/12/122803.
      Export: BibTex EndNote

      Low-threshold lasing in a plasmonic laser using nanoplate InGaN/GaN

      doi: 10.1088/1674-4926/42/12/122803
      More Information
      • Author Bio:

        Ting Zhi received Ph.D. degree in solid state electronics from Nanjing University, Nanjing, China in 2016. She joined the College of Electronic and Optical Engineering & College of Microelectronics in Nanjing University of Posts and Telecommunications in 2016, where she is currently a lecturer of electrical science and engineering. Her interests include GaN based optical device, Micro-LED communication, PEC and plasmonic nanolaser devices

        Tao Tao received Ph.D. degree in solid state electronics from Nanjing University, Nanjing, China in 2015. He joined the school of electronic science and engineering in Nanjing University in 2015, where he is currently an associate professor of electrical science and engineering. His interests include growth of III-nitride semiconductors, micro-LED, nano-LED and plasmonic nanolaser devices

      • Corresponding author: ttao@nju.edu.cn
      • Received Date: 2021-09-02
      • Revised Date: 2021-09-30
      • Published Date: 2021-12-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return