REVIEWS

Recent progress in integrated electro-optic frequency comb generation

Hao Sun, Mostafa Khalil, Zifei Wang and Lawrence R. Chen

+ Author Affiliations

 Corresponding author: Lawrence R. Chen, lawrence.chen@mcgill.ca

PDF

Turn off MathJax

Abstract: Optical frequency combs have emerged as an important tool enabling diverse applications from test-and-measurement, including spectroscopy, metrology, precision distance measurement, sensing, as well as optical and microwave waveform synthesis, signal processing, and communications. Several techniques exist to generate optical frequency combs, such as mode-locked lasers, Kerr micro-resonators, and electro-optic modulation. Important characteristics of optical frequency combs include the number of comb lines, their spacing, spectral shape and/or flatness, and intensity noise. While mode-locked lasers and Kerr micro-resonators can be used to obtain a large number of comb lines compared to electro-optic modulation, the latter provides increased flexibility in tuning the comb spacing. For some applications in optical communications and microwave photonics, a high degree of integration may be more desirable over a very large number of comb lines. In this paper, we review recent progress on integrated electro-optic frequency comb generators, including those based on indium phosphide, lithium niobate, and silicon photonics.

Key words: electro-optic frequency comb generationintegrated photonicssilicon photonicsintegrated lithium niobateindium phosphide



[1]
Ye J, Cundiff S T. Femtosecond optical frequency comb: Principle, operation, and applications. Boston: Kluwer Academic Publishers, 2005
[2]
Hargrove L E, Fork R L, Pollack M A. Locking of He –Ne laser modes induced by synchronous intracavity modulation. Appl Phys Lett, 1964, 5, 4 doi: 10.1063/1.1754025
[3]
Hänsch T W. Nobel lecture: Passion for precision. Rev Mod Phys, 2006, 78, 1297 doi: 10.1103/RevModPhys.78.1297
[4]
Hall J L. Nobel lecture: Defining and measuring optical frequencies. Rev Mod Phys, 2006, 78, 1279 doi: 10.1103/RevModPhys.78.1279
[5]
Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology. Nature, 2002, 416, 233 doi: 10.1038/416233a
[6]
Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy. Science, 2016, 354, 600 doi: 10.1126/science.aah6516
[7]
Dutt A, Joshi C, Ji X C, et al. On-chip dual-comb source for spectroscopy. Sci Adv, 2018, 4, e1701858 doi: 10.1126/sciadv.1701858
[8]
Suh M G, Vahala K J. Soliton microcomb range measurement. Science, 2018, 359, 884 doi: 10.1126/science.aao1968
[9]
Wilken T, Curto G L, Probst R A, et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature, 2012, 485, 611 doi: 10.1038/nature11092
[10]
Steinmetz T, Wilken T, Araujo-Hauck C, et al. Laser frequency combs for astronomical observations. Science, 2008, 321, 1335 doi: 10.1126/science.1161030
[11]
Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557, 81 doi: 10.1038/s41586-018-0065-7
[12]
Liang W, Eliyahu D, Ilchenko V S, et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat Commun, 2015, 6, 7957 doi: 10.1038/ncomms8957
[13]
Xu X Y, Wu J Y, Nguyen T G, et al. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt Express, 2018, 26, 2569 doi: 10.1364/OE.26.002569
[14]
Torres-Company V, Weiner A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev, 2014, 8, 368 doi: 10.1002/lpor.201300126
[15]
Imran M, Anandarajah P M, Kaszubowska-Anandarajah A, et al. A survey of optical carrier generation techniques for terabit capacity elastic optical networks. IEEE Commun Surv Tutorials, 2018, 20, 211 doi: 10.1109/COMST.2017.2775039
[16]
Willner A E, Fallahpour A, Zou K H, et al. Optical signal processing aided by optical frequency combs. IEEE J Sel Top Quantum Electron, 2021, 27, 1 doi: 10.1109/JSTQE.2020.3032554
[17]
Lin J C, Sepehrian H, Xu Y L, et al. Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks. IEEE Photonics Technol Lett, 2018, 30, 1495 doi: 10.1109/LPT.2018.2856767
[18]
Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 2000, 288, 635 doi: 10.1126/science.288.5466.635
[19]
Ortigosa-Blanch A, Mora J, Capmany J, et al. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser. Opt Lett, 2006, 31, 709 doi: 10.1364/OL.31.000709
[20]
Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 2019, 568, 373 doi: 10.1038/s41586-019-1008-7
[21]
Stern B, Ji X C, Okawachi Y, et al. Battery-operated integrated frequency comb generator. Nature, 2018, 562, 401 doi: 10.1038/s41586-018-0598-9
[22]
Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332, 555 doi: 10.1126/science.1193968
[23]
Levy J S, Gondarenko A, Foster M A, et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat Photonics, 2010, 4, 37 doi: 10.1038/nphoton.2009.259
[24]
Griffith A G, Lau R K W, Cardenas J, et al. Silicon-chip mid-infrared frequency comb generation. Nat Commun, 2015, 6, 1 doi: 10.1038/ncomms7299
[25]
Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators. Science, 2018, 361, eaan8083 doi: 10.1126/science.aan8083
[26]
Yi X, Yang Q F, Yang K Y, et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2015, 2, 1078 doi: 10.1364/OPTICA.2.001078
[27]
Chen H J, Ji Q X, Wang H, et al. Chaos-assisted two-octave-spanning microcombs. Nat Commun, 2020, 11, 2336 doi: 10.1038/s41467-020-15914-5
[28]
Parriaux A, Hammani K, Millot G. Electro-optic frequency combs. Adv Opt Photon, 2020, 12, 223 doi: 10.1364/AOP.382052
[29]
Gheorma I L, Gopalakrishnan G K. Flat frequency comb generation with an integrated dual-parallel modulator. IEEE Photonics Technol Lett, 2007, 19, 1011 doi: 10.1109/LPT.2007.898766
[30]
Jiang Z, Huang C B, Leaird D E, et al. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat Photonics, 2007, 1, 463 doi: 10.1038/nphoton.2007.139
[31]
Wu R, Supradeepa V R, Long C M, et al. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt Lett, 2010, 35, 3234 doi: 10.1364/OL.35.003234
[32]
Soto M A, Alem M, Amin Shoaie M, et al. Optical sinc-shaped Nyquist pulses of exceptional quality. Nat Commun, 2013, 4, 2898 doi: 10.1038/ncomms3898
[33]
Weimann C, Schindler P C, Palmer R, et al. Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission. Opt Express, 2014, 22, 3629 doi: 10.1364/OE.22.003629
[34]
Demirtzioglou I, Lacava C, Bottrill K R H, et al. Frequency comb generation in a silicon ring resonator modulator. Opt Express, 2018, 26, 790 doi: 10.1364/OE.26.000790
[35]
Buscaino B, Zhang M, Lončar M, et al. Design of efficient resonator-enhanced electro-optic frequency comb generators. J Lightwave Technol, 2020, 38, 1400 doi: 10.1109/JLT.2020.2973884
[36]
Cordette S, Vedadi A, Shoaie M A, et al. Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing. Opt Lett, 2014, 39, 6668 doi: 10.1364/OL.39.006668
[37]
Yu M J, Wang C, Zhang M, et al. Chip-based lithium-niobate frequency combs. IEEE Photonics Technol Lett, 2019, 31, 1894 doi: 10.1109/LPT.2019.2950567
[38]
Ren T H, Zhang M, Wang C, et al. An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photonics Technol Lett, 2019, 31, 889 doi: 10.1109/LPT.2019.2911876
[39]
Shams-Ansari A, Yu M J, Chen Z J, et al. Microring electro-optic frequency comb sources for dual-comb spectroscopy. CLEO: QELS_Fundamental Science, 2019, JTh5B. 8
[40]
Zhang M, Reimer C, He L Y, et al. Microresonator frequency comb generation with simultaneous Kerr and electro-optic nonlinearities. Conference on Lasers and Electro-Optics, 2019
[41]
Xu M Y, He M B, Liu X Y, et al. Integrated lithium niobate modulator and frequency comb generator based on fabry-perot resonators. Conference on Lasers and Electro-Optics, 2020
[42]
Yokota N, Yasaka H. Operation strategy of InP Mach–Zehnder modulators for flat optical frequency comb generation. IEEE J Quantum Electron, 2016, 52, 1 doi: 10.1109/JQE.2016.2583921
[43]
Slavík R, Farwell S G, Wale M J, et al. Compact optical comb generator using InP tunable laser and push-pull modulator. IEEE Photonics Technol Lett, 2015, 27, 217 doi: 10.1109/LPT.2014.2365259
[44]
Andriolli N, Cassese T, Chiesa M, et al. Photonic integrated fully tunable comb generator cascading optical modulators. J Lightwave Technol, 2018, 36, 5685 doi: 10.1109/JLT.2018.2877020
[45]
Bontempi F, Andriolli N, Scotti F, et al. Comb line multiplication in an InP integrated photonic circuit based on cascaded modulators. IEEE J Sel Top Quantum Electron, 2019, 25, 1 doi: 10.1109/JSTQE.2019.2911459
[46]
Nagarjun K P, Jeyaselvan V, Selvaraja S K, et al. Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators. Opt Express, 2018, 26, 10744 doi: 10.1364/OE.26.010744
[47]
Wu X R, Tsang H K. Flat-top frequency comb generation with silicon microring modulator and filter. Conference on Lasers and Electro-Optics, 2017
[48]
Xu Y L, Lin J C, Dubé-Demers R, et al. Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators. Opt Lett, 2018, 43, 1554 doi: 10.1364/OL.43.001554
[49]
Maram R, Naghdi B, Samani A, et al. Silicon microring modulator with a pin-diode-loaded multimode interferometer coupler. 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), 2019
[50]
Khalil M, Maram R, Naghdi B, et al. Electro-optic frequency comb generation using cascaded silicon microring modulators. OSA Advanced Photonics Congress (AP), 2020
[51]
Wang Z F, Ma M, Sun H, et al. Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators. IEEE J Quantum Electron, 2019, 55, 1 doi: 10.1109/JQE.2019.2948152
[52]
Liu S Q, Wu K, Zhou L J, et al. Optical frequency comb generation and microwave synthesis with integrated cascaded silicon modulators. Conference on Lasers and Electro-Optics, 2018
[53]
Liu S Q, Wu K, Zhou L J, et al. Optical frequency comb and nyquist pulse generation with integrated silicon modulators. IEEE J Sel Top Quantum Electron, 2020, 26, 1 doi: 10.1109/JSTQE.2020.2996962
[54]
Dubé-Demers R, LaRochelle S, Shi W. Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator. Optica, 2016, 3, 622 doi: 10.1364/OPTICA.3.000622
[55]
Marpaung D, Roeloffzen C, Heideman R, et al. Integrated microwave photonics. Laser Photonics Rev, 2013, 7, 506 doi: 10.1002/lpor.201200032
[56]
Ogiso Y, Ozaki J, Ueda Y, et al. Over 67 GHz bandwidth and 1.5 V vπ InP-based optical IQ modulator with n-i-p-n heterostructure. J Lightwave Technol, 2017, 35, 1450 doi: 10.1109/JLT.2016.2639542
[57]
Williams K A, Bente E A J M, Heiss D, et al. InP photonic circuits using generic integration. Photon Res, 2015, 3, B60 doi: 10.1364/PRJ.3.000B60
[58]
Kish F A, Welch D, Nagarajan R, et al. Current status of large-scale InP photonic integrated circuits. IEEE J Quantum Electron, 2011, 7, 1470 doi: 10.1109/JSTQE.2011.2114873
[59]
Bazzan M, Sada C. Optical waveguides in lithium niobate: Recent developments and applications. Appl Phys Rev, 2015, 2, 040603 doi: 10.1063/1.4931601
[60]
Wu R B, Wang M, Xu J, et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials, 2018, 8, 910 doi: 10.3390/nano8110910
[61]
Zhang M, Wang C, Cheng R, et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 2017, 4, 1536 doi: 10.1364/OPTICA.4.001536
[62]
Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562, 101 doi: 10.1038/s41586-018-0551-y
[63]
He M B, Xu M Y, Ren Y X, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics, 2019, 13, 359 doi: 10.1038/s41566-019-0378-6
[64]
Xu D X, Densmore A, Waldron P, et al. High bandwidth SOI photonic wire ring resonators using MMI couplers. Opt Express, 2007, 15, 3149 doi: 10.1364/OE.15.003149
[65]
Jacques M, Xing Z P, Samani A, et al. 240 gbit/s silicon photonic Mach-Zehnder modulator enabled by two 2.3-Vpp drivers. J Lightwave Technol, 2020, 38, 2877 doi: 10.1109/JLT.2020.2985589
[66]
Pérez D, Gasulla I, Capmany J. Programmable multifunctional integrated nanophotonics. Nanophotonics, 2018, 7, 1351 doi: 10.1515/nanoph-2018-0051
[67]
Baghban M A, Schollhammer J, Errando-Herranz C, et al. Bragg gratings in thin-film LiNbO3 waveguides. Opt Express, 2017, 25, 32323 doi: 10.1364/OE.25.032323
[68]
Pohl D, Kaufmann F, Escalé M R, et al. Tunable bragg grating filters and resonators in lithium niobate-on-insulator waveguides. Conference on Lasers and Electro-Optics, 2020
Fig. 1.  (Color online) (a) Generic setup for OFC generation. (b) Schematic of a DD-MZM.

Fig. 2.  (Color online) (a) Schematic of an intracavity MRM. (b) Transmission spectrum of an MRM (the input laser wavelength is shown in red for illustration).

Fig. 3.  (Color online) OFC generation using different driving conditions: (a) $ {f}_{1}=3{f}_{2} $, (b) $ {f}_{1}=4{f}_{2} $, and (c) $ {f}_{1}=2{f}_{2} $. The blue and red lines depict the output from the first and second modulator, respectively.

Fig. 4.  (Color online) Schematic of the InP-based OFC generator in Refs. [44, 45]. SMF: single mode fiber; MMI: multimode interferometer; DBR: distributed Bragg reflector; PM: phase modulator; SOA: semiconductor optical amplifier.

Fig. 5.  (Color online) Typical experimental setup for OFC generation using (a) single MRM, (b) cascaded MRMs.

Fig. 6.  (Color online) (a) Schematic of the proposed MRM. (b) Cross-section of the PN junction of the ring. (c) Microscopic image of one MRM. (d) S11 and S21 measurements of one MRM.

Fig. 7.  (Color online) Transmission spectrum of one MRM in (a) forward bias and (b) reverse bias.

Fig. 8.  (Color online) (a) Experimental setup. (b) Driving MRM 1 with 10 GHz and MRM 2 with 5 GHz. (c) Driving MRM 1 with 5 GHz and MRM 2 with 15 GHz. (d) Comb spectrum demonstrating 5 lines when driving MRM 1 at 20 GHz and MRM 2 at 10 GHz. (e) Temporal waveform of (b). (f) Temporal waveform of (c).

Fig. 9.  (Color online) Schematic of cascaded MZMs for OFC generation.

Fig. 10.  (Color online) Schematic of integrated cascaded MZM and PM (after Ref. [48]) and cascaded MZMs for EO OFC (after Ref. [53]).

Fig. 11.  (Color online) Schematic of the OFC generator in silicon photonics.

Fig. 12.  (Color online) Experimental results of the OFC in silicon photonics. (a–c) the OFCs with spacing from 5, 7.5, and 10 GHz; left: spectral profile; right: temporal signals.

Table 1.   Parameters of the TW-MZM[51].

ParameterValueParameterValue
h1220 nmWN+0.81 μm
h290 nmWN0.39 μm
h3 2 μm WP++ 28 μm
W 500 nm WP+ 0.83 μm
WN++5.2 μmWP0.37 μm
DownLoad: CSV

Table 2.   Summary of integrated EO OFC generation results.

ReferenceSchematicNumber of comb linesComb spacing (GHz)Flatness(dB)$ {V}_{\pi } $(V)${V}_{\pi }\cdot L$ (V·cm)Insertion loss (dB)
InP
[42]Single MZM912.5< 0.772.3N/AN/A
[43]On-chip laser, MZM29/510/20< 32.7N/A6
[44]On-chip laser, MZM +
2 PMs
28/115/10< 5/1050.5N/A
[45]Same as Ref. [44]44/171/3< 350.5N/A
LNOI
[38]Single PM> 4030~ 10 dB for the central 30 comb lines4.59< 1
[41]PM with FP resonator1816.3amplitude roll off of
18 dB/nm
N/AN/A1.4
[20]PM with microring resonator> 90010.453amplitude roll off of
1 dB/nm
8.35.1N/A
SOI
[34]Single MRM510~ 0.71N/A5.5
[47]MRM + microring filter1210< 0.86N/AN/AN/A
[48]Cascaded MRM510~ 8N/AN/A13
[50]Cascaded MRM510~ 4N/A1.626
[17]DD-MZM520~ 962.7N/A
[52]MZM + PM155< 630.9N/A
[53]Cascaded MZM95< 1.830.920
[51]Cascaded MZM95/7.5/10< 3.8/4.7/6.5104.224
DownLoad: CSV
[1]
Ye J, Cundiff S T. Femtosecond optical frequency comb: Principle, operation, and applications. Boston: Kluwer Academic Publishers, 2005
[2]
Hargrove L E, Fork R L, Pollack M A. Locking of He –Ne laser modes induced by synchronous intracavity modulation. Appl Phys Lett, 1964, 5, 4 doi: 10.1063/1.1754025
[3]
Hänsch T W. Nobel lecture: Passion for precision. Rev Mod Phys, 2006, 78, 1297 doi: 10.1103/RevModPhys.78.1297
[4]
Hall J L. Nobel lecture: Defining and measuring optical frequencies. Rev Mod Phys, 2006, 78, 1279 doi: 10.1103/RevModPhys.78.1279
[5]
Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology. Nature, 2002, 416, 233 doi: 10.1038/416233a
[6]
Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy. Science, 2016, 354, 600 doi: 10.1126/science.aah6516
[7]
Dutt A, Joshi C, Ji X C, et al. On-chip dual-comb source for spectroscopy. Sci Adv, 2018, 4, e1701858 doi: 10.1126/sciadv.1701858
[8]
Suh M G, Vahala K J. Soliton microcomb range measurement. Science, 2018, 359, 884 doi: 10.1126/science.aao1968
[9]
Wilken T, Curto G L, Probst R A, et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature, 2012, 485, 611 doi: 10.1038/nature11092
[10]
Steinmetz T, Wilken T, Araujo-Hauck C, et al. Laser frequency combs for astronomical observations. Science, 2008, 321, 1335 doi: 10.1126/science.1161030
[11]
Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557, 81 doi: 10.1038/s41586-018-0065-7
[12]
Liang W, Eliyahu D, Ilchenko V S, et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat Commun, 2015, 6, 7957 doi: 10.1038/ncomms8957
[13]
Xu X Y, Wu J Y, Nguyen T G, et al. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt Express, 2018, 26, 2569 doi: 10.1364/OE.26.002569
[14]
Torres-Company V, Weiner A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev, 2014, 8, 368 doi: 10.1002/lpor.201300126
[15]
Imran M, Anandarajah P M, Kaszubowska-Anandarajah A, et al. A survey of optical carrier generation techniques for terabit capacity elastic optical networks. IEEE Commun Surv Tutorials, 2018, 20, 211 doi: 10.1109/COMST.2017.2775039
[16]
Willner A E, Fallahpour A, Zou K H, et al. Optical signal processing aided by optical frequency combs. IEEE J Sel Top Quantum Electron, 2021, 27, 1 doi: 10.1109/JSTQE.2020.3032554
[17]
Lin J C, Sepehrian H, Xu Y L, et al. Frequency comb generation using a CMOS compatible SiP DD-MZM for flexible networks. IEEE Photonics Technol Lett, 2018, 30, 1495 doi: 10.1109/LPT.2018.2856767
[18]
Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 2000, 288, 635 doi: 10.1126/science.288.5466.635
[19]
Ortigosa-Blanch A, Mora J, Capmany J, et al. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser. Opt Lett, 2006, 31, 709 doi: 10.1364/OL.31.000709
[20]
Zhang M, Buscaino B, Wang C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 2019, 568, 373 doi: 10.1038/s41586-019-1008-7
[21]
Stern B, Ji X C, Okawachi Y, et al. Battery-operated integrated frequency comb generator. Nature, 2018, 562, 401 doi: 10.1038/s41586-018-0598-9
[22]
Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332, 555 doi: 10.1126/science.1193968
[23]
Levy J S, Gondarenko A, Foster M A, et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat Photonics, 2010, 4, 37 doi: 10.1038/nphoton.2009.259
[24]
Griffith A G, Lau R K W, Cardenas J, et al. Silicon-chip mid-infrared frequency comb generation. Nat Commun, 2015, 6, 1 doi: 10.1038/ncomms7299
[25]
Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators. Science, 2018, 361, eaan8083 doi: 10.1126/science.aan8083
[26]
Yi X, Yang Q F, Yang K Y, et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2015, 2, 1078 doi: 10.1364/OPTICA.2.001078
[27]
Chen H J, Ji Q X, Wang H, et al. Chaos-assisted two-octave-spanning microcombs. Nat Commun, 2020, 11, 2336 doi: 10.1038/s41467-020-15914-5
[28]
Parriaux A, Hammani K, Millot G. Electro-optic frequency combs. Adv Opt Photon, 2020, 12, 223 doi: 10.1364/AOP.382052
[29]
Gheorma I L, Gopalakrishnan G K. Flat frequency comb generation with an integrated dual-parallel modulator. IEEE Photonics Technol Lett, 2007, 19, 1011 doi: 10.1109/LPT.2007.898766
[30]
Jiang Z, Huang C B, Leaird D E, et al. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat Photonics, 2007, 1, 463 doi: 10.1038/nphoton.2007.139
[31]
Wu R, Supradeepa V R, Long C M, et al. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt Lett, 2010, 35, 3234 doi: 10.1364/OL.35.003234
[32]
Soto M A, Alem M, Amin Shoaie M, et al. Optical sinc-shaped Nyquist pulses of exceptional quality. Nat Commun, 2013, 4, 2898 doi: 10.1038/ncomms3898
[33]
Weimann C, Schindler P C, Palmer R, et al. Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission. Opt Express, 2014, 22, 3629 doi: 10.1364/OE.22.003629
[34]
Demirtzioglou I, Lacava C, Bottrill K R H, et al. Frequency comb generation in a silicon ring resonator modulator. Opt Express, 2018, 26, 790 doi: 10.1364/OE.26.000790
[35]
Buscaino B, Zhang M, Lončar M, et al. Design of efficient resonator-enhanced electro-optic frequency comb generators. J Lightwave Technol, 2020, 38, 1400 doi: 10.1109/JLT.2020.2973884
[36]
Cordette S, Vedadi A, Shoaie M A, et al. Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing. Opt Lett, 2014, 39, 6668 doi: 10.1364/OL.39.006668
[37]
Yu M J, Wang C, Zhang M, et al. Chip-based lithium-niobate frequency combs. IEEE Photonics Technol Lett, 2019, 31, 1894 doi: 10.1109/LPT.2019.2950567
[38]
Ren T H, Zhang M, Wang C, et al. An integrated low-voltage broadband lithium niobate phase modulator. IEEE Photonics Technol Lett, 2019, 31, 889 doi: 10.1109/LPT.2019.2911876
[39]
Shams-Ansari A, Yu M J, Chen Z J, et al. Microring electro-optic frequency comb sources for dual-comb spectroscopy. CLEO: QELS_Fundamental Science, 2019, JTh5B. 8
[40]
Zhang M, Reimer C, He L Y, et al. Microresonator frequency comb generation with simultaneous Kerr and electro-optic nonlinearities. Conference on Lasers and Electro-Optics, 2019
[41]
Xu M Y, He M B, Liu X Y, et al. Integrated lithium niobate modulator and frequency comb generator based on fabry-perot resonators. Conference on Lasers and Electro-Optics, 2020
[42]
Yokota N, Yasaka H. Operation strategy of InP Mach–Zehnder modulators for flat optical frequency comb generation. IEEE J Quantum Electron, 2016, 52, 1 doi: 10.1109/JQE.2016.2583921
[43]
Slavík R, Farwell S G, Wale M J, et al. Compact optical comb generator using InP tunable laser and push-pull modulator. IEEE Photonics Technol Lett, 2015, 27, 217 doi: 10.1109/LPT.2014.2365259
[44]
Andriolli N, Cassese T, Chiesa M, et al. Photonic integrated fully tunable comb generator cascading optical modulators. J Lightwave Technol, 2018, 36, 5685 doi: 10.1109/JLT.2018.2877020
[45]
Bontempi F, Andriolli N, Scotti F, et al. Comb line multiplication in an InP integrated photonic circuit based on cascaded modulators. IEEE J Sel Top Quantum Electron, 2019, 25, 1 doi: 10.1109/JSTQE.2019.2911459
[46]
Nagarjun K P, Jeyaselvan V, Selvaraja S K, et al. Generation of tunable, high repetition rate optical frequency combs using on-chip silicon modulators. Opt Express, 2018, 26, 10744 doi: 10.1364/OE.26.010744
[47]
Wu X R, Tsang H K. Flat-top frequency comb generation with silicon microring modulator and filter. Conference on Lasers and Electro-Optics, 2017
[48]
Xu Y L, Lin J C, Dubé-Demers R, et al. Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators. Opt Lett, 2018, 43, 1554 doi: 10.1364/OL.43.001554
[49]
Maram R, Naghdi B, Samani A, et al. Silicon microring modulator with a pin-diode-loaded multimode interferometer coupler. 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), 2019
[50]
Khalil M, Maram R, Naghdi B, et al. Electro-optic frequency comb generation using cascaded silicon microring modulators. OSA Advanced Photonics Congress (AP), 2020
[51]
Wang Z F, Ma M, Sun H, et al. Optical frequency comb generation using CMOS compatible cascaded Mach–Zehnder modulators. IEEE J Quantum Electron, 2019, 55, 1 doi: 10.1109/JQE.2019.2948152
[52]
Liu S Q, Wu K, Zhou L J, et al. Optical frequency comb generation and microwave synthesis with integrated cascaded silicon modulators. Conference on Lasers and Electro-Optics, 2018
[53]
Liu S Q, Wu K, Zhou L J, et al. Optical frequency comb and nyquist pulse generation with integrated silicon modulators. IEEE J Sel Top Quantum Electron, 2020, 26, 1 doi: 10.1109/JSTQE.2020.2996962
[54]
Dubé-Demers R, LaRochelle S, Shi W. Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator. Optica, 2016, 3, 622 doi: 10.1364/OPTICA.3.000622
[55]
Marpaung D, Roeloffzen C, Heideman R, et al. Integrated microwave photonics. Laser Photonics Rev, 2013, 7, 506 doi: 10.1002/lpor.201200032
[56]
Ogiso Y, Ozaki J, Ueda Y, et al. Over 67 GHz bandwidth and 1.5 V vπ InP-based optical IQ modulator with n-i-p-n heterostructure. J Lightwave Technol, 2017, 35, 1450 doi: 10.1109/JLT.2016.2639542
[57]
Williams K A, Bente E A J M, Heiss D, et al. InP photonic circuits using generic integration. Photon Res, 2015, 3, B60 doi: 10.1364/PRJ.3.000B60
[58]
Kish F A, Welch D, Nagarajan R, et al. Current status of large-scale InP photonic integrated circuits. IEEE J Quantum Electron, 2011, 7, 1470 doi: 10.1109/JSTQE.2011.2114873
[59]
Bazzan M, Sada C. Optical waveguides in lithium niobate: Recent developments and applications. Appl Phys Rev, 2015, 2, 040603 doi: 10.1063/1.4931601
[60]
Wu R B, Wang M, Xu J, et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials, 2018, 8, 910 doi: 10.3390/nano8110910
[61]
Zhang M, Wang C, Cheng R, et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 2017, 4, 1536 doi: 10.1364/OPTICA.4.001536
[62]
Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562, 101 doi: 10.1038/s41586-018-0551-y
[63]
He M B, Xu M Y, Ren Y X, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics, 2019, 13, 359 doi: 10.1038/s41566-019-0378-6
[64]
Xu D X, Densmore A, Waldron P, et al. High bandwidth SOI photonic wire ring resonators using MMI couplers. Opt Express, 2007, 15, 3149 doi: 10.1364/OE.15.003149
[65]
Jacques M, Xing Z P, Samani A, et al. 240 gbit/s silicon photonic Mach-Zehnder modulator enabled by two 2.3-Vpp drivers. J Lightwave Technol, 2020, 38, 2877 doi: 10.1109/JLT.2020.2985589
[66]
Pérez D, Gasulla I, Capmany J. Programmable multifunctional integrated nanophotonics. Nanophotonics, 2018, 7, 1351 doi: 10.1515/nanoph-2018-0051
[67]
Baghban M A, Schollhammer J, Errando-Herranz C, et al. Bragg gratings in thin-film LiNbO3 waveguides. Opt Express, 2017, 25, 32323 doi: 10.1364/OE.25.032323
[68]
Pohl D, Kaufmann F, Escalé M R, et al. Tunable bragg grating filters and resonators in lithium niobate-on-insulator waveguides. Conference on Lasers and Electro-Optics, 2020
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4570 Times PDF downloads: 241 Times Cited by: 0 Times

    History

    Received: 28 October 2020 Revised: 24 January 2021 Online: Accepted Manuscript: 16 March 2021Uncorrected proof: 19 March 2021Published: 12 April 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hao Sun, Mostafa Khalil, Zifei Wang, Lawrence R. Chen. Recent progress in integrated electro-optic frequency comb generation[J]. Journal of Semiconductors, 2021, 42(4): 041301. doi: 10.1088/1674-4926/42/4/041301 H Sun, M Khalil, Z F Wang, L R Chen, Recent progress in integrated electro-optic frequency comb generation[J]. J. Semicond., 2021, 42(4): 041301. doi: 10.1088/1674-4926/42/4/041301.Export: BibTex EndNote
      Citation:
      Hao Sun, Mostafa Khalil, Zifei Wang, Lawrence R. Chen. Recent progress in integrated electro-optic frequency comb generation[J]. Journal of Semiconductors, 2021, 42(4): 041301. doi: 10.1088/1674-4926/42/4/041301

      H Sun, M Khalil, Z F Wang, L R Chen, Recent progress in integrated electro-optic frequency comb generation[J]. J. Semicond., 2021, 42(4): 041301. doi: 10.1088/1674-4926/42/4/041301.
      Export: BibTex EndNote

      Recent progress in integrated electro-optic frequency comb generation

      doi: 10.1088/1674-4926/42/4/041301
      More Information
      • Author Bio:

        Hao Sun received the B.S. degree in physics from Shandong University in 2015 and the M.Eng. degree from the Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China, in 2018. He is currently pursuing the Ph.D. degree in electrical and computer engineering with McGill University, Montreal, QC, Canada. His research interests include silicon photonics, optical communications, and microwave photonics

        Lawrence R. Chen has been with the Department of Electrical and Computer Engineering at McGill University since 2000. His research interests include optical communications, silicon photonics, and microwave photonics, as well as engineering education and teaching pedagogy

      • Corresponding author: lawrence.chen@mcgill.ca
      • Received Date: 2020-10-28
      • Revised Date: 2021-01-24
      • Published Date: 2021-04-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return