REVIEWS

Photonic radio frequency channelizers based on Kerr optical micro-combs

Mengxi Tan1, Xingyuan Xu2, Jiayang Wu1, Thach G. Nguyen3, Sai T. Chu4, Brent E. Little5, Roberto Morandotti6, 7, Arnan Mitchell3 and David J. Moss1,

+ Author Affiliations

 Corresponding author: David J. Moss, dmoss@swin.edu.au

PDF

Turn off MathJax

Abstract: We review recent work on broadband RF channelizers based on integrated optical frequency Kerr micro-combs combined with passive micro-ring resonator filters, with microcombs having channel spacings of 200 and 49 GHz. This approach to realizing RF channelizers offers reduced complexity, size, and potential cost for a wide range of applications to microwave signal detection.

Key words: microwave photonicsignal channelizationintegrated optical frequency comb



[1]
Radic S, Moss D, Eggleton B J. Nonlinear optics in communications: From crippling impairment to ultrafast tools. In: Optical Fiber Telecommunications V: Components and Sub-systems. Oxford, UK: Academic Press, 2008, 759
[2]
Leuthold J, Koos C, Freude W. Nonlinear silicon photonics. Nat Photonics, 2010, 4, 535 doi: 10.1038/nphoton.2010.185
[3]
Li L, Patki P G, Kwon Y B, et al. All-optical regenerator of multi-channel signals. Nat Commun, 2017, 8, 884 doi: 10.1038/s41467-017-00874-0
[4]
Li F, Vo T D, Husko C, et al. All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire. Opt Express, 2011, 19, 20364 doi: 10.1364/OE.19.020364
[5]
Li F, Pelusi M, Eggleton B J, et al. Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire. Opt Express, 2010, 18, 3905 doi: 10.1364/OE.18.003905
[6]
Ji H, Galili M, Hu H, et al. 1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide. IEEE Photonics Technol Lett, 2010, 22, 1762 doi: 10.1109/LPT.2010.2084566
[7]
Monat C, Grillet C, Corcoran B, et al. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics. Opt Express, 2010, 18, 6831 doi: 10.1364/OE.18.006831
[8]
Corcoran B, Monat C, Pelusi M, et al. Optical signal processing on a silicon chip at 640Gb/s using slow-light. Opt Express, 2010, 18, 7770 doi: 10.1364/OE.18.007770
[9]
Ta’eed V G, Shokooh-Saremi M, Fu L B, et al. Integrated all-optical pulse regenerator in chalcogenide waveguides. Opt Lett, 2005, 30, 2900 doi: 10.1364/OL.30.002900
[10]
Rochette M, Kutz J N, Blows J L, et al. Bit-error-ratio improvement with 2R optical regenerators. IEEE Photonics Technol Lett, 2005, 17, 908 doi: 10.1109/LPT.2005.843950
[11]
Ferrera M, Reimer C, Pasquazi A, et al. CMOS compatible integrated all-optical radio frequency spectrum analyzer. Opt Express, 2014, 22, 21488 doi: 10.1364/OE.22.021488
[12]
Monat C, Grillet C, Collins M, et al. Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide. Nat Commun, 2014, 5, 3246 doi: 10.1038/ncomms4246
[13]
Li F, Pelusi M, Xu D X, et al. All-optical wavelength conversion for 10 Gb/s DPSK signals in a silicon ring resonator. Opt Express, 2011, 19, 22410 doi: 10.1364/OE.19.022410
[14]
Vo T D, Corcoran B, Schroder J, et al. Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals. J Lightwave Technol, 2011, 29, 1790 doi: 10.1109/JLT.2011.2141974
[15]
Ferrera M, Park Y, Razzari L, et al. All-optical 1st and 2nd order integration on a chip. Opt Express, 2011, 19, 23153 doi: 10.1364/OE.19.023153
[16]
Corcoran B, Vo T D, Pelusi M D, et al. Silicon nanowire based radio-frequency spectrum analyzer. Opt Express, 2010, 18, 20190 doi: 10.1364/OE.18.020190
[17]
Corcoran B, Monat C, Grillet C, et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat Photonics, 2009, 3, 206 doi: 10.1038/nphoton.2009.28
[18]
Moss D J, van Driel H M, Sipe J E. Dispersion in the anisotropy of optical third-harmonic generation in silicon. Opt Lett, 1989, 14, 57 doi: 10.1364/OL.14.000057
[19]
Sipe J, Moss D, van Driel H. Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals. Phys Rev B, 1987, 35, 1129 doi: 10.1103/PhysRevB.35.1129
[20]
Moss D J, Ghahramani E, Sipe J E, et al. Band-structure calculation of dispersion and anisotropy in χ→(3) for third-harmonic generation in Si, Ge, and GaAs. Phys Rev B, 1990, 41, 1542 doi: 10.1103/PhysRevB.41.1542
[21]
Moss D J, van Driel H M, Sipe J E. Third harmonic generation as a structural diagnostic of ion-implanted amorphous and crystalline silicon. Appl Phys Lett, 1986, 48, 1150 doi: 10.1063/1.96453
[22]
Moss D J, Fu L, Littler I, et al. Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides. Electron Lett, 2005, 41, 320 doi: 10.1049/el:20058051
[23]
Lamont M R E, Rochette M, Moss D J, et al. Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration. IEEE Photonics Technol Lett, 2006, 18, 1185 doi: 10.1109/LPT.2006.874718
[24]
Tuniz A, Brawley G, Moss D J, et al. Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber. Opt Express, 2008, 16, 18524 doi: 10.1364/OE.16.018524
[25]
Pelusi M D, Luan F, Magi E, et al. High bit rate all-optical signal processing in a fiber photonic wire. Opt Express, 2008, 16, 11506 doi: 10.1364/OE.16.011506
[26]
Lee M W, Grillet C, Smith C L C, et al. Photosensitive post tuning of chalcogenide photonic crystal waveguides. Opt Express, 2007, 15, 1277 doi: 10.1364/OE.15.001277
[27]
Tomljenovic-Hanic S, Steel M J, Martijn de Sterke C, et al. High-Q cavities in photosensitive photonic crystals. Opt Lett, 2007, 32, 542 doi: 10.1364/OL.32.000542
[28]
Grillet C, Monat C, Smith C L, et al. Nanowire coupling to photonic crystal nanocavities for single photon sources. Opt Express, 2007, 15, 1267 doi: 10.1364/OE.15.001267
[29]
Ta'Eed V, Baker N J, Fu L B, et al. Ultrafast all-optical chalcogenide glass photonic circuits. Opt Express, 2007, 15, 9205 doi: 10.1364/OE.15.009205
[30]
Freeman D, Grillet C, Lee M W, et al. Chalcogenide glass photonic crystals. Photonics and Nanostructures-Fundamentals and Applications, 2008, 6, 3
[31]
Grillet C, Freeman D, Luther-Davies B, et al. Characterization and modeling of Fano resonances in chalcogenide glass photonic crystal membranes. 2006 Conf Lasers Electro-Opt 2006 Quantum Electron Laser Sci Conf, 2006, 1
[32]
Ta'Eed V G, Shokooh-Saremi M, Fu L, et al. Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides. IEEE J Sel Top Quantum Electron, 2006, 12, 360 doi: 10.1109/JSTQE.2006.872727
[33]
Shokooh-Saremi M, Ta'Eed V G, Baker N J, et al. High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer. J Opt Soc Am B, 2006, 23, 1323 doi: 10.1364/JOSAB.23.001323
[34]
Lamont M R E, Ta'Eed V G, Roelens M A F, et al. Error-free wavelength conversion via cross-phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide. Electron Lett, 2007, 43, 945 doi: 10.1049/el:20071470
[35]
Ikeda K, Saperstein R E, Alic N, et al. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt Express, 2008, 16, 12987 doi: 10.1364/OE.16.012987
[36]
Levy J S, Gondarenko A, Foster M A, et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat Photonics, 2010, 4, 37 doi: 10.1038/nphoton.2009.259
[37]
Razzari L, Duchesne D, Ferrera M, et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat Photonics, 2010, 4, 41 doi: 10.1038/nphoton.2009.236
[38]
Moss D J, Morandotti R, Gaeta A L, et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat Photonics, 2013, 7, 597 doi: 10.1038/nphoton.2013.183
[39]
Ferrera M, Razzari L, Duchesne D, et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photonics, 2008, 2, 737 doi: 10.1038/nphoton.2008.228
[40]
Pasquazi A, Peccianti M, Park Y, et al. Sub-picosecond phase-sensitive optical pulse characterization on a chip. Nat Photonics, 2011, 5, 618 doi: 10.1038/nphoton.2011.199
[41]
Duchesne D, Peccianti M, Lamont M R E, et al. Supercontinuum generation in a high index doped silica glass spiral waveguide. Opt Express, 2010, 18, 923 doi: 10.1364/OE.18.000923
[42]
Ferrera M, Park Y, Razzari L, et al. On-chip CMOS-compatible all-optical integrator. Nat Commun, 2010, 1, 29 doi: 10.1038/ncomms1028
[43]
Pasquazi A, Ahmad R, Rochette M, et al. All-optical wavelength conversion in an integrated ring resonator. Opt Express, 2010, 18, 3858 doi: 10.1364/OE.18.003858
[44]
Pasquazi A, Park Y, Azaña J, et al. Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide. Opt Express, 2010, 18, 7634 doi: 10.1364/OE.18.007634
[45]
Peccianti M, Ferrera M, Razzari L, et al. Subpicosecond optical pulse compression via an integrated nonlinear chirper. Opt Express, 2010, 18, 7625 doi: 10.1364/OE.18.007625
[46]
Duchesne D, Ferrera M, Razzari L, et al. Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides. Opt Express, 2009, 17, 1865 doi: 10.1364/OE.17.001865
[47]
Pasquazi A, Peccianti M, Razzari L, et al. Micro-combs: A novel generation of optical sources. Phys Rep, 2018, 729, 1 doi: 10.1016/j.physrep.2017.08.004
[48]
Del’Haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator. Nature, 2007, 450, 1214 doi: 10.1038/nature06401
[49]
Peccianti M, Pasquazi A, Park Y, et al. Demonstration of an ultrafast nonlinear microcavity modelocked laser. Nat Commun, 2012, 3, 765 doi: 10.1038/ncomms1762
[50]
Kues M, Reimer C, Wetzel B, et al. Passively mode-locked laser with an ultra-narrow spectral width. Nat Photonics, 2017, 11, 159 doi: 10.1038/nphoton.2016.271
[51]
Pasquazi A, Caspani L, Peccianti M, et al. Self-locked optical parametric oscillation in a CMOS compatible microring resonator: A route to robust optical frequency comb generation on a chip. Opt Express, 2013, 21, 13333 doi: 10.1364/OE.21.013333
[52]
Pasquazi A, Peccianti M, Little B E, et al. Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator. Opt Express, 2012, 20, 27355 doi: 10.1364/OE.20.027355
[53]
Reimer C, Caspani L, Clerici M, et al. Integrated frequency comb source of heralded single photons. Opt Express, 2014, 22, 6535 doi: 10.1364/OE.22.006535
[54]
Reimer C, Kues M, Caspani L, et al. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nat Commun, 2015, 6, 8236 doi: 10.1038/ncomms9236
[55]
Caspani L, Reimer C, Kues M, et al. Multifrequency sources of quantum correlated photon pairs on-chip: A path toward integrated Quantum Frequency Combs. Nanophotonics, 2016, 5, 351 doi: 10.1515/nanoph-2016-0029
[56]
Reimer C, Kues M, Roztocki P, et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 2016, 351, 1176 doi: 10.1126/science.aad8532
[57]
Kues M, Reimer C, Roztocki P, et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546, 622 doi: 10.1038/nature22986
[58]
Roztocki P, Kues M, Reimer C, et al. Practical system for the generation of pulsed quantum frequency combs. Opt Express, 2017, 25, 18940 doi: 10.1364/OE.25.018940
[59]
Zhang Y B, Kues M, Roztocki P, et al. Induced photon correlations through the overlap of two four-wave mixing processes in integrated cavities. Laser Photonics Rev, 2020, 14, 2000128 doi: 10.1002/lpor.202000128
[60]
Kues M, Reimer C, Lukens J M, et al. Quantum optical microcombs. Nature Photon, 2019, 13, 170 doi: 10.1038/s41566-019-0363-0
[61]
Reimer C, Sciara S, Roztocki P, et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat Phys, 2019, 15, 148 doi: 10.1038/s41567-018-0347-x
[62]
Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 2017, 546, 274 doi: 10.1038/nature22387
[63]
Pfeifle J, Brasch V, Lauermann M, et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat Photonics, 2014, 8, 375 doi: 10.1038/nphoton.2014.57
[64]
Corcoran B, Tan M X, Xu X Y, et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat Commun, 2020, 11, 1 doi: 10.1038/s41467-020-16265-x
[65]
Xu X Y, Tan M X, Corcoran B, et al. Photonic perceptron based on a kerr microcomb for high-speed, scalable, optical neural networks. Laser Photonics Rev, 2020, 14, 2000070 doi: 10.1002/lpor.202000070
[66]
Xu X Y, Tan M X, Corcoran B, et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 2021, 589, 44 doi: 10.1038/s41586-020-03063-0
[67]
Feldmann J, Youngblood N, Karpov M, et al. Parallel convolution processing using an integrated photonic tensor core. arXiv preprint arXiv: 2002.00281, 2020
[68]
Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557, 81 doi: 10.1038/s41586-018-0065-7
[69]
Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators. Science, 2018, 361, eaan8083 doi: 10.1126/science.aan8083
[70]
Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs. Nat Photonics, 2019, 13, 158 doi: 10.1038/s41566-019-0358-x
[71]
Del’Haye P, Herr T, Gavartin E, et al. Octave spanning tunable frequency comb from a microresonator. Phys Rev Lett, 2011, 107, 063901 doi: 10.1103/PhysRevLett.107.063901
[72]
Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332, 555 doi: 10.1126/science.1193968
[73]
Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators. Nat Photonics, 2014, 8, 145 doi: 10.1038/nphoton.2013.343
[74]
Ferdous F, Miao H X, Leaird D E, et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat Photonics, 2011, 5, 770 doi: 10.1038/nphoton.2011.255
[75]
Xue X X, Wang P H, Xuan Y, et al. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photonics Rev, 2017, 11, 1600276 doi: 10.1002/lpor.201600276
[76]
Xue X X, Qi M H, Weiner A M. Normal-dispersion microresonator Kerr frequency combs. Nanophotonics, 2016, 5, 244 doi: 10.1515/nanoph-2016-0016
[77]
Grillet C, Carletti L, Monat C, et al. Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. Opt Express, 2012, 20, 22609 doi: 10.1364/OE.20.022609
[78]
Choi J W, Sohn B U, Chen G F R, et al. Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides. APL Photonics, 2019, 4, 110804 doi: 10.1063/1.5113758
[79]
Capmany J, Novak D. Microwave photonics combines two worlds. Nat Photonics, 2007, 1, 319 doi: 10.1038/nphoton.2007.89
[80]
Yao J P. Microwave photonics. J Lightwave Technol, 2009, 27, 314 doi: 10.1109/JLT.2008.2009551
[81]
Marpaung D, Yao J P, Capmany J. Integrated microwave photonics. Nat Photonics, 2019, 13, 80 doi: 10.1002/lpor.201200032
[82]
Azaña J. Ultrafast analog all-optical signal processors based on fiber-grating devices. IEEE Photonics J, 2010, 2, 359 doi: 10.1109/JPHOT.2010.2047941
[83]
Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters. J Lightwave Technol, 2006, 24, 201 doi: 10.1109/JLT.2005.860478
[84]
Supradeepa V R, Long C M, Wu R, et al. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nat Photonics, 2012, 6, 186 doi: 10.1038/nphoton.2011.350
[85]
Wu J Y, Xu X Y, Nguyen T G, et al. RF photonics: An optical microcombs’ perspective. IEEE J Sel Top Quantum Electron, 2018, 24, 1 doi: 10.1109/JSTQE.2018.2805814
[86]
Torres-Company V, Weiner A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev, 2014, 8, 368 doi: 10.1002/lpor.201300126
[87]
Jiang Z, Huang C B, Leaird D E, et al. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat Photonics, 2007, 1, 463 doi: 10.1038/nphoton.2007.139
[88]
Liu Y, Hotten J, Choudhary A, et al. All-optimized integrated RF photonic notch filter. Opt Lett, 2017, 42, 4631 doi: 10.1364/OL.42.004631
[89]
Liu Y, Marpaung D, Choudhary A, et al. Link performance optimization of chip-based Si3N4 microwave photonic filters. J Lightwave Technol, 2018, 36, 4361 doi: 10.1109/JLT.2018.2842203
[90]
Liu Y, Yu Y, Yuan S X, et al. Tunable megahertz bandwidth microwave photonic notch filter based on a silica microsphere cavity. Opt Lett, 2016, 41, 5078 doi: 10.1364/OL.41.005078
[91]
Marpaung D, Morrison B, Pagani M, et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica, 2015, 2, 76 doi: 10.1364/OPTICA.2.000076
[92]
Choudhary A, Morrison B, Aryanfar I, et al. Advanced integrated microwave signal processing with giant on-chip Brillouin gain. J Lightwave Technol, 2017, 35, 846 doi: 10.1109/JLT.2016.2613558
[93]
Marpaung D, Morrison B, Pant R, et al. Frequency agile microwave photonic notch filter with anomalously high stopband rejection. Opt Lett, 2013, 38, 4300 doi: 10.1364/OL.38.004300
[94]
Zhu X Q, Chen F Y, Peng H F, et al. Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase. Opt Express, 2017, 25, 9232 doi: 10.1364/OE.25.009232
[95]
Jiang F, Yu Y, Tang H T, et al. Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity. Opt Express, 2016, 24, 18655 doi: 10.1364/OE.24.018655
[96]
Zhu Z J, Chi H, Jin T, et al. All-positive-coefficient microwave photonic filter with rectangular response. Opt Lett, 2017, 42, 3012 doi: 10.1364/OL.42.003012
[97]
Yu G, Zhang W, Williams J A R. High-performance microwave transversal filter using fiber Bragg grating arrays. IEEE Photonics Technol Lett, 2000, 12, 1183 doi: 10.1109/68.874229
[98]
Leng J S, Zhang W, Williams J A R. Optimization of superstructured fiber Bragg gratings for microwave photonic filters response. IEEE Photonics Technol Lett, 2004, 16, 1736 doi: 10.1109/LPT.2004.828363
[99]
Hunter D B, Minasian R A, Krug P A. Tunable optical transversal filter based on chirped gratings. Electron Lett, 1995, 31, 2205 doi: 10.1049/el:19951495
[100]
Hamidi E, Leaird D E, Weiner A M. Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Trans Microw Theory Tech, 2010, 58, 3269 doi: 10.1109/TMTT.2010.2076970
[101]
Wu R, Supradeepa V R, Long C M, et al. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt Lett, 2010, 35, 3234 doi: 10.1364/OL.35.003234
[102]
Mansoori S, Mitchell A. RF transversal filter using an AOTF. IEEE Photonics Technol Lett, 2004, 16, 879 doi: 10.1109/LPT.2004.823695
[103]
Delgado-Pinar M, Mora J, Díez A, et al. Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator. Opt Lett, 2005, 30, 8 doi: 10.1364/OL.30.000008
[104]
Li W, Yao J. Optical frequency comb generation based on repeated frequency shifting using two Mach-Zehnder modulators and an asymmetric Mach-Zehnder interferometer. Opt Express, 2009, 17, 23712 doi: 10.1364/OE.17.023712
[105]
Chen C H, He C, Zhu D, et al. Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator. Opt Lett, 2013, 38, 3137 doi: 10.1364/OL.38.003137
[106]
Saitoh T, Kourogi M, Ohtsu M. An optical frequency synthesizer using a waveguide-type optical frequency comb generator at 1.5-μm wavelength. IEEE Photonics Technol Lett, 1996, 8, 1543 doi: 10.1109/68.541577
[107]
Nguyen T G, Shoeiby M, Chu S T, et al. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Opt Express, 2015, 23, 22087 doi: 10.1364/OE.23.022087
[108]
Xue X X, Xuan Y, Kim H J, et al. Programmable single-bandpass photonic RF filter based on kerr comb from a microring. J Lightwave Technol, 2014, 32, 3557 doi: 10.1109/JLT.2014.2312359
[109]
Xu X Y, Wu J Y, Shoeiby M, et al. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source. APL Photonics, 2017, 2, 096104 doi: 10.1063/1.4989871
[110]
Xu X Y, Tan M X, Wu J Y, et al. Microcomb-based photonic RF signal processing. IEEE Photonics Technol Lett, 2019, 31, 1854 doi: 10.1109/LPT.2019.2940497
[111]
Xu X Y, Wu J Y, Nguyen T G, et al. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt Express, 2018, 26, 2569 doi: 10.1364/OE.26.002569
[112]
Xue X X, Xuan Y, Bao C Y, et al. Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control. J Lightwave Technol, 2018, 36, 2312 doi: 10.1109/JLT.2018.2803743
[113]
Xu X Y, Wu J Y, Nguyen T G, et al. Broadband RF channelizer based on an integrated optical frequency kerr comb source. J Lightwave Technol, 2018, 36, 4519 doi: 10.1109/JLT.2018.2819172
[114]
Xu X Y, Wu J Y, Jia L N, et al. Continuously tunable orthogonally polarized RF optical single sideband generator based on micro-ring resonators. J Opt, 2018, 20, 115701 doi: 10.1088/2040-8986/aae3fe
[115]
Xu X Y, Wu J Y, Tan M X, et al. Orthogonally polarized RF optical single sideband generation and dual-channel equalization based on an integrated microring resonator. J Lightwave Technol, 2018, 36, 4808 doi: 10.1109/JLT.2018.2863704
[116]
Xu X Y, Wu J Y, Nguyen T G, et al. Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source. Photon Res, 2018, 6, B30 doi: 10.1364/PRJ.6.000B30
[117]
Xu X Y, Tan M X, Wu J Y, et al. Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source. J Lightwave Technol, 2019, 37, 1288 doi: 10.1109/JLT.2019.2892158
[118]
Liang W, Eliyahu D, Ilchenko V S, et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat Commun, 2015, 6, 7957 doi: 10.1038/ncomms8957
[119]
Liu J Q, Lucas E, Raja A S, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat Photonics, 2020, 14, 486 doi: 10.1038/s41566-020-0617-x
[120]
Xu X Y, Wu J Y, Tan M X, et al. Broadband microwave frequency conversion based on an integrated optical micro-comb source. J Lightwave Technol, 2020, 38, 332 doi: 10.1109/JLT.2019.2930466
[121]
Tan M X, Xu X Y, Wu J Y, et al. Photonic RF and microwave filters based on 49 GHz and 200 GHz Kerr microcombs. Opt Commun, 2020, 465, 125563 doi: 10.1016/j.optcom.2020.125563
[122]
Xu X Y, Tan M X, Wu J Y, et al. Broadband photonic RF channelizer with 92 channels based on a soliton crystal microcomb. J Lightwave Technol, 2020, 38, 5116 doi: 10.1109/JLT.2020.2997699
[123]
Xu X, Tan M, Wu J, et al. Photonic RF and microwave integrator based on a transversal filter with soliton crystal microcombs. IEEE Trans Circuits ad Syst II, 2020, 67, 3582 doi: 10.1109/TCSII.2020.2995682
[124]
Xu X Y, Tan M X, Wu J, et al. Photonic RF phase-encoded signal generation with a microcomb source. J Lightwave Technol, 2020, 38, 1722 doi: 10.1109/JLT.2019.2958564
[125]
Xu X Y, Tan M X, Wu J Y, et al. High performance RF filters via bandwidth scaling with Kerr micro-combs. APL Photonics, 2019, 4, 026102 doi: 10.1063/1.5080246
[126]
Tan M X, Xu X Y, Corcoran B, et al. Microwave and RF photonic fractional Hilbert transformer based on a 50 GHz Kerr micro-comb. J Lightwave Technol, 2019, 37, 6097 doi: 10.1109/JLT.2019.2946606
[127]
Tan M X, Xu X Y, Corcoran B, et al. RF and microwave fractional differentiator based on photonics. IEEE Trans Circuits Syst II, 2020, 67, 2767 doi: 10.1109/TCSII.2020.2965158
[128]
Tan M X, Xu X Y, Boes A, et al. Photonic RF arbitrary waveform generator based on a soliton crystal micro-comb source. J Lightwave Technol, 2020, 38, 6221 doi: 10.1109/JLT.2020.3009655
[129]
Tan M X, Xu X Y, Wu J Y, et al. RF and microwave photonic temporal signal processing with Kerr micro-combs. Adv Phys X, 2021, 6, 1838946 doi: 10.1080/23746149.2020.1838946
[130]
Cole D C, Lamb E S, Del’Haye P, et al. Soliton crystals in Kerr resonators. Nat Photonics, 2017, 11, 671 doi: 10.1038/s41566-017-0009-z
[131]
Wang W Q, Lu Z Z, Zhang W F, et al. Robust soliton crystals in a thermally controlled microresonator. Opt Lett, 2018, 43, 2002 doi: 10.1364/OL.43.002002
[132]
Stern B, Ji X, Okawachi Y, et al. Battery-operated integrated frequency comb generator. Nature, 2018, 562, 401 doi: 10.1038/s41586-018-0598-9
[133]
Xue X X, Xuan Y, Liu Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat Photonics, 2015, 9, 594 doi: 10.1038/nphoton.2015.137
[134]
Bao H L, Cooper A, Rowley M, et al. Laser cavity-soliton microcombs. Nat Photonics, 2019, 13, 384 doi: 10.1038/s41566-019-0379-5
[135]
Xue X X, Zheng X P, Zhou B K. Super-efficient temporal solitons in mutually coupled optical cavities. Nat Photonics, 2019, 13, 616 doi: 10.1038/s41566-019-0436-0
[136]
Zhou H, Geng Y, Cui W W, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light: Sci Appl, 2019, 8, 1 doi: 10.1038/s41377-018-0109-7
[137]
Bao H L, Olivieri L, Rowley M, et al. Turing patterns in a fiber laser with a nested microresonator: Robust and controllable microcomb generation. Phys Rev Res, 2020, 2, 023395 doi: 10.1103/PhysRevResearch.2.023395
[138]
di Lauro L, Li J, Moss D J, et al. Parametric control of thermal self-pulsation in micro-cavities. Opt Lett, 2017, 42, 3407 doi: 10.1364/OL.42.003407
[139]
Bao H L, Cooper A, Chu S T, et al. Type-II micro-comb generation in a filter-driven four wave mixing laser. Photon Res, 2018, 6, B67 doi: 10.1364/PRJ.6.000B67
[140]
Shen B Q, Chang L, Liu J Q, et al. Integrated turnkey soliton microcombs. Nature, 2020, 582, 365 doi: 10.1038/s41586-020-2358-x
[141]
Pan S L, Yao J P. Photonics-based broadband microwave measurement. J Lightwave Technol, 2017, 35, 3498 doi: 10.1109/JLT.2016.2587580
[142]
Azana J, Madsen C, Takiguchi K, et al. Guest editorial optical signal processing. J Lightwave Technol, 2006, 24, 2484 doi: 10.1109/JLT.2006.879647
[143]
Marpaung D, Pagani M, Morrison B, et al. Nonlinear integrated microwave photonics. J Lightwave Technol, 2014, 32, 3421 doi: 10.1109/JLT.2014.2306676
[144]
Minasian R A. Ultra-wideband and adaptive photonic signal processing of microwave signals. IEEE J Quantum Electron, 2016, 52, 1 doi: 10.1109/JQE.2015.2499729
[145]
Zou X H, Lu B, Pan W, et al. Photonics for microwave measurements. Laser Photonics Rev, 2016, 10, 711 doi: 10.1002/lpor.201600019
[146]
Xu K, Wang R X, Dai Y T, et al. Microwave photonics: Radio-over-fiber links, systems, and applications. Photon Res, 2014, 2, B54 doi: 10.1364/PRJ.2.000B54
[147]
Pan S L, Zhu D, Liu S F, et al. Satellite payloads pay off. IEEE Microwave, 2015, 16, 61 doi: 10.1109/MMM.2015.2441619
[148]
Chen H W, Li R Y, Lei C, et al. Photonics-assisted serial channelized radio-frequency measurement system with nyquist-bandwidth detection. IEEE Photonics J, 2014, 6, 1 doi: 10.1109/JPHOT.2014.2366168
[149]
Xie X J, Dai Y T, Ji Y, et al. Broadband photonic radio-frequency channelization based on a 39-GHz optical frequency comb. IEEE Photonics Technol Lett, 2012, 24, 661 doi: 10.1109/LPT.2012.2185787
[150]
Wang W S, Davis R L, Jung T J, et al. Characterization of a coherent optical RF channelizer based on a diffraction grating. IEEE Trans Microw Theory Tech, 2001, 49, 1996 doi: 10.1109/22.954820
[151]
Rhodes W T. Acousto-optic signal processing: Convolution and correlation. Proc IEEE, 1981, 69, 65 doi: 10.1109/PROC.1981.11921
[152]
Hunter D B, Edvell L G, Englund M A. Wideband microwave photonic channelised receiver. 2005 International Topical Meeting on Microwave Photonics, 2005, 249
[153]
Winnall S T, Lindsay A C, Austin M W, et al. A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system. IEEE Trans Microw Theory Tech, 2006, 54, 868 doi: 10.1109/TMTT.2005.863052
[154]
Xu W Y, Zhu D, Pan S L. Coherent photonic radio frequency channelization based on dual coherent optical frequency combs and stimulated Brillouin scattering. Opt Eng, 2016, 55, 046106 doi: 10.1117/1.OE.55.4.046106
[155]
Zou X H, Li W Z, Pan W, et al. Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering. IEEE Trans Microw Theory Tech, 2013, 61, 3470 doi: 10.1109/TMTT.2013.2273892
[156]
Bres C S, Zlatanovic S, Wiberg A O J, et al. Parametric photonic channelized RF receiver. IEEE Photon Technol Lett, 2011, 23, 344 doi: 10.1109/LPT.2011.2105470
[157]
Wiberg A O J, Esman D J, Liu L, et al. Coherent filterless wideband microwave/millimeter-wave channelizer based on broadband parametric mixers. J Lightwave Technol, 2014, 32, 3609 doi: 10.1109/JLT.2014.2320445
[158]
Zou X H, Pan W, Luo B, et al. Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source. Opt Lett, 2010, 35, 438 doi: 10.1364/OL.35.000438
[159]
Volkening F A. Photonic channelized RF receiver employing dense wavelength division multiplexing. U. S. Patent, 724 583 3B1, 2007
[160]
Xie X J, Dai Y T, Xu K, et al. Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators. IEEE Photonics J, 2012, 4, 1196 doi: 10.1109/JPHOT.2012.2207380
[161]
Li Z, Zhang X M, Chi H, et al. A reconfigurable microwave photonic channelized receiver based on dense wavelength division multiplexing using an optical comb. Opt Commun, 2012, 285, 2311 doi: 10.1016/j.optcom.2012.01.023
[162]
Li R Y, Chen H W, Yu Y, et al. Multiple-frequency measurement based on serial photonic channelization using optical wavelength scanning. Opt Lett, 2013, 38, 4781 doi: 10.1364/OL.38.004781
[163]
Hao W H, Dai Y T, Yin F F, et al. Chirped-pulse-based broadband RF channelization implemented by a mode-locked laser and dispersion. Opt Lett, 2017, 42, 5234 doi: 10.1364/OL.42.005234
[164]
Herr T, Hartinger K, Riemensberger J, et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat Photonics, 2012, 6, 480 doi: 10.1038/nphoton.2012.127
[165]
Caspani L, Xiong C, Eggleton B, et al. On-chip sources of quantum correlated and entangled photons. Light Sci Appl, 2017, 6, e17100 doi: 10.1038/lsa.2017.100
[166]
da Ros F, Porto da Silva E, Zibar D, et al. Wavelength conversion of QAM signals in a low loss CMOS compatible spiral waveguide. APL Photonics, 2017, 2, 046105 doi: 10.1063/1.4978945
[167]
Xue X X, Weiner A M. Microwave photonics connected with microresonator frequency combs. Front Optoelectron, 2016, 9, 238 doi: 10.1007/s12200-016-0621-4
[168]
Coen S, Randle H G, Sylvestre T, et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt Lett, 2012, 38, 37 doi: 10.1364/OL.38.000037
[169]
Chembo Y K, Menyuk C R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys Rev A, 2013, 87, 053852 doi: 10.1103/PhysRevA.87.053852
[170]
Guo H, Karpov M, Lucas E, et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat Phys, 2017, 13, 94 doi: 10.1038/nphys3893
[171]
Xue X X, Xuan Y, Wang C, et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt Express, 2016, 24, 687 doi: 10.1364/OE.24.000687
[172]
Bernhardt B, Ozawa A, Jacquet P, et al. Cavity-enhanced dual-comb spectroscopy. Nat Photonics, 2010, 4, 55 doi: 10.1038/nphoton.2009.217
[173]
Ideguchi T, Poisson A, Guelachvili G, et al. Adaptive real-time dual-comb spectroscopy. Nat Commun, 2014, 5, 3375 doi: 10.1038/ncomms4375
[174]
Millot G, Pitois S, Yan M, et al. Frequency-agile dual-comb spectroscopy. Nat Photonics, 2016, 10, 27 doi: 10.1038/nphoton.2015.250
[175]
Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy. Science, 2016, 354, 600 doi: 10.1126/science.aah6516
[176]
Pavlov N G, Lihachev G, Koptyaev S, et al. Soliton dual frequency combs in crystalline microresonators. Opt Lett, 2017, 42, 514 doi: 10.1364/OL.42.000514
[177]
Briles T C, Drake T E, Spencer D T, et al. Optical frequency synthesis using a dual-Kerr-microresonator frequency comb. Conference on Lasers and Electro-Optics, 2017, SW4N. 3
[178]
Little B E, Chu S T, Absil P P, et al. Very high-order microring resonator filters for WDM applications. IEEE Photon Technol Lett, 2004, 16, 2263 doi: 10.1109/LPT.2004.834525
Fig. 1.  (Color online) Schematic diagram of the broadband RF channelizer based on an integrated optical comb source. Amp: erbium-doped fibre amplifier. OBPF: optical bandpass filter. PC: polarization controller. MRR: micro-ring resonator. OC: optical coupler. PM: phase modulator. Temp. Con.: temperature controller. DEMUX: de-multiplexer. Rx: Receiver. OSA: optical spectrum analyzer. (a) Channelizer based on 200 GHz microcomb MRR with 49 GHz passive MRR. (b) Schematic diagram of the broadband RF channelizer based on a soliton crystal microcomb. EDFA: erbium-doped fibre amplifier. PC: polarization controller. MRR: micro-ring resonator. WS: WaveShaper. PM: phase modulator. TEC: temperature controller. DEMUX: de-multiplexer. Rx: Receiver.

Fig. 2.  (Color online) Schematic illustration of the (a) 200 GHz-FSR MRR and (b) 49 GHz-FSR MRR. (c) SEM image of the cross-section of the 200 GHz MRR before depositing the silica upper cladding.

Fig. 3.  (Color online) Optical spectrum for the 200 GHz FSR micro-comb device. (a) The primary comb. (b) The secondary comb. (c) The Kerr comb with 300 nm span. (d) The shaped optical comb for the channelizer with less than 0.5 dB unflatness. (e) 20 and (f) seleted 4 comb lines modulated by RF signals.

Fig. 4.  (Color online) Drop-port transmission spectrum of the passive on-chip 49 GHz MRR (a) with a span of 5 nm, (b) showing an FSR of 49 GHz, and (c) a resonance at 193.294 THz with full width at half maximum (FWHM) of 124.94 MHz, corresponding to a Q factor of 1.549 × 106.

Fig. 5.  (Color online) (a) The measured optical spectrum of the 200 GHz micro-comb and transmission of the 49 GHz MRR. Zoom-in views of the channels with different channelized RF frequencies. (b) Extracted channelized RF frequencies, the inset shows the corresponding optical frequencies of the comb lines and the spectral slicing resonances.

Fig. 6.  RF response of the 200 GHz Channelizer. Measured optical spectrum of the 49 GHz MRR’s output with different input RF frequencies, with the temperature of the 49 GHz MRR set to (a) 24.0, (b) 24.5, (c) 25.0, and (d) 25.5 °C. (e) Channelized RF frequencies at different wavelength channels with different temperatures.

Fig. 7.  (Color online) Channelized RF frequencies at different channels.

Fig. 8.  (Color online) Extracted extinction ratio of channelized RF signals.

Fig. 9.  (Color online) Optical spectrum of the generated soliton crystal microcomb with (a) 100 and (b) 40 nm span. (c) Flattened 92 comb lines.

Fig. 10.  (Color online) (a) The measured optical spectrum of the micro-comb and drop-port transmission of passive MRRs. (b) Extracted channelized RF frequencies of the 92 channels, calculated from the spacing between the comb lines and the passive resonances. Note that the labelled channelized RF frequencies in (a) are adopted from accurate RF domain measurements using the Vector Network Analyzer, as shown in the next figure.

Fig. 11.  (Color online) Measured RF transmission spectra of (a) the 92 channels and (b) zoom-in view of the first 4 channels. (b) Extracted channelized RF frequency and resolution. (d) Measured RF transmission spectra at different chip temperatures of the passive MRR.

[1]
Radic S, Moss D, Eggleton B J. Nonlinear optics in communications: From crippling impairment to ultrafast tools. In: Optical Fiber Telecommunications V: Components and Sub-systems. Oxford, UK: Academic Press, 2008, 759
[2]
Leuthold J, Koos C, Freude W. Nonlinear silicon photonics. Nat Photonics, 2010, 4, 535 doi: 10.1038/nphoton.2010.185
[3]
Li L, Patki P G, Kwon Y B, et al. All-optical regenerator of multi-channel signals. Nat Commun, 2017, 8, 884 doi: 10.1038/s41467-017-00874-0
[4]
Li F, Vo T D, Husko C, et al. All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire. Opt Express, 2011, 19, 20364 doi: 10.1364/OE.19.020364
[5]
Li F, Pelusi M, Eggleton B J, et al. Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire. Opt Express, 2010, 18, 3905 doi: 10.1364/OE.18.003905
[6]
Ji H, Galili M, Hu H, et al. 1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide. IEEE Photonics Technol Lett, 2010, 22, 1762 doi: 10.1109/LPT.2010.2084566
[7]
Monat C, Grillet C, Corcoran B, et al. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics. Opt Express, 2010, 18, 6831 doi: 10.1364/OE.18.006831
[8]
Corcoran B, Monat C, Pelusi M, et al. Optical signal processing on a silicon chip at 640Gb/s using slow-light. Opt Express, 2010, 18, 7770 doi: 10.1364/OE.18.007770
[9]
Ta’eed V G, Shokooh-Saremi M, Fu L B, et al. Integrated all-optical pulse regenerator in chalcogenide waveguides. Opt Lett, 2005, 30, 2900 doi: 10.1364/OL.30.002900
[10]
Rochette M, Kutz J N, Blows J L, et al. Bit-error-ratio improvement with 2R optical regenerators. IEEE Photonics Technol Lett, 2005, 17, 908 doi: 10.1109/LPT.2005.843950
[11]
Ferrera M, Reimer C, Pasquazi A, et al. CMOS compatible integrated all-optical radio frequency spectrum analyzer. Opt Express, 2014, 22, 21488 doi: 10.1364/OE.22.021488
[12]
Monat C, Grillet C, Collins M, et al. Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide. Nat Commun, 2014, 5, 3246 doi: 10.1038/ncomms4246
[13]
Li F, Pelusi M, Xu D X, et al. All-optical wavelength conversion for 10 Gb/s DPSK signals in a silicon ring resonator. Opt Express, 2011, 19, 22410 doi: 10.1364/OE.19.022410
[14]
Vo T D, Corcoran B, Schroder J, et al. Silicon-chip-based real-time dispersion monitoring for 640 Gbit/s DPSK signals. J Lightwave Technol, 2011, 29, 1790 doi: 10.1109/JLT.2011.2141974
[15]
Ferrera M, Park Y, Razzari L, et al. All-optical 1st and 2nd order integration on a chip. Opt Express, 2011, 19, 23153 doi: 10.1364/OE.19.023153
[16]
Corcoran B, Vo T D, Pelusi M D, et al. Silicon nanowire based radio-frequency spectrum analyzer. Opt Express, 2010, 18, 20190 doi: 10.1364/OE.18.020190
[17]
Corcoran B, Monat C, Grillet C, et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat Photonics, 2009, 3, 206 doi: 10.1038/nphoton.2009.28
[18]
Moss D J, van Driel H M, Sipe J E. Dispersion in the anisotropy of optical third-harmonic generation in silicon. Opt Lett, 1989, 14, 57 doi: 10.1364/OL.14.000057
[19]
Sipe J, Moss D, van Driel H. Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals. Phys Rev B, 1987, 35, 1129 doi: 10.1103/PhysRevB.35.1129
[20]
Moss D J, Ghahramani E, Sipe J E, et al. Band-structure calculation of dispersion and anisotropy in χ→(3) for third-harmonic generation in Si, Ge, and GaAs. Phys Rev B, 1990, 41, 1542 doi: 10.1103/PhysRevB.41.1542
[21]
Moss D J, van Driel H M, Sipe J E. Third harmonic generation as a structural diagnostic of ion-implanted amorphous and crystalline silicon. Appl Phys Lett, 1986, 48, 1150 doi: 10.1063/1.96453
[22]
Moss D J, Fu L, Littler I, et al. Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides. Electron Lett, 2005, 41, 320 doi: 10.1049/el:20058051
[23]
Lamont M R E, Rochette M, Moss D J, et al. Two-photon absorption effects on self-phase-modulation-based 2R optical regeneration. IEEE Photonics Technol Lett, 2006, 18, 1185 doi: 10.1109/LPT.2006.874718
[24]
Tuniz A, Brawley G, Moss D J, et al. Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber. Opt Express, 2008, 16, 18524 doi: 10.1364/OE.16.018524
[25]
Pelusi M D, Luan F, Magi E, et al. High bit rate all-optical signal processing in a fiber photonic wire. Opt Express, 2008, 16, 11506 doi: 10.1364/OE.16.011506
[26]
Lee M W, Grillet C, Smith C L C, et al. Photosensitive post tuning of chalcogenide photonic crystal waveguides. Opt Express, 2007, 15, 1277 doi: 10.1364/OE.15.001277
[27]
Tomljenovic-Hanic S, Steel M J, Martijn de Sterke C, et al. High-Q cavities in photosensitive photonic crystals. Opt Lett, 2007, 32, 542 doi: 10.1364/OL.32.000542
[28]
Grillet C, Monat C, Smith C L, et al. Nanowire coupling to photonic crystal nanocavities for single photon sources. Opt Express, 2007, 15, 1267 doi: 10.1364/OE.15.001267
[29]
Ta'Eed V, Baker N J, Fu L B, et al. Ultrafast all-optical chalcogenide glass photonic circuits. Opt Express, 2007, 15, 9205 doi: 10.1364/OE.15.009205
[30]
Freeman D, Grillet C, Lee M W, et al. Chalcogenide glass photonic crystals. Photonics and Nanostructures-Fundamentals and Applications, 2008, 6, 3
[31]
Grillet C, Freeman D, Luther-Davies B, et al. Characterization and modeling of Fano resonances in chalcogenide glass photonic crystal membranes. 2006 Conf Lasers Electro-Opt 2006 Quantum Electron Laser Sci Conf, 2006, 1
[32]
Ta'Eed V G, Shokooh-Saremi M, Fu L, et al. Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides. IEEE J Sel Top Quantum Electron, 2006, 12, 360 doi: 10.1109/JSTQE.2006.872727
[33]
Shokooh-Saremi M, Ta'Eed V G, Baker N J, et al. High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer. J Opt Soc Am B, 2006, 23, 1323 doi: 10.1364/JOSAB.23.001323
[34]
Lamont M R E, Ta'Eed V G, Roelens M A F, et al. Error-free wavelength conversion via cross-phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide. Electron Lett, 2007, 43, 945 doi: 10.1049/el:20071470
[35]
Ikeda K, Saperstein R E, Alic N, et al. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt Express, 2008, 16, 12987 doi: 10.1364/OE.16.012987
[36]
Levy J S, Gondarenko A, Foster M A, et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat Photonics, 2010, 4, 37 doi: 10.1038/nphoton.2009.259
[37]
Razzari L, Duchesne D, Ferrera M, et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat Photonics, 2010, 4, 41 doi: 10.1038/nphoton.2009.236
[38]
Moss D J, Morandotti R, Gaeta A L, et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat Photonics, 2013, 7, 597 doi: 10.1038/nphoton.2013.183
[39]
Ferrera M, Razzari L, Duchesne D, et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photonics, 2008, 2, 737 doi: 10.1038/nphoton.2008.228
[40]
Pasquazi A, Peccianti M, Park Y, et al. Sub-picosecond phase-sensitive optical pulse characterization on a chip. Nat Photonics, 2011, 5, 618 doi: 10.1038/nphoton.2011.199
[41]
Duchesne D, Peccianti M, Lamont M R E, et al. Supercontinuum generation in a high index doped silica glass spiral waveguide. Opt Express, 2010, 18, 923 doi: 10.1364/OE.18.000923
[42]
Ferrera M, Park Y, Razzari L, et al. On-chip CMOS-compatible all-optical integrator. Nat Commun, 2010, 1, 29 doi: 10.1038/ncomms1028
[43]
Pasquazi A, Ahmad R, Rochette M, et al. All-optical wavelength conversion in an integrated ring resonator. Opt Express, 2010, 18, 3858 doi: 10.1364/OE.18.003858
[44]
Pasquazi A, Park Y, Azaña J, et al. Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide. Opt Express, 2010, 18, 7634 doi: 10.1364/OE.18.007634
[45]
Peccianti M, Ferrera M, Razzari L, et al. Subpicosecond optical pulse compression via an integrated nonlinear chirper. Opt Express, 2010, 18, 7625 doi: 10.1364/OE.18.007625
[46]
Duchesne D, Ferrera M, Razzari L, et al. Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides. Opt Express, 2009, 17, 1865 doi: 10.1364/OE.17.001865
[47]
Pasquazi A, Peccianti M, Razzari L, et al. Micro-combs: A novel generation of optical sources. Phys Rep, 2018, 729, 1 doi: 10.1016/j.physrep.2017.08.004
[48]
Del’Haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator. Nature, 2007, 450, 1214 doi: 10.1038/nature06401
[49]
Peccianti M, Pasquazi A, Park Y, et al. Demonstration of an ultrafast nonlinear microcavity modelocked laser. Nat Commun, 2012, 3, 765 doi: 10.1038/ncomms1762
[50]
Kues M, Reimer C, Wetzel B, et al. Passively mode-locked laser with an ultra-narrow spectral width. Nat Photonics, 2017, 11, 159 doi: 10.1038/nphoton.2016.271
[51]
Pasquazi A, Caspani L, Peccianti M, et al. Self-locked optical parametric oscillation in a CMOS compatible microring resonator: A route to robust optical frequency comb generation on a chip. Opt Express, 2013, 21, 13333 doi: 10.1364/OE.21.013333
[52]
Pasquazi A, Peccianti M, Little B E, et al. Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator. Opt Express, 2012, 20, 27355 doi: 10.1364/OE.20.027355
[53]
Reimer C, Caspani L, Clerici M, et al. Integrated frequency comb source of heralded single photons. Opt Express, 2014, 22, 6535 doi: 10.1364/OE.22.006535
[54]
Reimer C, Kues M, Caspani L, et al. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nat Commun, 2015, 6, 8236 doi: 10.1038/ncomms9236
[55]
Caspani L, Reimer C, Kues M, et al. Multifrequency sources of quantum correlated photon pairs on-chip: A path toward integrated Quantum Frequency Combs. Nanophotonics, 2016, 5, 351 doi: 10.1515/nanoph-2016-0029
[56]
Reimer C, Kues M, Roztocki P, et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 2016, 351, 1176 doi: 10.1126/science.aad8532
[57]
Kues M, Reimer C, Roztocki P, et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546, 622 doi: 10.1038/nature22986
[58]
Roztocki P, Kues M, Reimer C, et al. Practical system for the generation of pulsed quantum frequency combs. Opt Express, 2017, 25, 18940 doi: 10.1364/OE.25.018940
[59]
Zhang Y B, Kues M, Roztocki P, et al. Induced photon correlations through the overlap of two four-wave mixing processes in integrated cavities. Laser Photonics Rev, 2020, 14, 2000128 doi: 10.1002/lpor.202000128
[60]
Kues M, Reimer C, Lukens J M, et al. Quantum optical microcombs. Nature Photon, 2019, 13, 170 doi: 10.1038/s41566-019-0363-0
[61]
Reimer C, Sciara S, Roztocki P, et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat Phys, 2019, 15, 148 doi: 10.1038/s41567-018-0347-x
[62]
Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 2017, 546, 274 doi: 10.1038/nature22387
[63]
Pfeifle J, Brasch V, Lauermann M, et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat Photonics, 2014, 8, 375 doi: 10.1038/nphoton.2014.57
[64]
Corcoran B, Tan M X, Xu X Y, et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat Commun, 2020, 11, 1 doi: 10.1038/s41467-020-16265-x
[65]
Xu X Y, Tan M X, Corcoran B, et al. Photonic perceptron based on a kerr microcomb for high-speed, scalable, optical neural networks. Laser Photonics Rev, 2020, 14, 2000070 doi: 10.1002/lpor.202000070
[66]
Xu X Y, Tan M X, Corcoran B, et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 2021, 589, 44 doi: 10.1038/s41586-020-03063-0
[67]
Feldmann J, Youngblood N, Karpov M, et al. Parallel convolution processing using an integrated photonic tensor core. arXiv preprint arXiv: 2002.00281, 2020
[68]
Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557, 81 doi: 10.1038/s41586-018-0065-7
[69]
Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators. Science, 2018, 361, eaan8083 doi: 10.1126/science.aan8083
[70]
Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs. Nat Photonics, 2019, 13, 158 doi: 10.1038/s41566-019-0358-x
[71]
Del’Haye P, Herr T, Gavartin E, et al. Octave spanning tunable frequency comb from a microresonator. Phys Rev Lett, 2011, 107, 063901 doi: 10.1103/PhysRevLett.107.063901
[72]
Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332, 555 doi: 10.1126/science.1193968
[73]
Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators. Nat Photonics, 2014, 8, 145 doi: 10.1038/nphoton.2013.343
[74]
Ferdous F, Miao H X, Leaird D E, et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat Photonics, 2011, 5, 770 doi: 10.1038/nphoton.2011.255
[75]
Xue X X, Wang P H, Xuan Y, et al. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photonics Rev, 2017, 11, 1600276 doi: 10.1002/lpor.201600276
[76]
Xue X X, Qi M H, Weiner A M. Normal-dispersion microresonator Kerr frequency combs. Nanophotonics, 2016, 5, 244 doi: 10.1515/nanoph-2016-0016
[77]
Grillet C, Carletti L, Monat C, et al. Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. Opt Express, 2012, 20, 22609 doi: 10.1364/OE.20.022609
[78]
Choi J W, Sohn B U, Chen G F R, et al. Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides. APL Photonics, 2019, 4, 110804 doi: 10.1063/1.5113758
[79]
Capmany J, Novak D. Microwave photonics combines two worlds. Nat Photonics, 2007, 1, 319 doi: 10.1038/nphoton.2007.89
[80]
Yao J P. Microwave photonics. J Lightwave Technol, 2009, 27, 314 doi: 10.1109/JLT.2008.2009551
[81]
Marpaung D, Yao J P, Capmany J. Integrated microwave photonics. Nat Photonics, 2019, 13, 80 doi: 10.1002/lpor.201200032
[82]
Azaña J. Ultrafast analog all-optical signal processors based on fiber-grating devices. IEEE Photonics J, 2010, 2, 359 doi: 10.1109/JPHOT.2010.2047941
[83]
Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters. J Lightwave Technol, 2006, 24, 201 doi: 10.1109/JLT.2005.860478
[84]
Supradeepa V R, Long C M, Wu R, et al. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nat Photonics, 2012, 6, 186 doi: 10.1038/nphoton.2011.350
[85]
Wu J Y, Xu X Y, Nguyen T G, et al. RF photonics: An optical microcombs’ perspective. IEEE J Sel Top Quantum Electron, 2018, 24, 1 doi: 10.1109/JSTQE.2018.2805814
[86]
Torres-Company V, Weiner A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev, 2014, 8, 368 doi: 10.1002/lpor.201300126
[87]
Jiang Z, Huang C B, Leaird D E, et al. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat Photonics, 2007, 1, 463 doi: 10.1038/nphoton.2007.139
[88]
Liu Y, Hotten J, Choudhary A, et al. All-optimized integrated RF photonic notch filter. Opt Lett, 2017, 42, 4631 doi: 10.1364/OL.42.004631
[89]
Liu Y, Marpaung D, Choudhary A, et al. Link performance optimization of chip-based Si3N4 microwave photonic filters. J Lightwave Technol, 2018, 36, 4361 doi: 10.1109/JLT.2018.2842203
[90]
Liu Y, Yu Y, Yuan S X, et al. Tunable megahertz bandwidth microwave photonic notch filter based on a silica microsphere cavity. Opt Lett, 2016, 41, 5078 doi: 10.1364/OL.41.005078
[91]
Marpaung D, Morrison B, Pagani M, et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica, 2015, 2, 76 doi: 10.1364/OPTICA.2.000076
[92]
Choudhary A, Morrison B, Aryanfar I, et al. Advanced integrated microwave signal processing with giant on-chip Brillouin gain. J Lightwave Technol, 2017, 35, 846 doi: 10.1109/JLT.2016.2613558
[93]
Marpaung D, Morrison B, Pant R, et al. Frequency agile microwave photonic notch filter with anomalously high stopband rejection. Opt Lett, 2013, 38, 4300 doi: 10.1364/OL.38.004300
[94]
Zhu X Q, Chen F Y, Peng H F, et al. Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase. Opt Express, 2017, 25, 9232 doi: 10.1364/OE.25.009232
[95]
Jiang F, Yu Y, Tang H T, et al. Tunable bandpass microwave photonic filter with ultrahigh stopband attenuation and skirt selectivity. Opt Express, 2016, 24, 18655 doi: 10.1364/OE.24.018655
[96]
Zhu Z J, Chi H, Jin T, et al. All-positive-coefficient microwave photonic filter with rectangular response. Opt Lett, 2017, 42, 3012 doi: 10.1364/OL.42.003012
[97]
Yu G, Zhang W, Williams J A R. High-performance microwave transversal filter using fiber Bragg grating arrays. IEEE Photonics Technol Lett, 2000, 12, 1183 doi: 10.1109/68.874229
[98]
Leng J S, Zhang W, Williams J A R. Optimization of superstructured fiber Bragg gratings for microwave photonic filters response. IEEE Photonics Technol Lett, 2004, 16, 1736 doi: 10.1109/LPT.2004.828363
[99]
Hunter D B, Minasian R A, Krug P A. Tunable optical transversal filter based on chirped gratings. Electron Lett, 1995, 31, 2205 doi: 10.1049/el:19951495
[100]
Hamidi E, Leaird D E, Weiner A M. Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Trans Microw Theory Tech, 2010, 58, 3269 doi: 10.1109/TMTT.2010.2076970
[101]
Wu R, Supradeepa V R, Long C M, et al. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt Lett, 2010, 35, 3234 doi: 10.1364/OL.35.003234
[102]
Mansoori S, Mitchell A. RF transversal filter using an AOTF. IEEE Photonics Technol Lett, 2004, 16, 879 doi: 10.1109/LPT.2004.823695
[103]
Delgado-Pinar M, Mora J, Díez A, et al. Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator. Opt Lett, 2005, 30, 8 doi: 10.1364/OL.30.000008
[104]
Li W, Yao J. Optical frequency comb generation based on repeated frequency shifting using two Mach-Zehnder modulators and an asymmetric Mach-Zehnder interferometer. Opt Express, 2009, 17, 23712 doi: 10.1364/OE.17.023712
[105]
Chen C H, He C, Zhu D, et al. Generation of a flat optical frequency comb based on a cascaded polarization modulator and phase modulator. Opt Lett, 2013, 38, 3137 doi: 10.1364/OL.38.003137
[106]
Saitoh T, Kourogi M, Ohtsu M. An optical frequency synthesizer using a waveguide-type optical frequency comb generator at 1.5-μm wavelength. IEEE Photonics Technol Lett, 1996, 8, 1543 doi: 10.1109/68.541577
[107]
Nguyen T G, Shoeiby M, Chu S T, et al. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Opt Express, 2015, 23, 22087 doi: 10.1364/OE.23.022087
[108]
Xue X X, Xuan Y, Kim H J, et al. Programmable single-bandpass photonic RF filter based on kerr comb from a microring. J Lightwave Technol, 2014, 32, 3557 doi: 10.1109/JLT.2014.2312359
[109]
Xu X Y, Wu J Y, Shoeiby M, et al. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source. APL Photonics, 2017, 2, 096104 doi: 10.1063/1.4989871
[110]
Xu X Y, Tan M X, Wu J Y, et al. Microcomb-based photonic RF signal processing. IEEE Photonics Technol Lett, 2019, 31, 1854 doi: 10.1109/LPT.2019.2940497
[111]
Xu X Y, Wu J Y, Nguyen T G, et al. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt Express, 2018, 26, 2569 doi: 10.1364/OE.26.002569
[112]
Xue X X, Xuan Y, Bao C Y, et al. Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control. J Lightwave Technol, 2018, 36, 2312 doi: 10.1109/JLT.2018.2803743
[113]
Xu X Y, Wu J Y, Nguyen T G, et al. Broadband RF channelizer based on an integrated optical frequency kerr comb source. J Lightwave Technol, 2018, 36, 4519 doi: 10.1109/JLT.2018.2819172
[114]
Xu X Y, Wu J Y, Jia L N, et al. Continuously tunable orthogonally polarized RF optical single sideband generator based on micro-ring resonators. J Opt, 2018, 20, 115701 doi: 10.1088/2040-8986/aae3fe
[115]
Xu X Y, Wu J Y, Tan M X, et al. Orthogonally polarized RF optical single sideband generation and dual-channel equalization based on an integrated microring resonator. J Lightwave Technol, 2018, 36, 4808 doi: 10.1109/JLT.2018.2863704
[116]
Xu X Y, Wu J Y, Nguyen T G, et al. Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source. Photon Res, 2018, 6, B30 doi: 10.1364/PRJ.6.000B30
[117]
Xu X Y, Tan M X, Wu J Y, et al. Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source. J Lightwave Technol, 2019, 37, 1288 doi: 10.1109/JLT.2019.2892158
[118]
Liang W, Eliyahu D, Ilchenko V S, et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat Commun, 2015, 6, 7957 doi: 10.1038/ncomms8957
[119]
Liu J Q, Lucas E, Raja A S, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat Photonics, 2020, 14, 486 doi: 10.1038/s41566-020-0617-x
[120]
Xu X Y, Wu J Y, Tan M X, et al. Broadband microwave frequency conversion based on an integrated optical micro-comb source. J Lightwave Technol, 2020, 38, 332 doi: 10.1109/JLT.2019.2930466
[121]
Tan M X, Xu X Y, Wu J Y, et al. Photonic RF and microwave filters based on 49 GHz and 200 GHz Kerr microcombs. Opt Commun, 2020, 465, 125563 doi: 10.1016/j.optcom.2020.125563
[122]
Xu X Y, Tan M X, Wu J Y, et al. Broadband photonic RF channelizer with 92 channels based on a soliton crystal microcomb. J Lightwave Technol, 2020, 38, 5116 doi: 10.1109/JLT.2020.2997699
[123]
Xu X, Tan M, Wu J, et al. Photonic RF and microwave integrator based on a transversal filter with soliton crystal microcombs. IEEE Trans Circuits ad Syst II, 2020, 67, 3582 doi: 10.1109/TCSII.2020.2995682
[124]
Xu X Y, Tan M X, Wu J, et al. Photonic RF phase-encoded signal generation with a microcomb source. J Lightwave Technol, 2020, 38, 1722 doi: 10.1109/JLT.2019.2958564
[125]
Xu X Y, Tan M X, Wu J Y, et al. High performance RF filters via bandwidth scaling with Kerr micro-combs. APL Photonics, 2019, 4, 026102 doi: 10.1063/1.5080246
[126]
Tan M X, Xu X Y, Corcoran B, et al. Microwave and RF photonic fractional Hilbert transformer based on a 50 GHz Kerr micro-comb. J Lightwave Technol, 2019, 37, 6097 doi: 10.1109/JLT.2019.2946606
[127]
Tan M X, Xu X Y, Corcoran B, et al. RF and microwave fractional differentiator based on photonics. IEEE Trans Circuits Syst II, 2020, 67, 2767 doi: 10.1109/TCSII.2020.2965158
[128]
Tan M X, Xu X Y, Boes A, et al. Photonic RF arbitrary waveform generator based on a soliton crystal micro-comb source. J Lightwave Technol, 2020, 38, 6221 doi: 10.1109/JLT.2020.3009655
[129]
Tan M X, Xu X Y, Wu J Y, et al. RF and microwave photonic temporal signal processing with Kerr micro-combs. Adv Phys X, 2021, 6, 1838946 doi: 10.1080/23746149.2020.1838946
[130]
Cole D C, Lamb E S, Del’Haye P, et al. Soliton crystals in Kerr resonators. Nat Photonics, 2017, 11, 671 doi: 10.1038/s41566-017-0009-z
[131]
Wang W Q, Lu Z Z, Zhang W F, et al. Robust soliton crystals in a thermally controlled microresonator. Opt Lett, 2018, 43, 2002 doi: 10.1364/OL.43.002002
[132]
Stern B, Ji X, Okawachi Y, et al. Battery-operated integrated frequency comb generator. Nature, 2018, 562, 401 doi: 10.1038/s41586-018-0598-9
[133]
Xue X X, Xuan Y, Liu Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat Photonics, 2015, 9, 594 doi: 10.1038/nphoton.2015.137
[134]
Bao H L, Cooper A, Rowley M, et al. Laser cavity-soliton microcombs. Nat Photonics, 2019, 13, 384 doi: 10.1038/s41566-019-0379-5
[135]
Xue X X, Zheng X P, Zhou B K. Super-efficient temporal solitons in mutually coupled optical cavities. Nat Photonics, 2019, 13, 616 doi: 10.1038/s41566-019-0436-0
[136]
Zhou H, Geng Y, Cui W W, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light: Sci Appl, 2019, 8, 1 doi: 10.1038/s41377-018-0109-7
[137]
Bao H L, Olivieri L, Rowley M, et al. Turing patterns in a fiber laser with a nested microresonator: Robust and controllable microcomb generation. Phys Rev Res, 2020, 2, 023395 doi: 10.1103/PhysRevResearch.2.023395
[138]
di Lauro L, Li J, Moss D J, et al. Parametric control of thermal self-pulsation in micro-cavities. Opt Lett, 2017, 42, 3407 doi: 10.1364/OL.42.003407
[139]
Bao H L, Cooper A, Chu S T, et al. Type-II micro-comb generation in a filter-driven four wave mixing laser. Photon Res, 2018, 6, B67 doi: 10.1364/PRJ.6.000B67
[140]
Shen B Q, Chang L, Liu J Q, et al. Integrated turnkey soliton microcombs. Nature, 2020, 582, 365 doi: 10.1038/s41586-020-2358-x
[141]
Pan S L, Yao J P. Photonics-based broadband microwave measurement. J Lightwave Technol, 2017, 35, 3498 doi: 10.1109/JLT.2016.2587580
[142]
Azana J, Madsen C, Takiguchi K, et al. Guest editorial optical signal processing. J Lightwave Technol, 2006, 24, 2484 doi: 10.1109/JLT.2006.879647
[143]
Marpaung D, Pagani M, Morrison B, et al. Nonlinear integrated microwave photonics. J Lightwave Technol, 2014, 32, 3421 doi: 10.1109/JLT.2014.2306676
[144]
Minasian R A. Ultra-wideband and adaptive photonic signal processing of microwave signals. IEEE J Quantum Electron, 2016, 52, 1 doi: 10.1109/JQE.2015.2499729
[145]
Zou X H, Lu B, Pan W, et al. Photonics for microwave measurements. Laser Photonics Rev, 2016, 10, 711 doi: 10.1002/lpor.201600019
[146]
Xu K, Wang R X, Dai Y T, et al. Microwave photonics: Radio-over-fiber links, systems, and applications. Photon Res, 2014, 2, B54 doi: 10.1364/PRJ.2.000B54
[147]
Pan S L, Zhu D, Liu S F, et al. Satellite payloads pay off. IEEE Microwave, 2015, 16, 61 doi: 10.1109/MMM.2015.2441619
[148]
Chen H W, Li R Y, Lei C, et al. Photonics-assisted serial channelized radio-frequency measurement system with nyquist-bandwidth detection. IEEE Photonics J, 2014, 6, 1 doi: 10.1109/JPHOT.2014.2366168
[149]
Xie X J, Dai Y T, Ji Y, et al. Broadband photonic radio-frequency channelization based on a 39-GHz optical frequency comb. IEEE Photonics Technol Lett, 2012, 24, 661 doi: 10.1109/LPT.2012.2185787
[150]
Wang W S, Davis R L, Jung T J, et al. Characterization of a coherent optical RF channelizer based on a diffraction grating. IEEE Trans Microw Theory Tech, 2001, 49, 1996 doi: 10.1109/22.954820
[151]
Rhodes W T. Acousto-optic signal processing: Convolution and correlation. Proc IEEE, 1981, 69, 65 doi: 10.1109/PROC.1981.11921
[152]
Hunter D B, Edvell L G, Englund M A. Wideband microwave photonic channelised receiver. 2005 International Topical Meeting on Microwave Photonics, 2005, 249
[153]
Winnall S T, Lindsay A C, Austin M W, et al. A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system. IEEE Trans Microw Theory Tech, 2006, 54, 868 doi: 10.1109/TMTT.2005.863052
[154]
Xu W Y, Zhu D, Pan S L. Coherent photonic radio frequency channelization based on dual coherent optical frequency combs and stimulated Brillouin scattering. Opt Eng, 2016, 55, 046106 doi: 10.1117/1.OE.55.4.046106
[155]
Zou X H, Li W Z, Pan W, et al. Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering. IEEE Trans Microw Theory Tech, 2013, 61, 3470 doi: 10.1109/TMTT.2013.2273892
[156]
Bres C S, Zlatanovic S, Wiberg A O J, et al. Parametric photonic channelized RF receiver. IEEE Photon Technol Lett, 2011, 23, 344 doi: 10.1109/LPT.2011.2105470
[157]
Wiberg A O J, Esman D J, Liu L, et al. Coherent filterless wideband microwave/millimeter-wave channelizer based on broadband parametric mixers. J Lightwave Technol, 2014, 32, 3609 doi: 10.1109/JLT.2014.2320445
[158]
Zou X H, Pan W, Luo B, et al. Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source. Opt Lett, 2010, 35, 438 doi: 10.1364/OL.35.000438
[159]
Volkening F A. Photonic channelized RF receiver employing dense wavelength division multiplexing. U. S. Patent, 724 583 3B1, 2007
[160]
Xie X J, Dai Y T, Xu K, et al. Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators. IEEE Photonics J, 2012, 4, 1196 doi: 10.1109/JPHOT.2012.2207380
[161]
Li Z, Zhang X M, Chi H, et al. A reconfigurable microwave photonic channelized receiver based on dense wavelength division multiplexing using an optical comb. Opt Commun, 2012, 285, 2311 doi: 10.1016/j.optcom.2012.01.023
[162]
Li R Y, Chen H W, Yu Y, et al. Multiple-frequency measurement based on serial photonic channelization using optical wavelength scanning. Opt Lett, 2013, 38, 4781 doi: 10.1364/OL.38.004781
[163]
Hao W H, Dai Y T, Yin F F, et al. Chirped-pulse-based broadband RF channelization implemented by a mode-locked laser and dispersion. Opt Lett, 2017, 42, 5234 doi: 10.1364/OL.42.005234
[164]
Herr T, Hartinger K, Riemensberger J, et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat Photonics, 2012, 6, 480 doi: 10.1038/nphoton.2012.127
[165]
Caspani L, Xiong C, Eggleton B, et al. On-chip sources of quantum correlated and entangled photons. Light Sci Appl, 2017, 6, e17100 doi: 10.1038/lsa.2017.100
[166]
da Ros F, Porto da Silva E, Zibar D, et al. Wavelength conversion of QAM signals in a low loss CMOS compatible spiral waveguide. APL Photonics, 2017, 2, 046105 doi: 10.1063/1.4978945
[167]
Xue X X, Weiner A M. Microwave photonics connected with microresonator frequency combs. Front Optoelectron, 2016, 9, 238 doi: 10.1007/s12200-016-0621-4
[168]
Coen S, Randle H G, Sylvestre T, et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt Lett, 2012, 38, 37 doi: 10.1364/OL.38.000037
[169]
Chembo Y K, Menyuk C R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys Rev A, 2013, 87, 053852 doi: 10.1103/PhysRevA.87.053852
[170]
Guo H, Karpov M, Lucas E, et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat Phys, 2017, 13, 94 doi: 10.1038/nphys3893
[171]
Xue X X, Xuan Y, Wang C, et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Opt Express, 2016, 24, 687 doi: 10.1364/OE.24.000687
[172]
Bernhardt B, Ozawa A, Jacquet P, et al. Cavity-enhanced dual-comb spectroscopy. Nat Photonics, 2010, 4, 55 doi: 10.1038/nphoton.2009.217
[173]
Ideguchi T, Poisson A, Guelachvili G, et al. Adaptive real-time dual-comb spectroscopy. Nat Commun, 2014, 5, 3375 doi: 10.1038/ncomms4375
[174]
Millot G, Pitois S, Yan M, et al. Frequency-agile dual-comb spectroscopy. Nat Photonics, 2016, 10, 27 doi: 10.1038/nphoton.2015.250
[175]
Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy. Science, 2016, 354, 600 doi: 10.1126/science.aah6516
[176]
Pavlov N G, Lihachev G, Koptyaev S, et al. Soliton dual frequency combs in crystalline microresonators. Opt Lett, 2017, 42, 514 doi: 10.1364/OL.42.000514
[177]
Briles T C, Drake T E, Spencer D T, et al. Optical frequency synthesis using a dual-Kerr-microresonator frequency comb. Conference on Lasers and Electro-Optics, 2017, SW4N. 3
[178]
Little B E, Chu S T, Absil P P, et al. Very high-order microring resonator filters for WDM applications. IEEE Photon Technol Lett, 2004, 16, 2263 doi: 10.1109/LPT.2004.834525
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3698 Times PDF downloads: 122 Times Cited by: 0 Times

    History

    Received: 08 February 2021 Revised: Online: Accepted Manuscript: 23 March 2021Uncorrected proof: 25 March 2021Published: 12 April 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Mengxi Tan, Xingyuan Xu, Jiayang Wu, Thach G. Nguyen, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, David J. Moss. Photonic radio frequency channelizers based on Kerr optical micro-combs[J]. Journal of Semiconductors, 2021, 42(4): 041302. doi: 10.1088/1674-4926/42/4/041302 M X Tan, X Y Xu, J Y Wu, T G Nguyen, S T Chu, B E Little, R Morandotti, A Mitchell, D J Moss, Photonic radio frequency channelizers based on Kerr optical micro-combs[J]. J. Semicond., 2021, 42(4): 041302. doi: 10.1088/1674-4926/42/4/041302.Export: BibTex EndNote
      Citation:
      Mengxi Tan, Xingyuan Xu, Jiayang Wu, Thach G. Nguyen, Sai T. Chu, Brent E. Little, Roberto Morandotti, Arnan Mitchell, David J. Moss. Photonic radio frequency channelizers based on Kerr optical micro-combs[J]. Journal of Semiconductors, 2021, 42(4): 041302. doi: 10.1088/1674-4926/42/4/041302

      M X Tan, X Y Xu, J Y Wu, T G Nguyen, S T Chu, B E Little, R Morandotti, A Mitchell, D J Moss, Photonic radio frequency channelizers based on Kerr optical micro-combs[J]. J. Semicond., 2021, 42(4): 041302. doi: 10.1088/1674-4926/42/4/041302.
      Export: BibTex EndNote

      Photonic radio frequency channelizers based on Kerr optical micro-combs

      doi: 10.1088/1674-4926/42/4/041302
      More Information
      • Author Bio:

        Mengxi Tan received a B.Eng. degree from Changchun University of Science and Technology in opto-electronic information engineering in 2014 and a M.S. degree in optical engineering in 2017 from Beijing University of Aeronautics and Astronautics. She is currently working toward her Ph.D. degree in Professor Moss’s group at Swinburne University of Technology, Melbourne, Australia. Her current research interests include integrated nonlinear optics, RF and microwave photonics, ultrahigh bandwidth optical communications and optical neural networks. She has a paper in Nature (2021) and Nature Communications (2020). She is a Student Member of the IEEE Photonics Society and the Optical Society of America

        David J. Moss is founding Director of the Optical Sciences Centre at Swinburne University of Technology in Melbourne, Australia. From 2016 to 2020 he was Director of the Centre for Microphotonics at Swinburne. From 2004 to 2014 he was with the University of Sydney and before that was a manager and senior scientist at JDS Uniphase in Ottawa Canada from 1998–2003. He received his PhD from the University of Toronto in Physics and BSc from the University of Waterloo. He currently has over 20 000 citations on Google Scholar with an h index of 92. He is a Fellow of the IEEE, OSA and SPIE

      • Corresponding author: dmoss@swin.edu.au
      • Received Date: 2021-02-08
      • Published Date: 2021-04-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return