COMMENTS AND OPINIONS

Over 1 cm2 flexible organic solar cells

Wei Pan1, Yunfei Han1, Zhenguo Wang1, Qun Luo1, , Changqi Ma1, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Qun Luo, qluo2011@sinano.ac.cn; Changqi Ma, cqma2011@sinano.ac.cn; Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Qu T Y, Zuo L J, Chen J D, et al. Biomimetic electrodes for flexible organic solar cells with efficiencies over 16%. Adv Opt Mater, 2020, 8, 2000669 doi: 10.1002/adom.202000669
[2]
Sun Y N, Chang M J, Meng L X, et al. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat Electron, 2019, 2, 513 doi: 10.1038/s41928-019-0315-1
[3]
Wang Z, Han Y, Yan L, et al. High power conversion efficiency of 13.61% for 1 cm2 flexible polymer solar cells based on patternable and mass-producible gravure-printed silver nanowire electrodes. Adv Funct Mater, 2020, 2007276 doi: 10.1002/adfm.202007276
[4]
Wang G D, Zhang J Q, Yang C, et al. Synergistic optimization enables large-area flexible organic solar cells to maintain over 98% PCE of the small-area rigid devices. Adv Mater, 2020, 32, 2005153 doi: 10.1002/adma.202005153
[5]
Chen Z, Cotterell B, Wang W. The fracture of brittle thin films on compliant substrates in flexible displays. Eng Fract Mech, 2002, 69, 597 doi: 10.1016/S0013-7944(01)00104-7
[6]
Cao W R, Li J, Chen H Z, et al. Transparent electrodes for organic photoelectronic devices: A review. J Photonics Energy, 2014, 4, 040990 doi: 10.1117/1.JPE.4.040990
[7]
Galagan Y, Zimmermann B, Coenen E W C, et al. Current collecting grids for ITO-free solar cells. Adv Energy Mater, 2012, 2, 103 doi: 10.1002/aenm.201100552
[8]
Andersen T R, Dam H F, Hosel M, et al. Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules. Energy Environ Sci, 2014, 7, 2925 doi: 10.1039/C4EE01223B
[9]
Galagan Y, Coenen E W C, Sabik S, et al. Evaluation of ink-jet printed current collecting grids and busbars for ITO-free organic solar cells. Sol Energy Mater Sol Cells, 2012, 104, 32 doi: 10.1016/j.solmat.2012.04.039
[10]
Mao L, Chen Q, Li Y W, et al. Flexible silver grid/PEDOT:PSS hybrid electrodes for large area inverted polymer solar cells. Nano Energy, 2014, 10, 259 doi: 10.1016/j.nanoen.2014.09.007
[11]
Li Y W, Mao L, Gao Y L, et al. ITO-free photovoltaic cell utilizing a high-resolution silver grid current collecting layer. Sol Energy Mater Sol Cells, 2013, 113, 85 doi: 10.1016/j.solmat.2013.01.043
[12]
Tan L C, Wang Y L, Zhang J W, et al. Highly efficient flexible polymer solar cells with robust mechanical stability. Adv Sci, 2019, 6, 1801180 doi: 10.1002/advs.201801180
[13]
Wu Q, Guo J, Sun R, et al. Slot-die printed non-fullerene organic solar cells with the highest efficiency of 12.9% for low-cost pv-driven water splitting. Nano Energy, 2019, 61, 559 doi: 10.1016/j.nanoen.2019.04.091
[14]
Chen X L, Guo W R, Xie L M, et al. Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications. ACS Appl Mater Interfaces, 2017, 9, 37048 doi: 10.1021/acsami.7b11779
[15]
Chen X L, Nie S H, Guo W R, et al. Printable high-aspect ratio and high-resolution Cu grid flexible transparent conductive film with figure of merit over 80000. Adv Electron Mater, 2019, 5, 1800991 doi: 10.1002/aelm.201800991
[16]
Han Y, Chen X, Wei J, et al. Efficiency above 12% for 1 cm2 flexible organic solar cells with Ag/Cu grid transparent conducting electrode. Adv Sci, 2019, 6, 1901490 doi: 10.1002/advs.201901490
[17]
Tang H H, Feng H R, Wang H K, et al. Highly conducting mxene-silver nanowire transparent electrodes for flexible organic solar cells. ACS Appl Mater Interfaces, 2019, 11, 25330 doi: 10.1021/acsami.9b04113
[18]
Chen X B, Xu G Y, Zeng G, et al. Realizing ultrahigh mechanical flexibility and > 15% efficiency of flexible organic solar cells via a "welding" flexible transparent electrode. Adv Mater, 2020, 32, 198478 doi: 10.1002/adma.201908478
[19]
Dong X Y, Shi P, Sun L L, et al. Flexible nonfullerene organic solar cells based on embedded silver nanowires with an efficiency up to 11.6%. J Mater Chem A, 2019, 7, 1989 doi: 10.1039/C8TA11378E
[20]
Zhang Y X, Fang J, Li W, et al. Synergetic transparent electrode architecture for efficient non-fullerene flexible organic solar cells with >12% efficiency. ACS Nano, 2019, 13, 4686 doi: 10.1021/acsnano.9b00970
[21]
Kang S B, Noh Y J, Na S I, et al. Brush-painted flexible organic solar cells using highly transparent and flexible Ag nanowire network electrodes. Sol Energy Mater Sol Cells, 2014, 122, 152 doi: 10.1016/j.solmat.2013.11.036
[22]
Lu H F, Ren X G, Ouyang D, et al. Emerging novel metal electrodes for photovoltaic applications. Small, 2018, 14, 1703140 doi: 10.1002/smll.201703140
[23]
Kim J, Ouyang D, Lu H F, et al. High performance flexible transparent electrode via one-step multifunctional treatment for Ag nanonetwork composites semi-embedded in low-temperature-processed substrate for highly performed organic photovoltaics. Adv Energy Mater, 2020, 10, 1903919 doi: 10.1002/aenm.201903919
[24]
Han Y W, Jeon S J, Lee H S, et al. Evaporation-free nonfullerene flexible organic solar cell modules manufactured by an all-solution process. Adv Energy Mater, 2019, 9, 1902065 doi: 10.1002/aenm.201902065
[25]
Zhao W C, Li S S, Yao H F, et al. Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc, 2017, 139, 7148 doi: 10.1021/jacs.7b02677
[26]
Yuan J, Zhang Y Q, Zhou L Y, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004
[27]
Meng X, Zhang L, Xie Y, et al. A general approach for lab-to-manufacturing translation on flexible organic solar cells. Adv Mater, 2019, 31, 1903649 doi: 10.1002/adma.201903649
[28]
Huang J, Wang X, Kim Y, et al. High efficiency flexible ITO-free polymer/fullerene photodiodes. Phys Chem Chem Phys, 2006, 8, 3904 doi: 10.1039/b607016g
[29]
Hau S K, Yip H L, Baek N S, et al. Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl Phys Lett, 2008, 92, 253301 doi: 10.1063/1.2945281
[30]
Wang J C, Weng W T, Tsai M Y, et al. Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer. J Mater Chem, 2010, 20, 862 doi: 10.1039/B921396A
[31]
Stec H M, Hatton R A. Plasmon-active nano-aperture window electrodes for organic photovoltaics. Adv Energy Mater, 2013, 3, 193 doi: 10.1002/aenm.201200502
[32]
Jose da Silva W, Kim H P, Rashid bin Mohd Yusoff A, et al. Transparent flexible organic solar cells with 6.87% efficiency manufactured by an all-solution process. Nanoscale, 2013, 5, 9324 doi: 10.1039/c3nr03011c
[33]
Zhao B, He Z, Cheng X, et al. Flexible polymer solar cells with power conversion efficiency of 8.7%. J Mater Chem C, 2014, 2, 5077 doi: 10.1039/c3tc32520b
[34]
Zuo L, Zhang S, Li H, et al. Toward highly efficient large-area ITO-free organic solar cells with a conductance-gradient transparent electrode. Adv Mater, 2015, 27, 6983 doi: 10.1002/adma.201502827
[35]
Song W, Fan X, Xu B, et al. All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency. Adv Mater, 2018, 30, 1800075 doi: 10.1002/adma.201800075
[36]
Kushto G P, Kim W, Kafafi Z H. Flexible organic photovoltaics using conducting polymer electrodes. Appl Phys Lett, 2005, 86, 093502 doi: 10.1063/1.1867568
[37]
Lungenschmied C, Dennler G, Neugebauer H, et al. Flexible, long-lived, large-area, organic solar cells. Sol Energy Mater Sol Cells, 2007, 91, 379 doi: 10.1016/j.solmat.2006.10.013
[38]
Krebs F C, Gevorgyan S A, Alstrup J. A roll-to-roll process to flexible polymer solar cells: Model studies, manufacture and operational stability studies. J Mater Chem, 2009, 19, 5442 doi: 10.1039/b823001c
[39]
Galagan Y, Rubingh J E, Andriessen R, et al. ITO-free flexible organic solar cells with printed current collecting grids. Sol Energy Mater Sol Cells, 2011, 95, 1339 doi: 10.1016/j.solmat.2010.08.011
[40]
Zhang J, Zhao Y, Fang J, et al. Enhancing performance of large-area organic solar cells with thick film via ternary strategy. Small, 2017, 13, 1700388 doi: 10.1002/smll.201700388
[41]
Lin Y, Jin Y, Dong S, et al. Printed nonfullerene organic solar cells with the highest efficiency of 9.5%. Adv Energy Mater, 2018, 8, 1701942 doi: 10.1002/aenm.201701942
[42]
Dennler G, Lungenschmied C, Neugebauer H, et al. Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: basics, encapsulation, and integration. J Mater Res, 2005, 20, 3224 doi: 10.1557/jmr.2005.0399
[43]
Tsakalakos L, Lemaitre N, de Bettignies R, et al. High-efficiency large area flexible organic solar cells. 2008, 7047, 70470K doi: 10.1117/12.795036
[44]
Hösel M, Søndergaard R R, Jørgensen M, et al. Fast inline roll-to-roll printing for indium-tin-oxide-free polymer solar cells using automatic registration. Energy Technol, 2013, 1, 102 doi: 10.1002/ente.201200029
[45]
Carlé J E, Helgesen M, Madsen M V, et al. Upscaling from single cells to modules – fabrication of vacuum- and ITO-free polymer solar cells on flexible substrates with long lifetime. J Mater Chem C, 2014, 2, 1290 doi: 10.1039/C3TC31859A
[46]
Lucera L, Machui F, Kubis P, et al. Highly efficient, large area, roll coated flexible and rigid opv modules with geometric fill factors up to 98.5% processed with commercially available materials. Energy Environ Sci, 2016, 9, 89 doi: 10.1039/C5EE03315B
[47]
Mao L, Tong J H, Xiong S X, et al. Flexible large-area organic tandem solar cells with high defect tolerance and device yield. J Mater Chem A, 2017, 5, 3186 doi: 10.1039/C6TA10106B
[48]
Dong S, Zhang K, Xie B M, et al. High-performance large-area organic solar cells enabled by sequential bilayer processing via nonhalogenated solvents. Adv Energy Mater, 2019, 9, 1802832 doi: 10.1002/aenm.201802832
[49]
Zhao H, Naveed H B, Lin B J, et al. Hot hydrocarbon-solvent slot-die coating enables high-efficiency organic solar cells with temperature-dependent aggregation behavior. Adv Mater, 2020, 32, 2002302 doi: 10.1002/adma.202002302
[50]
Ji G Q, Zhao W C, Wei J F, et al. 12.88% efficiency in doctor-blade coated organic solar cells through optimizing the surface morphology of a ZnO cathode buffer layer. J Mater Chem A, 2019, 7, 212 doi: 10.1039/C8TA08873J
[51]
Kim Y Y, Yang T Y, Suhonen R, et al. Gravure-printed flexible perovskite solar cells: Toward roll-to-roll manufacturing. Adv Sci, 2019, 6, 1802094 doi: 10.1002/advs.201802094
Fig. 1.  (Color online) Transparency and sheet resistance of the transparent conducting electrodes (reproduced with copyright permission from SPIE publisher)[6].

Fig. 2.  (Color online) (a) Photographs of the large-area flexible OSCs. (b) J–V characteristics and (c) EQE spectra of the large-area flexible solar cells with PET/Ag/Cu grid electrodes. (d) J–V characteristics and (e) EQE spectra of the large-area flexible solar cells with PET/ITO electrodes (reproduced with copyright permission from Wiley-VCH)[16].

Fig. 3.  (Color online) (a) Sketch of spin coating and slot-die coating. (b) The small-area rigid device and large-area flexible device. (c) The chemical structures of PTB7-Th, PC71BM, and COi8DFIC. (d) Optical microscopy and SEM images of the PET/silver-grid substrate. (e) Comparison of this work with reported PCEs for flexible devices made by slot-die coating (reproduced with copyright permission from Wiley-VCH)[4].

Fig. 4.  (Color online) (a) Schematic diagram for the high-speed gravure printing process used to print silver nanowire electrodes. (b) Efficiency distribution diagram for the devices with PET/AgNWs-GV, PET/AgNWs-SP, and glass/ITO electrodes (reproduced with copyright permission from Wiley-VCH)[3].

Fig. 5.  (Color online) The PCEs for small-area OSCs[1, 2, 2835], large-area OSCs (>1 cm2)[3, 10, 11, 16, 3641], and flexible OSC modules[4, 27, 37, 38, 4247].

Table 1.   The performance data for large-area flexible OSCs (> 1 cm2) (Fig. 5).

YearArea (cm2)PCE (%)ElectrodeDevice structureFabrication techniqueRef.
20051.21PEDOT:PSSPEDOT:PSS/α-NPD/C60/BCP/Mg:AlSpin coating[36]
2007101.6ITOPET/ITO/PEDOT:PSS/P3HT:PCBM/AlDoctor blading[37]
200912.7ITOPET/ITO/ZnO/P3HT:PCBM/PEDOT:PSS/SilverScreen printing[38]
201041.93Ag gridPEN/Ag grid/HC-PEDOT/P3HT:PCBM/LiF/AlSpin coating[39]
20131.211.36Ag gridPET/Ag grid/PH1000/PEDOT:PSS-4083/P3HT:PCBB-C8/LiF/AlSpin coating[11]
20141.215.85Ag gridPET/Ag grid/PH1000/ZnO/PFN/PTB7:PC71BM/MoO3/AgSpin coating[10]
201547.09AgPET/Ag/PFN/PTB7-Th:PC71BM/MoO3/Ag/MoO3Spin coating[34]
20171.258.28Ag gridPET/Ag grid/PTB7-Th:p-DTS(FBTTH2)2:PC71BM/MoO3/AgSlot-die[40]
20182.037.6Ag/TiOxAg/TiOx/ZnO/PTB7-Th:ITIC/PEDOT:PSSDoctor blading[41]
2019112.26Ag/Cu gridPET/Ag/Cu grid/E100/ZnO/PBDB-TF:IT-4F/MoO3/AlSpin coating[16]
2020113.6Ag NWsPET/Ag NWs/ZnO/PM6:Y6/MoO3/AlSpin coating[3]
DownLoad: CSV

Table 2.   The performance data for flexible OSC modules (Fig. 5).

YearArea (cm2)PCE (%)ElectrodeDevice structureFabrication techniqueRef.
200516.80.04PEDOT:PSSPET/PEDOT:PSS/MDMO-PPV:PCBM/AlDoctor blading[42]
200717.11.5ITOPET/ITO/PEDOT:PSS/P3HT:PCBM/AlDoctor blading[37]
2008532.52ITOPET/ITO/ PEDOT:PSS/P3HT:PCBM/ LiF/AlSpin coating[43]
20091202.1ITOPET/ITO/ZnO/P3HT:PCBM/PEDOT:PSS/SilverScreen printing[38]
2013661.6Ag gridPET/Ag grid/PEDOT:PSS/ZnO/P3HT:PCBM/PEDOT:PSS/Ag gridSlot-die[44]
201483Ag gridPET/Ag grid/PEDOT/ZnO/PDTSTTz-4:PCBM/PEDOT/AgSlot-die[45]
2016354.2FTOPET/FTO/PBTZT-stat-BDTT-8:PCBM/PEDOT:PSS/AgSlot-die[46]
201710.56.5AgPES/Ag/PEI/P3HT:ICBA/PEI:m-PEDOT:PSS/PTB7-Th:PCBM/PEDOT:PSS/Ag gridSpin coating[47]
2019158.9ITOPET/ITO/ZnO/active layer (PTB7-Th: PC71BM or PBDB-T: ITIC)/MoO3/AgSlot-die[27]
20202510.09Ag gridPET/Ag grid/ZnO/PTB7-Th:COi8DFIC:PC71BM/MoO3/AgSlot-die[4]
DownLoad: CSV
[1]
Qu T Y, Zuo L J, Chen J D, et al. Biomimetic electrodes for flexible organic solar cells with efficiencies over 16%. Adv Opt Mater, 2020, 8, 2000669 doi: 10.1002/adom.202000669
[2]
Sun Y N, Chang M J, Meng L X, et al. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat Electron, 2019, 2, 513 doi: 10.1038/s41928-019-0315-1
[3]
Wang Z, Han Y, Yan L, et al. High power conversion efficiency of 13.61% for 1 cm2 flexible polymer solar cells based on patternable and mass-producible gravure-printed silver nanowire electrodes. Adv Funct Mater, 2020, 2007276 doi: 10.1002/adfm.202007276
[4]
Wang G D, Zhang J Q, Yang C, et al. Synergistic optimization enables large-area flexible organic solar cells to maintain over 98% PCE of the small-area rigid devices. Adv Mater, 2020, 32, 2005153 doi: 10.1002/adma.202005153
[5]
Chen Z, Cotterell B, Wang W. The fracture of brittle thin films on compliant substrates in flexible displays. Eng Fract Mech, 2002, 69, 597 doi: 10.1016/S0013-7944(01)00104-7
[6]
Cao W R, Li J, Chen H Z, et al. Transparent electrodes for organic photoelectronic devices: A review. J Photonics Energy, 2014, 4, 040990 doi: 10.1117/1.JPE.4.040990
[7]
Galagan Y, Zimmermann B, Coenen E W C, et al. Current collecting grids for ITO-free solar cells. Adv Energy Mater, 2012, 2, 103 doi: 10.1002/aenm.201100552
[8]
Andersen T R, Dam H F, Hosel M, et al. Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules. Energy Environ Sci, 2014, 7, 2925 doi: 10.1039/C4EE01223B
[9]
Galagan Y, Coenen E W C, Sabik S, et al. Evaluation of ink-jet printed current collecting grids and busbars for ITO-free organic solar cells. Sol Energy Mater Sol Cells, 2012, 104, 32 doi: 10.1016/j.solmat.2012.04.039
[10]
Mao L, Chen Q, Li Y W, et al. Flexible silver grid/PEDOT:PSS hybrid electrodes for large area inverted polymer solar cells. Nano Energy, 2014, 10, 259 doi: 10.1016/j.nanoen.2014.09.007
[11]
Li Y W, Mao L, Gao Y L, et al. ITO-free photovoltaic cell utilizing a high-resolution silver grid current collecting layer. Sol Energy Mater Sol Cells, 2013, 113, 85 doi: 10.1016/j.solmat.2013.01.043
[12]
Tan L C, Wang Y L, Zhang J W, et al. Highly efficient flexible polymer solar cells with robust mechanical stability. Adv Sci, 2019, 6, 1801180 doi: 10.1002/advs.201801180
[13]
Wu Q, Guo J, Sun R, et al. Slot-die printed non-fullerene organic solar cells with the highest efficiency of 12.9% for low-cost pv-driven water splitting. Nano Energy, 2019, 61, 559 doi: 10.1016/j.nanoen.2019.04.091
[14]
Chen X L, Guo W R, Xie L M, et al. Embedded Ag/Ni metal-mesh with low surface roughness as transparent conductive electrode for optoelectronic applications. ACS Appl Mater Interfaces, 2017, 9, 37048 doi: 10.1021/acsami.7b11779
[15]
Chen X L, Nie S H, Guo W R, et al. Printable high-aspect ratio and high-resolution Cu grid flexible transparent conductive film with figure of merit over 80000. Adv Electron Mater, 2019, 5, 1800991 doi: 10.1002/aelm.201800991
[16]
Han Y, Chen X, Wei J, et al. Efficiency above 12% for 1 cm2 flexible organic solar cells with Ag/Cu grid transparent conducting electrode. Adv Sci, 2019, 6, 1901490 doi: 10.1002/advs.201901490
[17]
Tang H H, Feng H R, Wang H K, et al. Highly conducting mxene-silver nanowire transparent electrodes for flexible organic solar cells. ACS Appl Mater Interfaces, 2019, 11, 25330 doi: 10.1021/acsami.9b04113
[18]
Chen X B, Xu G Y, Zeng G, et al. Realizing ultrahigh mechanical flexibility and > 15% efficiency of flexible organic solar cells via a "welding" flexible transparent electrode. Adv Mater, 2020, 32, 198478 doi: 10.1002/adma.201908478
[19]
Dong X Y, Shi P, Sun L L, et al. Flexible nonfullerene organic solar cells based on embedded silver nanowires with an efficiency up to 11.6%. J Mater Chem A, 2019, 7, 1989 doi: 10.1039/C8TA11378E
[20]
Zhang Y X, Fang J, Li W, et al. Synergetic transparent electrode architecture for efficient non-fullerene flexible organic solar cells with >12% efficiency. ACS Nano, 2019, 13, 4686 doi: 10.1021/acsnano.9b00970
[21]
Kang S B, Noh Y J, Na S I, et al. Brush-painted flexible organic solar cells using highly transparent and flexible Ag nanowire network electrodes. Sol Energy Mater Sol Cells, 2014, 122, 152 doi: 10.1016/j.solmat.2013.11.036
[22]
Lu H F, Ren X G, Ouyang D, et al. Emerging novel metal electrodes for photovoltaic applications. Small, 2018, 14, 1703140 doi: 10.1002/smll.201703140
[23]
Kim J, Ouyang D, Lu H F, et al. High performance flexible transparent electrode via one-step multifunctional treatment for Ag nanonetwork composites semi-embedded in low-temperature-processed substrate for highly performed organic photovoltaics. Adv Energy Mater, 2020, 10, 1903919 doi: 10.1002/aenm.201903919
[24]
Han Y W, Jeon S J, Lee H S, et al. Evaporation-free nonfullerene flexible organic solar cell modules manufactured by an all-solution process. Adv Energy Mater, 2019, 9, 1902065 doi: 10.1002/aenm.201902065
[25]
Zhao W C, Li S S, Yao H F, et al. Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc, 2017, 139, 7148 doi: 10.1021/jacs.7b02677
[26]
Yuan J, Zhang Y Q, Zhou L Y, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004
[27]
Meng X, Zhang L, Xie Y, et al. A general approach for lab-to-manufacturing translation on flexible organic solar cells. Adv Mater, 2019, 31, 1903649 doi: 10.1002/adma.201903649
[28]
Huang J, Wang X, Kim Y, et al. High efficiency flexible ITO-free polymer/fullerene photodiodes. Phys Chem Chem Phys, 2006, 8, 3904 doi: 10.1039/b607016g
[29]
Hau S K, Yip H L, Baek N S, et al. Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl Phys Lett, 2008, 92, 253301 doi: 10.1063/1.2945281
[30]
Wang J C, Weng W T, Tsai M Y, et al. Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer. J Mater Chem, 2010, 20, 862 doi: 10.1039/B921396A
[31]
Stec H M, Hatton R A. Plasmon-active nano-aperture window electrodes for organic photovoltaics. Adv Energy Mater, 2013, 3, 193 doi: 10.1002/aenm.201200502
[32]
Jose da Silva W, Kim H P, Rashid bin Mohd Yusoff A, et al. Transparent flexible organic solar cells with 6.87% efficiency manufactured by an all-solution process. Nanoscale, 2013, 5, 9324 doi: 10.1039/c3nr03011c
[33]
Zhao B, He Z, Cheng X, et al. Flexible polymer solar cells with power conversion efficiency of 8.7%. J Mater Chem C, 2014, 2, 5077 doi: 10.1039/c3tc32520b
[34]
Zuo L, Zhang S, Li H, et al. Toward highly efficient large-area ITO-free organic solar cells with a conductance-gradient transparent electrode. Adv Mater, 2015, 27, 6983 doi: 10.1002/adma.201502827
[35]
Song W, Fan X, Xu B, et al. All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency. Adv Mater, 2018, 30, 1800075 doi: 10.1002/adma.201800075
[36]
Kushto G P, Kim W, Kafafi Z H. Flexible organic photovoltaics using conducting polymer electrodes. Appl Phys Lett, 2005, 86, 093502 doi: 10.1063/1.1867568
[37]
Lungenschmied C, Dennler G, Neugebauer H, et al. Flexible, long-lived, large-area, organic solar cells. Sol Energy Mater Sol Cells, 2007, 91, 379 doi: 10.1016/j.solmat.2006.10.013
[38]
Krebs F C, Gevorgyan S A, Alstrup J. A roll-to-roll process to flexible polymer solar cells: Model studies, manufacture and operational stability studies. J Mater Chem, 2009, 19, 5442 doi: 10.1039/b823001c
[39]
Galagan Y, Rubingh J E, Andriessen R, et al. ITO-free flexible organic solar cells with printed current collecting grids. Sol Energy Mater Sol Cells, 2011, 95, 1339 doi: 10.1016/j.solmat.2010.08.011
[40]
Zhang J, Zhao Y, Fang J, et al. Enhancing performance of large-area organic solar cells with thick film via ternary strategy. Small, 2017, 13, 1700388 doi: 10.1002/smll.201700388
[41]
Lin Y, Jin Y, Dong S, et al. Printed nonfullerene organic solar cells with the highest efficiency of 9.5%. Adv Energy Mater, 2018, 8, 1701942 doi: 10.1002/aenm.201701942
[42]
Dennler G, Lungenschmied C, Neugebauer H, et al. Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells: basics, encapsulation, and integration. J Mater Res, 2005, 20, 3224 doi: 10.1557/jmr.2005.0399
[43]
Tsakalakos L, Lemaitre N, de Bettignies R, et al. High-efficiency large area flexible organic solar cells. 2008, 7047, 70470K doi: 10.1117/12.795036
[44]
Hösel M, Søndergaard R R, Jørgensen M, et al. Fast inline roll-to-roll printing for indium-tin-oxide-free polymer solar cells using automatic registration. Energy Technol, 2013, 1, 102 doi: 10.1002/ente.201200029
[45]
Carlé J E, Helgesen M, Madsen M V, et al. Upscaling from single cells to modules – fabrication of vacuum- and ITO-free polymer solar cells on flexible substrates with long lifetime. J Mater Chem C, 2014, 2, 1290 doi: 10.1039/C3TC31859A
[46]
Lucera L, Machui F, Kubis P, et al. Highly efficient, large area, roll coated flexible and rigid opv modules with geometric fill factors up to 98.5% processed with commercially available materials. Energy Environ Sci, 2016, 9, 89 doi: 10.1039/C5EE03315B
[47]
Mao L, Tong J H, Xiong S X, et al. Flexible large-area organic tandem solar cells with high defect tolerance and device yield. J Mater Chem A, 2017, 5, 3186 doi: 10.1039/C6TA10106B
[48]
Dong S, Zhang K, Xie B M, et al. High-performance large-area organic solar cells enabled by sequential bilayer processing via nonhalogenated solvents. Adv Energy Mater, 2019, 9, 1802832 doi: 10.1002/aenm.201802832
[49]
Zhao H, Naveed H B, Lin B J, et al. Hot hydrocarbon-solvent slot-die coating enables high-efficiency organic solar cells with temperature-dependent aggregation behavior. Adv Mater, 2020, 32, 2002302 doi: 10.1002/adma.202002302
[50]
Ji G Q, Zhao W C, Wei J F, et al. 12.88% efficiency in doctor-blade coated organic solar cells through optimizing the surface morphology of a ZnO cathode buffer layer. J Mater Chem A, 2019, 7, 212 doi: 10.1039/C8TA08873J
[51]
Kim Y Y, Yang T Y, Suhonen R, et al. Gravure-printed flexible perovskite solar cells: Toward roll-to-roll manufacturing. Adv Sci, 2019, 6, 1802094 doi: 10.1002/advs.201802094
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2944 Times PDF downloads: 159 Times Cited by: 0 Times

    History

    Received: 06 February 2021 Revised: Online: Accepted Manuscript: 08 February 2021Uncorrected proof: 08 February 2021Published: 01 May 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wei Pan, Yunfei Han, Zhenguo Wang, Qun Luo, Changqi Ma, Liming Ding. Over 1 cm2 flexible organic solar cells[J]. Journal of Semiconductors, 2021, 42(5): 050301. doi: 10.1088/1674-4926/42/5/050301 W Pan, Y F Han, Z G Wang, Q Luo, C Q Ma, L M Ding, Over 1 cm2 flexible organic solar cells[J]. J. Semicond., 2021, 42(5): 050301. doi: 10.1088/1674-4926/42/5/050301.Export: BibTex EndNote
      Citation:
      Wei Pan, Yunfei Han, Zhenguo Wang, Qun Luo, Changqi Ma, Liming Ding. Over 1 cm2 flexible organic solar cells[J]. Journal of Semiconductors, 2021, 42(5): 050301. doi: 10.1088/1674-4926/42/5/050301

      W Pan, Y F Han, Z G Wang, Q Luo, C Q Ma, L M Ding, Over 1 cm2 flexible organic solar cells[J]. J. Semicond., 2021, 42(5): 050301. doi: 10.1088/1674-4926/42/5/050301.
      Export: BibTex EndNote

      Over 1 cm2 flexible organic solar cells

      doi: 10.1088/1674-4926/42/5/050301
      More Information
      • Author Bio:

        Wei Pan is a MS student in Suzhou Institute of Nano-Tech and Nano-Bionics (CAS). He obtained his BS from Wuhan Institute of Technology in 2018. His work focuses on interface engineering in flexible/large-area organic solar cells

        Qun Luo received her PhD form Zhejiang University in 2011. Then she worked as a postdoc at Suzhou Institute of Nano-Tech and Nano-Bionics (CAS). Currently she is an associate professor at Suzhou Institute of Nano-Tech and Nano-Bionics. Her research interests include inks for printed photovoltaics and interface engineering in flexible/large-area printed solar cells

        Changqi Ma received his PhD at the Technical Institute of Physics and Chemistry (CAS) with Professor Baowen Zhang. After that, he worked as a postdoc at Heriot-Watt University (UK) with Dr. Graeme Cooke, and then he joined Peter Bäuerle group at University of Ulm in 2004 as a Humboldt fellow. From January 2007 to May 2011, he did his Habilitation at Institute of Organic Chemistry II and Advanced Materials, Ulm University. In June 2011, he joined Suzhou Institute of Nano-Tech and Nano-Bionics as a professor. His research focuses on printing processing and stability of organic solar cells

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a professor. His research focuses on functional materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editors for Science Bulletin and Journal of Semiconductors

      • Corresponding author: qluo2011@sinano.ac.cncqma2011@sinano.ac.cnding@nanoctr.cn
      • Received Date: 2021-02-06
      • Published Date: 2021-05-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return