SHORT COMMUNICATION

Efficient and photostable CsPbI2Br solar cells realized by adding PMMA

Yanbo Shang1, Zhimin Fang1, 2, Wanpei Hu1, Chuantian Zuo2, Bairu Li1, Xingcheng Li1, Mingtai Wang3, Liming Ding2, and Shangfeng Yang1,

+ Author Affiliations

 Corresponding author: Liming Ding, ding@nanoctr.cn; Shangfeng Yang, sfyang@ustc.edu.cn

PDF

Turn off MathJax



[1]
Jia X, Zuo C, Tao S, et al. CsPb(IxBr1–x)3 solar cells. Sci Bull, 2019, 64, 1532 doi: 10.1016/j.scib.2019.08.017
[2]
Hwang T, Lee B, Kim J, et al. From nanostructural evolution to dynamic interplay of constituents: perspectives for perovskite solar cells. Adv Mater, 2018, 30, e1704208 doi: 10.1002/adma.201704208
[3]
Li M, Liu S, Qiu F, et al. High-efficiency CsPbI2Br perovskite solar cells with dopant-free poly(3-hexylthiophene) hole transporting layers. Adv Energy Mater, 2020, 10, 2000501 doi: 10.1002/aenm.202000501
[4]
Shen E, Chen J, Tian Y, et al. Interfacial energy level tuning for efficient and thermostable CsPbI2Br perovskite solar cells. Adv Sci, 2020, 7, 1901952 doi: 10.1002/advs.201901952
[5]
Chen W, Chen H, Xu G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule, 2019, 3, 191 doi: 10.1016/j.joule.2018.10.011
[6]
Duan C, Cui J, Zhang M, et al. Precursor engineering for ambient-compatible antisolvent-free fabrication of high-efficiency CsPbI2Br perovskite solar cells. Adv Energy Mater, 2020, 10, 2000691 doi: 10.1002/aenm.202000691
[7]
Han Y, Zhao H, Duan C, et al. Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%. Adv Funct Mater, 2020, 30, 1909972 doi: 10.1002/adfm.201909972
[8]
Xiang W, Wang W, Kubicki D, et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule, 2019, 3, 205 doi: 10.1016/j.joule.2018.10.008
[9]
Wang W, Wang R, Wang Z, et al. Tailored phase transformation of CsPbI2Br films by Copper(ii) bromide for high-performance all-inorganic perovskite solar cells. Nano Lett, 2019, 19, 5176 doi: 10.1021/acs.nanolett.9b01553
[10]
Liu C, Li W, Li H, et al. Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells. Adv Energy Mater, 2019, 9, 1803572 doi: 10.1002/aenm.201803572
[11]
Zhang T, Li H, Liu S, et al. Low-temperature stable α-phase inorganic perovskite compounds via crystal cross-linking. J Phys Chem Lett, 2019, 10, 200 doi: 10.1021/acs.jpclett.8b03481
[12]
Zhao H, Yang S, Han Y, et al. A high mobility conjugated polymer enables air and thermally stable CsPbI2Br perovskite solar cells with an efficiency exceeding 15%. Adv Mater Technol, 2019, 4, 1900311 doi: 10.1002/admt.201900311
[13]
Fu S, Zhang W, Li X, et al. Dual-protection strategy for high-efficiency and stable CsPbI2Br inorganic perovskite solar cells. ACS Energy Lett, 2020, 5, 676 doi: 10.1021/acsenergylett.9b02716
[14]
Liu C, He J, Wu M, et al. All-inorganic CsPbI2Br perovskite solar cell with open-circuit voltage over 1.3 V by balancing electron and hole transport. Sol RRL, 2020, 4, 2000016 doi: 10.1002/solr.202000016
[15]
Mali S, Patil J, Shinde P, et al. Fully air-processed dynamic hot-air assisted M:CsPbI2Br (M: Eu2+, In3+) for stable inorganic perovskite solar cells. Matter, 2021, 4, 1 doi: 10.1016/j.matt.2020.11.008
[16]
Beal R, Slotcavage D, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett, 2016, 7, 746 doi: 10.1021/acs.jpclett.6b00002
[17]
Yan L, Xue Q, Liu M, et al. Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%. Adv Mater, 2018, 30, e1802509 doi: 10.1002/adma.201802509
[18]
Tian J, Xue Q, Tang X, et al. Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability. Adv Mater, 2019, 31, e1901152 doi: 10.1002/adma.201901152
[19]
Xiao Q, Tian J, Xue Q, et al. Squaraine-based polymeric hole-transporting materials with comprehensive passivation effects for efficient all-inorganic perovskite solar cells. Angew Chem Int Ed, 2019, 58, 17724 doi: 10.1002/anie.201907331
[20]
Zai H, Zhang D, Li L, et al. Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport. J Mater Chem A, 2018, 6, 23602 doi: 10.1039/C8TA09859J
[21]
Bi D, Yi C, Luo J, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat Energy, 2016, 1, 16142 doi: 10.1038/nenergy.2016.142
[22]
Li B, Zhen J, Wan Y, et al. Anchoring fullerene onto perovskite film via grafting pyridine toward enhanced electron transport in high-efficiency solar cells. ACS Appl Mater Interfaces, 2018, 10, 32471 doi: 10.1021/acsami.8b11459
[23]
Wang J, Zhang J, Zhou Y, et al. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat Commun, 2020, 11, 177 doi: 10.1038/s41467-019-13909-5
[24]
Rao H, Ye S, Gu F, et al. Morphology controlling of all-inorganic perovskite at low temperature for efficient rigid and flexible solar cells. Adv Energy Mater, 2018, 8, 1800758 doi: 10.1002/aenm.201800758
[25]
Slotcavage D, Karunadasa H, McGehee M, et al. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett, 2016, 1, 1199 doi: 10.1021/acsenergylett.6b00495
Fig. 1.  (Color online) (a) Cross-section SEM image for CsPbI2Br solar cell. (b) Schematic illustration of perovskite crystal with and without PMMA. (c) Dark current–voltage curves for the electron-only devices with and without PMMA. (d) Stabilized power output (SPO) of CsPbI2Br device with PMMA. (e) Steady-state PL spectra for CsPbI2Br films from different fabrication process (annealed at 100 °C). (f) Steady-state PL spectra for CsPbI2Br films with PMMA before and after illumination.

Fig. 2.  (Color online) The proposed mechanism for the elimination of phase segregation in CsPbI2Br film by PMMA.

[1]
Jia X, Zuo C, Tao S, et al. CsPb(IxBr1–x)3 solar cells. Sci Bull, 2019, 64, 1532 doi: 10.1016/j.scib.2019.08.017
[2]
Hwang T, Lee B, Kim J, et al. From nanostructural evolution to dynamic interplay of constituents: perspectives for perovskite solar cells. Adv Mater, 2018, 30, e1704208 doi: 10.1002/adma.201704208
[3]
Li M, Liu S, Qiu F, et al. High-efficiency CsPbI2Br perovskite solar cells with dopant-free poly(3-hexylthiophene) hole transporting layers. Adv Energy Mater, 2020, 10, 2000501 doi: 10.1002/aenm.202000501
[4]
Shen E, Chen J, Tian Y, et al. Interfacial energy level tuning for efficient and thermostable CsPbI2Br perovskite solar cells. Adv Sci, 2020, 7, 1901952 doi: 10.1002/advs.201901952
[5]
Chen W, Chen H, Xu G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule, 2019, 3, 191 doi: 10.1016/j.joule.2018.10.011
[6]
Duan C, Cui J, Zhang M, et al. Precursor engineering for ambient-compatible antisolvent-free fabrication of high-efficiency CsPbI2Br perovskite solar cells. Adv Energy Mater, 2020, 10, 2000691 doi: 10.1002/aenm.202000691
[7]
Han Y, Zhao H, Duan C, et al. Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%. Adv Funct Mater, 2020, 30, 1909972 doi: 10.1002/adfm.201909972
[8]
Xiang W, Wang W, Kubicki D, et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule, 2019, 3, 205 doi: 10.1016/j.joule.2018.10.008
[9]
Wang W, Wang R, Wang Z, et al. Tailored phase transformation of CsPbI2Br films by Copper(ii) bromide for high-performance all-inorganic perovskite solar cells. Nano Lett, 2019, 19, 5176 doi: 10.1021/acs.nanolett.9b01553
[10]
Liu C, Li W, Li H, et al. Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells. Adv Energy Mater, 2019, 9, 1803572 doi: 10.1002/aenm.201803572
[11]
Zhang T, Li H, Liu S, et al. Low-temperature stable α-phase inorganic perovskite compounds via crystal cross-linking. J Phys Chem Lett, 2019, 10, 200 doi: 10.1021/acs.jpclett.8b03481
[12]
Zhao H, Yang S, Han Y, et al. A high mobility conjugated polymer enables air and thermally stable CsPbI2Br perovskite solar cells with an efficiency exceeding 15%. Adv Mater Technol, 2019, 4, 1900311 doi: 10.1002/admt.201900311
[13]
Fu S, Zhang W, Li X, et al. Dual-protection strategy for high-efficiency and stable CsPbI2Br inorganic perovskite solar cells. ACS Energy Lett, 2020, 5, 676 doi: 10.1021/acsenergylett.9b02716
[14]
Liu C, He J, Wu M, et al. All-inorganic CsPbI2Br perovskite solar cell with open-circuit voltage over 1.3 V by balancing electron and hole transport. Sol RRL, 2020, 4, 2000016 doi: 10.1002/solr.202000016
[15]
Mali S, Patil J, Shinde P, et al. Fully air-processed dynamic hot-air assisted M:CsPbI2Br (M: Eu2+, In3+) for stable inorganic perovskite solar cells. Matter, 2021, 4, 1 doi: 10.1016/j.matt.2020.11.008
[16]
Beal R, Slotcavage D, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett, 2016, 7, 746 doi: 10.1021/acs.jpclett.6b00002
[17]
Yan L, Xue Q, Liu M, et al. Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%. Adv Mater, 2018, 30, e1802509 doi: 10.1002/adma.201802509
[18]
Tian J, Xue Q, Tang X, et al. Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability. Adv Mater, 2019, 31, e1901152 doi: 10.1002/adma.201901152
[19]
Xiao Q, Tian J, Xue Q, et al. Squaraine-based polymeric hole-transporting materials with comprehensive passivation effects for efficient all-inorganic perovskite solar cells. Angew Chem Int Ed, 2019, 58, 17724 doi: 10.1002/anie.201907331
[20]
Zai H, Zhang D, Li L, et al. Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport. J Mater Chem A, 2018, 6, 23602 doi: 10.1039/C8TA09859J
[21]
Bi D, Yi C, Luo J, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat Energy, 2016, 1, 16142 doi: 10.1038/nenergy.2016.142
[22]
Li B, Zhen J, Wan Y, et al. Anchoring fullerene onto perovskite film via grafting pyridine toward enhanced electron transport in high-efficiency solar cells. ACS Appl Mater Interfaces, 2018, 10, 32471 doi: 10.1021/acsami.8b11459
[23]
Wang J, Zhang J, Zhou Y, et al. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat Commun, 2020, 11, 177 doi: 10.1038/s41467-019-13909-5
[24]
Rao H, Ye S, Gu F, et al. Morphology controlling of all-inorganic perovskite at low temperature for efficient rigid and flexible solar cells. Adv Energy Mater, 2018, 8, 1800758 doi: 10.1002/aenm.201800758
[25]
Slotcavage D, Karunadasa H, McGehee M, et al. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett, 2016, 1, 1199 doi: 10.1021/acsenergylett.6b00495

21020026suppl.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2871 Times PDF downloads: 79 Times Cited by: 0 Times

    History

    Received: 24 February 2021 Revised: Online: Accepted Manuscript: 25 February 2021Uncorrected proof: 26 February 2021Published: 01 May 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yanbo Shang, Zhimin Fang, Wanpei Hu, Chuantian Zuo, Bairu Li, Xingcheng Li, Mingtai Wang, Liming Ding, Shangfeng Yang. Efficient and photostable CsPbI2Br solar cells realized by adding PMMA[J]. Journal of Semiconductors, 2021, 42(5): 050501. doi: 10.1088/1674-4926/42/5/050501 Y B Shang, Z M Fang, W P Hu, C T Zuo, B R Li, X C Li, M T Wang, L M Ding, S F Yang, Efficient and photostable CsPbI2Br solar cells realized by adding PMMA[J]. J. Semicond., 2021, 42(5): 050501. doi: 10.1088/1674-4926/42/5/050501.Export: BibTex EndNote
      Citation:
      Yanbo Shang, Zhimin Fang, Wanpei Hu, Chuantian Zuo, Bairu Li, Xingcheng Li, Mingtai Wang, Liming Ding, Shangfeng Yang. Efficient and photostable CsPbI2Br solar cells realized by adding PMMA[J]. Journal of Semiconductors, 2021, 42(5): 050501. doi: 10.1088/1674-4926/42/5/050501

      Y B Shang, Z M Fang, W P Hu, C T Zuo, B R Li, X C Li, M T Wang, L M Ding, S F Yang, Efficient and photostable CsPbI2Br solar cells realized by adding PMMA[J]. J. Semicond., 2021, 42(5): 050501. doi: 10.1088/1674-4926/42/5/050501.
      Export: BibTex EndNote

      Efficient and photostable CsPbI2Br solar cells realized by adding PMMA

      doi: 10.1088/1674-4926/42/5/050501
      More Information
      • Author Bio:

        Yanbo Shang got his BS degree from Dalian University of Technology in 2017. Now he is a PhD student at University of Science and Technology of China under the supervision of Prof. Shangfeng Yang. His work focuses on all-inorganic perovskite solar cells

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on functional materials and devices

        Shangfeng Yang got his PhD from Hong Kong University of Science and Technology in 2003. He then joined Leibniz Institute for Solid State and Materials Research, Dresden, Germany as an Alexander von Humboldt Fellow and a Guest Scientist. In Dec 2007, he joined University of Science and Technology of China as a full professor. His research interests include the synthesis of fullerene-based nanocarbons toward applications in energy devices

      • Corresponding author: ding@nanoctr.cnsfyang@ustc.edu.cn
      • Received Date: 2021-02-24
      • Published Date: 2021-05-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return