SHORT COMMUNICATION

Drop-coating produces efficient CsPbI2Br solar cells

Hanrui Xiao1, 2, Chuantian Zuo2, , Fangyang Liu1, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Chuantian Zuo, zuocht@nanoctr.cn; Fangyang Liu, liufangyang@csu.edu.cn; Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Sutton R J, Eperon G E, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater, 2016, 6, 1502458 doi: 10.1002/aenm.201502458
[2]
Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7, 982 doi: 10.1039/c3ee43822h
[3]
Wang Y, Dar M I, Ono L K, et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies > 18%. Science, 2019, 365, 591 doi: 10.1126/science.aav8680
[4]
Zhang J, Hodes G, Jin Z, et al. All-inorganic CsPbX3 perovskite solar cells: Progress and prospects. Angew Chem Int Ed, 2019, 58, 15596 doi: 10.1002/anie.201901081
[5]
Yoon S M, Min H, Kim J B, et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule, 2021, 5, 183 doi: 10.1016/j.joule.2020.11.020
[6]
Sutton R J, Filip M R, Haghighirad A A, et al. Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett, 2018, 3, 1787 doi: 10.1021/acsenergylett.8b00672
[7]
Yao H, Zhao J, Li Z, et al. Research and progress of black metastable phase CsPbI3 solar cells. Mater Chem Front, 2021, 5, 1221 doi: 10.1039/D0QM00756K
[8]
Li Z, Yang M, Park J S, et al. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem Mater, 2016, 28, 284 doi: 10.1021/acs.chemmater.5b04107
[9]
Fang Z, Meng X, Zuo C, et al. Interface engineering gifts CsPbI2.25Br0.75 solar cells high performance. Sci Bull, 2019, 64, 1743 doi: 10.1016/j.scib.2019.09.023
[10]
Ho-Baillie A, Zhang M, Lau C F J, et al. Untapped potentials of inorganic metal halide perovskite solar cells. Joule, 2019, 3, 938 doi: 10.1016/j.joule.2019.02.002
[11]
Fang Z, Liu L, Zhang Z, et al. CsPbI2.25Br0.75 solar cells with 15.9% efficiency. Sci Bull, 2019, 64, 507 doi: 10.1016/j.scib.2019.04.013
[12]
Jia X, Zuo C, Tao S, et al. CsPb(IxBr1−x)3 solar cells. Sci Bull, 2019, 64, 1532 doi: 10.1016/j.scib.2019.08.017
[13]
Liu L, Xiao Z, Zuo C, et al. Inorganic perovskite/organic tandem solar cells with efficiency over 20%. J Semicond, 2021, 42, 020501 doi: 10.1088/1674-4926/42/2/020501
[14]
Zhang Z, Li J, Fang Z, et al. Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency. J Semicond, 2021, 42, 030501 doi: 10.1088/1674-4926/42/2/030501
[15]
Wang P, Wang H, Mao Y, et al. Organic ligands armored ZnO enhances efficiency and stability of CsPbI2Br perovskite solar cells. Adv Sci, 2020, 7, 2000421 doi: 10.1002/advs.202000421
[16]
Patil J V, Mali S S, Hong C K. A-site rubidium cation-incorporated CsPbI2Br all-inorganic perovskite solar cells exceeding 17% efficiency. Sol RRL, 2020, 4, 2000164 doi: 10.1002/solr.202000164
[17]
Chen W, Chen H, Xu G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule, 2019, 3, 191 doi: 10.1016/j.joule.2018.10.011
[18]
Lin Z Q, Qiao H W, Zhou Z R, et al. Water assisted formation of highly oriented CsPbI2Br perovskite films with the solar cell efficiency exceeding 16%. J Mater Chem A, 2020, 8, 17670 doi: 10.1039/D0TA05118G
[19]
Wang A, Deng X, Wang J, et al. Ionic liquid reducing energy loss and stabilizing CsPbI2Br solar cells. Nano Energy, 2021, 81, 105631 doi: 10.1016/j.nanoen.2020.105631
[20]
Han Y, Zhao H, Duan C, et al. Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%. Adv Funct Mater, 2020, 30, 1909972 doi: 10.1002/adfm.201909972
[21]
Shang Y, Fang Z, Hu W, et al. Efficient and photostable CsPbI2Br solar cells realized by adding PMMA. J Semicond, 2021, 42, 050501 doi: 10.1088/1674-4926/42/2/050501
[22]
Mali S S, Patil J V, Shinde P S, et al. Fully air-processed dynamic hot-air-assisted M:CsPbI2Br (M: Eu2+, In3+) for stable inorganic perovskite solar cells. Matter, 2021, 4, 635 doi: 10.1016/j.matt.2020.11.008
[23]
He J, Liu J, Hou Y, et al. Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells. Nat Commun, 2020, 11, 4237 doi: 10.1038/s41467-020-18015-5
[24]
Fan Y, Fang J, Chang X, et al. Scalable ambient fabrication of high-performance CsPbI2Br solar cells. Joule, 2019, 3, 2485 doi: 10.1016/j.joule.2019.07.015
[25]
Zuo C, Scully A D, Tan W L, et al. Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells. Commun Mater, 2020, 1, 33 doi: 10.1038/s43246-020-0036-z
[26]
Zuo C, Scully A D, Vak D, et al. Self-assembled 2D perovskite layers for efficient printable solar cells. Adv Energy Mater, 2019, 9, 1803258 doi: 10.1002/aenm.201803258
[27]
Zuo C, Ding L. Drop-casting enables making efficient perovskite solar cells under high humidity. Angew Chem Int Ed, 2021 doi: 10.1002/anie.202101868
[28]
Xu G, Xue R, Chen W, et al. New strategy for two-step sequential deposition: Incorporation of hydrophilic fullerene in second precursor for high-performance p-i-n planar perovskite solar cells. Adv Energy Mater, 2018, 8, 1703054 doi: 10.1002/aenm.201703054
[29]
Bi D, Yi C, Luo J, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat Energy, 2016, 1, 16142 doi: 10.1038/nenergy.2016.142
[30]
Tian J, Wang J, Xue Q, et al. Composition engineering of all-inorganic perovskite film for efficient and operationally stable solar cells. Adv Funct Mater, 2020, 30, 2001764 doi: 10.1002/adfm.202001764
[31]
Li G, Ching K L, Ho J Y L, et al. Identifying the optimum morphology in high-performance perovskite solar cells. Adv Energy Mater, 2015, 5, 1401775 doi: 10.1002/aenm.201401775
[32]
Eperon G E, Burlakov V M, Docampo P, et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater, 2014, 24, 151 doi: 10.1002/adfm.201302090
Fig. 1.  (Color online) (a) Illustration for the drop-coating process. (b) XRD patterns for CsPbI2Br films made without or with IPA. (c) SEM image for the film made without IPA. (d) SEM image for the film made with IPA. (e) Dark IV curves for the electron-only devices made without or with IPA. (f) JV curves for the best cells made without or with IPA.

[1]
Sutton R J, Eperon G E, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater, 2016, 6, 1502458 doi: 10.1002/aenm.201502458
[2]
Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7, 982 doi: 10.1039/c3ee43822h
[3]
Wang Y, Dar M I, Ono L K, et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies > 18%. Science, 2019, 365, 591 doi: 10.1126/science.aav8680
[4]
Zhang J, Hodes G, Jin Z, et al. All-inorganic CsPbX3 perovskite solar cells: Progress and prospects. Angew Chem Int Ed, 2019, 58, 15596 doi: 10.1002/anie.201901081
[5]
Yoon S M, Min H, Kim J B, et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule, 2021, 5, 183 doi: 10.1016/j.joule.2020.11.020
[6]
Sutton R J, Filip M R, Haghighirad A A, et al. Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett, 2018, 3, 1787 doi: 10.1021/acsenergylett.8b00672
[7]
Yao H, Zhao J, Li Z, et al. Research and progress of black metastable phase CsPbI3 solar cells. Mater Chem Front, 2021, 5, 1221 doi: 10.1039/D0QM00756K
[8]
Li Z, Yang M, Park J S, et al. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem Mater, 2016, 28, 284 doi: 10.1021/acs.chemmater.5b04107
[9]
Fang Z, Meng X, Zuo C, et al. Interface engineering gifts CsPbI2.25Br0.75 solar cells high performance. Sci Bull, 2019, 64, 1743 doi: 10.1016/j.scib.2019.09.023
[10]
Ho-Baillie A, Zhang M, Lau C F J, et al. Untapped potentials of inorganic metal halide perovskite solar cells. Joule, 2019, 3, 938 doi: 10.1016/j.joule.2019.02.002
[11]
Fang Z, Liu L, Zhang Z, et al. CsPbI2.25Br0.75 solar cells with 15.9% efficiency. Sci Bull, 2019, 64, 507 doi: 10.1016/j.scib.2019.04.013
[12]
Jia X, Zuo C, Tao S, et al. CsPb(IxBr1−x)3 solar cells. Sci Bull, 2019, 64, 1532 doi: 10.1016/j.scib.2019.08.017
[13]
Liu L, Xiao Z, Zuo C, et al. Inorganic perovskite/organic tandem solar cells with efficiency over 20%. J Semicond, 2021, 42, 020501 doi: 10.1088/1674-4926/42/2/020501
[14]
Zhang Z, Li J, Fang Z, et al. Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency. J Semicond, 2021, 42, 030501 doi: 10.1088/1674-4926/42/2/030501
[15]
Wang P, Wang H, Mao Y, et al. Organic ligands armored ZnO enhances efficiency and stability of CsPbI2Br perovskite solar cells. Adv Sci, 2020, 7, 2000421 doi: 10.1002/advs.202000421
[16]
Patil J V, Mali S S, Hong C K. A-site rubidium cation-incorporated CsPbI2Br all-inorganic perovskite solar cells exceeding 17% efficiency. Sol RRL, 2020, 4, 2000164 doi: 10.1002/solr.202000164
[17]
Chen W, Chen H, Xu G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule, 2019, 3, 191 doi: 10.1016/j.joule.2018.10.011
[18]
Lin Z Q, Qiao H W, Zhou Z R, et al. Water assisted formation of highly oriented CsPbI2Br perovskite films with the solar cell efficiency exceeding 16%. J Mater Chem A, 2020, 8, 17670 doi: 10.1039/D0TA05118G
[19]
Wang A, Deng X, Wang J, et al. Ionic liquid reducing energy loss and stabilizing CsPbI2Br solar cells. Nano Energy, 2021, 81, 105631 doi: 10.1016/j.nanoen.2020.105631
[20]
Han Y, Zhao H, Duan C, et al. Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%. Adv Funct Mater, 2020, 30, 1909972 doi: 10.1002/adfm.201909972
[21]
Shang Y, Fang Z, Hu W, et al. Efficient and photostable CsPbI2Br solar cells realized by adding PMMA. J Semicond, 2021, 42, 050501 doi: 10.1088/1674-4926/42/2/050501
[22]
Mali S S, Patil J V, Shinde P S, et al. Fully air-processed dynamic hot-air-assisted M:CsPbI2Br (M: Eu2+, In3+) for stable inorganic perovskite solar cells. Matter, 2021, 4, 635 doi: 10.1016/j.matt.2020.11.008
[23]
He J, Liu J, Hou Y, et al. Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells. Nat Commun, 2020, 11, 4237 doi: 10.1038/s41467-020-18015-5
[24]
Fan Y, Fang J, Chang X, et al. Scalable ambient fabrication of high-performance CsPbI2Br solar cells. Joule, 2019, 3, 2485 doi: 10.1016/j.joule.2019.07.015
[25]
Zuo C, Scully A D, Tan W L, et al. Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells. Commun Mater, 2020, 1, 33 doi: 10.1038/s43246-020-0036-z
[26]
Zuo C, Scully A D, Vak D, et al. Self-assembled 2D perovskite layers for efficient printable solar cells. Adv Energy Mater, 2019, 9, 1803258 doi: 10.1002/aenm.201803258
[27]
Zuo C, Ding L. Drop-casting enables making efficient perovskite solar cells under high humidity. Angew Chem Int Ed, 2021 doi: 10.1002/anie.202101868
[28]
Xu G, Xue R, Chen W, et al. New strategy for two-step sequential deposition: Incorporation of hydrophilic fullerene in second precursor for high-performance p-i-n planar perovskite solar cells. Adv Energy Mater, 2018, 8, 1703054 doi: 10.1002/aenm.201703054
[29]
Bi D, Yi C, Luo J, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat Energy, 2016, 1, 16142 doi: 10.1038/nenergy.2016.142
[30]
Tian J, Wang J, Xue Q, et al. Composition engineering of all-inorganic perovskite film for efficient and operationally stable solar cells. Adv Funct Mater, 2020, 30, 2001764 doi: 10.1002/adfm.202001764
[31]
Li G, Ching K L, Ho J Y L, et al. Identifying the optimum morphology in high-performance perovskite solar cells. Adv Energy Mater, 2015, 5, 1401775 doi: 10.1002/aenm.201401775
[32]
Eperon G E, Burlakov V M, Docampo P, et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater, 2014, 24, 151 doi: 10.1002/adfm.201302090

21030018suppl.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3001 Times PDF downloads: 86 Times Cited by: 0 Times

    History

    Received: 13 March 2021 Revised: Online: Accepted Manuscript: 15 March 2021Uncorrected proof: 15 March 2021Published: 01 May 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hanrui Xiao, Chuantian Zuo, Fangyang Liu, Liming Ding. Drop-coating produces efficient CsPbI2Br solar cells[J]. Journal of Semiconductors, 2021, 42(5): 050502. doi: 10.1088/1674-4926/42/5/050502 H R Xiao, C T Zuo, F Y Liu, L M Ding, Drop-coating produces efficient CsPbI2Br solar cells[J]. J. Semicond., 2021, 42(5): 050502. doi: 10.1088/1674-4926/42/5/050502.Export: BibTex EndNote
      Citation:
      Hanrui Xiao, Chuantian Zuo, Fangyang Liu, Liming Ding. Drop-coating produces efficient CsPbI2Br solar cells[J]. Journal of Semiconductors, 2021, 42(5): 050502. doi: 10.1088/1674-4926/42/5/050502

      H R Xiao, C T Zuo, F Y Liu, L M Ding, Drop-coating produces efficient CsPbI2Br solar cells[J]. J. Semicond., 2021, 42(5): 050502. doi: 10.1088/1674-4926/42/5/050502.
      Export: BibTex EndNote

      Drop-coating produces efficient CsPbI2Br solar cells

      doi: 10.1088/1674-4926/42/5/050502
      More Information
      • Author Bio:

        Hanrui Xiao got his BS degree from Hunan University of Technology in 2016. Now he is a PhD student at Central South University under the supervision of Professor Fangyang Liu. Since March 2019, he has been working in Liming Ding Group at National Center for Nanoscience and Technology as a visiting student. His work focuses on perovskite solar cells

        Chuantian Zuo received his PhD degree in 2018 from National Center for Nanoscience and Technology under the supervision of Professor Liming Ding. Then he did postdoctoral research in CSIRO, Australia. Currently, he is an assistant professor in Liming Ding Group. His research focuses on innovative materials and devices

        Fangyang Liu received his BS in 2006 and PhD in 2011 from Central South University, later he worked as a lecturer and associate professor there. In 2013, he joined Martin Green Group at University of New South Wales, Australia as a postdoc. In 2017, he moved back to Central South University as a full professor. His research focuses on inorganic solar cells and lithium ion battery

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on functional materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editors for Science Bulletin and Journal of Semiconductors

      • Corresponding author: zuocht@nanoctr.cnliufangyang@csu.edu.cnding@nanoctr.cn
      • Received Date: 2021-03-13
      • Published Date: 2021-05-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return