RESEARCH HIGHLIGHTS

Application of metal halide perovskite photodetectors

Xiyan Pan1, 2 and Liming Ding1,

+ Author Affiliations

 Corresponding author: Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Kumawat N K, Tress W, Gao F. Mobile ions determine the luminescence yield of perovskite light-emitting diodes under pulsed operation. Nat Commun, 2021, 12, 4899 doi: 10.1038/s41467-021-25016-5
[2]
Jung E H, Jeon N J, Park E Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567, 511 doi: 10.1038/s41586-019-1036-3
[3]
Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354, 206 doi: 10.1126/science.aah5557
[4]
Jeon Y J, Lee S, Kang R, Kim J E, et al. Planar heterojunction perovskite solar cells with superior reproducibility. Sci Rep, 2014, 4, 6953 doi: 10.1038/srep06953
[5]
Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499, 316 doi: 10.1038/nature12340
[6]
Liu X K, Xu W, Bai S, et al. Metal halide perovskites for light-emitting diodes. Nat Mater, 2021, 20, 10 doi: 10.1038/s41563-020-0784-7
[7]
Dou L, Yang Y, You J, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun, 2014, 5, 5404 doi: 10.1038/ncomms6404
[8]
Saidaminov M, Haque M, Savoie M, et al. Perovskite photodetectors operating in both narrowband and broadband regimes. Adv Mater, 2016, 28, 8144 doi: 10.1002/adma.201601235
[9]
Yamada Y, Nakamura T, Endo M, et al. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J Am Chem Soc, 2014, 13611610 doi: 10.1021/ja506624n
[10]
Gruber G J, Moses W W, Derenzo S E, et al. A discrete scintillation camera module using silicon photodiode readout of CsI(TI) crystals for breast cancer imaging. IEEE Tran Nucl Sci, 1998, 45, 1063 doi: 10.1109/23.681979
[11]
Haddadi A, Dehzangi A, Adhikary S, et al. Background –limited long wavelength infrared InAs/InAs1 – xSb x type-II superlattice-based photodetectors operating at 110 K. APL Mater, 2017, 5, 35502 doi: 10.1063/1.4975619
[12]
Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett, 2013, 13, 1764 doi: 10.1021/nl400349b
[13]
Chen S, Lou Z, Chen D, et al. An artificial flexible visual memory system based on an UV-motivated memristor. Adv Mater, 2018, 30, 1705400 doi: 10.1002/adma.201705400
[14]
Geng X, Wang F, Tian H, et al. Ultrafast photodetector by integrating perovskite directly on silicon wafer. ACS Nano, 2020, 14, 2860 doi: 10.1021/acsnano.9b06345
[15]
Liu Y, Zhang Y, Zhao K, et al. A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals. Adv Mater, 2018, 30, 1707314 doi: 10.1002/adma.201707314
[16]
Song X, Li Q, Han J, et al. Highly luminescent metal-free perovskite single crystal for biocompatible X-ray detector to attain highest sensitivity. Adv Mater, 2021, 2, 2102190 doi: 10.1002/adma.202102190
[17]
Pan X, Zhang J, Liu R, Zhou H, et al. Single-layer ZnO hollow hemispheres enable high-performance self-powered perovskite photodetector for optical communication. Nano-Micro Lett, 2021, 13, 70 doi: 10.1007/s40820-021-00596-5
[18]
Wu T, Chi Y, Wang H, et al. Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s. Sci Rep, 2017, 7, 11 doi: 10.1038/s41598-017-00052-8
[19]
Gong C S, Lee Y C, Lai J L, et al. The high-efficiency LED driver for visible light communication applications. Sci Rep, 2016, 6, 30991 doi: 10.1038/srep30991
[20]
Chi Y C, Huang Y F, Wu T C, et al. Violet laser diode enables lighting communication. Sci Rep, 2017, 7, 10469 doi: 10.1038/s41598-017-11186-0
[21]
Amirabadi M A, Nezamalhosseni, et al. Low complexity deep learning algorithms for compensating atmospheric turbulence in the free space optical communication system. IET Opotelectron, 2021, 1, 13 doi: 10.1049/ote2.12060
[22]
Bao C, Yang J, Bai S, et al. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv Mater, 2018, 30, 1803422 doi: 10.1002/adma.201803422
[23]
Tsai W L, Chen C Y, Wen Y T, et al. Band tunable microcavity perovskite artificial human photoreceptors. Adv Mater, 2019, 31, 1900231 doi: 10.1002/adma.201900231
[24]
Gu L, Poddar S, Lin Y, Long Z, et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 2020, 581, 278 doi: 10.1038/s41586-020-2285-x
[25]
Xu X, Chen J, Cai S, et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv Mater, 2018, 30, 1803165 doi: 10.1002/adma.201803165
[26]
Lei Y, Chen Y, Zhang R, et al. A fabrication process for flexible single-crystal perovskite devices. Nature, 2020, 583, 7818 doi: 10.1038/s41586-020-2526-z
[27]
Wu D, Zhou H, Song Z, et al. Welding perovskite nanowires for stable, sensitive, flexible photodetectors. ACS Nano, 2020, 14, 2777 doi: 10.1021/acsnano.9b09315
[28]
Zhou H, Song Z, Grice C R, et al. Self-powered CsPbBr3 nanowire photodetector with a vertical structure. Nano Energy, 2018, 53, 880 doi: 10.1016/j.nanoen.2018.09.040
[29]
Tian W, Min L, Cao F, Li L. Nested inverse opal perovskite toward superior flexible and self-powered photodetection performance. Adv Mater, 2020, 32, 1906974 doi: 10.1002/adma.201906974
Fig. 1.  (Color online) Schematic for visible light communication system. At the sending port, LED lamps transfer electrical signals into optical signals; at the receiving port, PDs convert optical signals into electrical signals, which are then transcoded by digital-to-analog converters.

Fig. 2.  (Color online) (a) CsPbIBr2 photodetector applied to VLC system to transmit files and radio[22], Copyright 2019, Wiley. (b) Optical microcavity regulates the response of detector in different bands[23], Copyright 2019, Wiley. (c) Application of electronic bionic eye[24], Copyright 2020, Springer Nature. (d) Flexible devices in the solar detection system[29], Copyright 2020, Wiley.

[1]
Kumawat N K, Tress W, Gao F. Mobile ions determine the luminescence yield of perovskite light-emitting diodes under pulsed operation. Nat Commun, 2021, 12, 4899 doi: 10.1038/s41467-021-25016-5
[2]
Jung E H, Jeon N J, Park E Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567, 511 doi: 10.1038/s41586-019-1036-3
[3]
Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354, 206 doi: 10.1126/science.aah5557
[4]
Jeon Y J, Lee S, Kang R, Kim J E, et al. Planar heterojunction perovskite solar cells with superior reproducibility. Sci Rep, 2014, 4, 6953 doi: 10.1038/srep06953
[5]
Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499, 316 doi: 10.1038/nature12340
[6]
Liu X K, Xu W, Bai S, et al. Metal halide perovskites for light-emitting diodes. Nat Mater, 2021, 20, 10 doi: 10.1038/s41563-020-0784-7
[7]
Dou L, Yang Y, You J, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun, 2014, 5, 5404 doi: 10.1038/ncomms6404
[8]
Saidaminov M, Haque M, Savoie M, et al. Perovskite photodetectors operating in both narrowband and broadband regimes. Adv Mater, 2016, 28, 8144 doi: 10.1002/adma.201601235
[9]
Yamada Y, Nakamura T, Endo M, et al. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J Am Chem Soc, 2014, 13611610 doi: 10.1021/ja506624n
[10]
Gruber G J, Moses W W, Derenzo S E, et al. A discrete scintillation camera module using silicon photodiode readout of CsI(TI) crystals for breast cancer imaging. IEEE Tran Nucl Sci, 1998, 45, 1063 doi: 10.1109/23.681979
[11]
Haddadi A, Dehzangi A, Adhikary S, et al. Background –limited long wavelength infrared InAs/InAs1 – xSb x type-II superlattice-based photodetectors operating at 110 K. APL Mater, 2017, 5, 35502 doi: 10.1063/1.4975619
[12]
Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett, 2013, 13, 1764 doi: 10.1021/nl400349b
[13]
Chen S, Lou Z, Chen D, et al. An artificial flexible visual memory system based on an UV-motivated memristor. Adv Mater, 2018, 30, 1705400 doi: 10.1002/adma.201705400
[14]
Geng X, Wang F, Tian H, et al. Ultrafast photodetector by integrating perovskite directly on silicon wafer. ACS Nano, 2020, 14, 2860 doi: 10.1021/acsnano.9b06345
[15]
Liu Y, Zhang Y, Zhao K, et al. A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals. Adv Mater, 2018, 30, 1707314 doi: 10.1002/adma.201707314
[16]
Song X, Li Q, Han J, et al. Highly luminescent metal-free perovskite single crystal for biocompatible X-ray detector to attain highest sensitivity. Adv Mater, 2021, 2, 2102190 doi: 10.1002/adma.202102190
[17]
Pan X, Zhang J, Liu R, Zhou H, et al. Single-layer ZnO hollow hemispheres enable high-performance self-powered perovskite photodetector for optical communication. Nano-Micro Lett, 2021, 13, 70 doi: 10.1007/s40820-021-00596-5
[18]
Wu T, Chi Y, Wang H, et al. Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s. Sci Rep, 2017, 7, 11 doi: 10.1038/s41598-017-00052-8
[19]
Gong C S, Lee Y C, Lai J L, et al. The high-efficiency LED driver for visible light communication applications. Sci Rep, 2016, 6, 30991 doi: 10.1038/srep30991
[20]
Chi Y C, Huang Y F, Wu T C, et al. Violet laser diode enables lighting communication. Sci Rep, 2017, 7, 10469 doi: 10.1038/s41598-017-11186-0
[21]
Amirabadi M A, Nezamalhosseni, et al. Low complexity deep learning algorithms for compensating atmospheric turbulence in the free space optical communication system. IET Opotelectron, 2021, 1, 13 doi: 10.1049/ote2.12060
[22]
Bao C, Yang J, Bai S, et al. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv Mater, 2018, 30, 1803422 doi: 10.1002/adma.201803422
[23]
Tsai W L, Chen C Y, Wen Y T, et al. Band tunable microcavity perovskite artificial human photoreceptors. Adv Mater, 2019, 31, 1900231 doi: 10.1002/adma.201900231
[24]
Gu L, Poddar S, Lin Y, Long Z, et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 2020, 581, 278 doi: 10.1038/s41586-020-2285-x
[25]
Xu X, Chen J, Cai S, et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv Mater, 2018, 30, 1803165 doi: 10.1002/adma.201803165
[26]
Lei Y, Chen Y, Zhang R, et al. A fabrication process for flexible single-crystal perovskite devices. Nature, 2020, 583, 7818 doi: 10.1038/s41586-020-2526-z
[27]
Wu D, Zhou H, Song Z, et al. Welding perovskite nanowires for stable, sensitive, flexible photodetectors. ACS Nano, 2020, 14, 2777 doi: 10.1021/acsnano.9b09315
[28]
Zhou H, Song Z, Grice C R, et al. Self-powered CsPbBr3 nanowire photodetector with a vertical structure. Nano Energy, 2018, 53, 880 doi: 10.1016/j.nanoen.2018.09.040
[29]
Tian W, Min L, Cao F, Li L. Nested inverse opal perovskite toward superior flexible and self-powered photodetection performance. Adv Mater, 2020, 32, 1906974 doi: 10.1002/adma.201906974
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1112 Times PDF downloads: 75 Times Cited by: 0 Times

    History

    Received: 23 October 2021 Revised: Online: Accepted Manuscript: 25 October 2021Uncorrected proof: 28 October 2021Published: 01 February 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiyan Pan, Liming Ding. Application of metal halide perovskite photodetectors[J]. Journal of Semiconductors, 2022, 43(2): 020203. doi: 10.1088/1674-4926/43/2/020203 X Y Pan, L M Ding, Application of metal halide perovskite photodetectors[J]. J. Semicond., 2022, 43(2): 020203. doi: 10.1088/1674-4926/43/2/020203.Export: BibTex EndNote
      Citation:
      Xiyan Pan, Liming Ding. Application of metal halide perovskite photodetectors[J]. Journal of Semiconductors, 2022, 43(2): 020203. doi: 10.1088/1674-4926/43/2/020203

      X Y Pan, L M Ding, Application of metal halide perovskite photodetectors[J]. J. Semicond., 2022, 43(2): 020203. doi: 10.1088/1674-4926/43/2/020203.
      Export: BibTex EndNote

      Application of metal halide perovskite photodetectors

      doi: 10.1088/1674-4926/43/2/020203
      More Information
      • Author Bio:

        Xiyan Pan got his BS (2016) and MS (2021) in Hubei University. Now he is a PhD student at University of Chinese Academy of Sciences under the supervision of Prof. Liming Ding. His research focuses on photodetectors

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editors for Science Bulletin and Journal of Semiconductors

      • Corresponding author: ding@nanoctr.cn
      • Received Date: 2021-10-23
      • Published Date: 2022-02-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return