REVIEWS

Suppressed light-induced phase transition of CsPbBr2I: Strategies, progress and applications in the photovoltaic field

Hushan Zhang and Zhiwen Jin

+ Author Affiliations

 Corresponding author: Zhiwen Jin, jinzw@lzu.edu.cn

PDF

Turn off MathJax

Abstract: The rapid rise in the power conversion efficiency (PCE) of CsPbBr2I-based perovskite solar cells (PSCs), from 4.7% in 2016 to 11.08% in 2020, render it a promising material for use in photovoltaic devices. However, the phase stability and current hysteresis caused by photo-induced phase segregation in CsPbBr2I represent major obstacles to further improvements in the PCE for such devices. In this review, we describe the basic structure and optical properties of CsPbBr2I, and systematically elaborate on the mechanism of the phase transition. We then discuss the strategies in progress to suppress phase transition in CsPbBr2I, and their potential application in the photovoltaic field. Finally, challenges and application prospects for CsPbBr2I PSCs are summarized in the final section of this article.

Key words: perovskiteCsPbBr2Istabilityphase transitionphase segregation



[1]
Wang R, Mujahid M, Duan Y, et al. A review of perovskites solar cell stability. Adv Funct Mater, 2019, 29, 1808843 doi: 10.1002/adfm.201808843
[2]
Wang K, Jin Z, Liang L, et al. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat Commun, 2018, 9, 4544 doi: 10.1038/s41467-018-06915-6
[3]
Bian H, Bai D, Jin Z, et al. Graded bandgap CsPbI2+xBr1–x perovskite solar cells with a stabilized efficiency of 14.4%. Joule, 2018, 2, 1500 doi: 10.1016/j.joule.2018.04.012
[4]
Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345, 542 doi: 10.1126/science.1254050
[5]
Yao H, Zhou F, Li Z, et al. Strategies for improving the stability of tin-based perovskite (ASnX3) solar cells. Adv Sci, 2020, 7, 1903540 doi: 10.1002/advs.201903540
[6]
Miyasaka T, Kulkarni A, Kim G M, et al. Perovskite solar cells: Can we go organic-free, lead-free, and dopant-free. Adv Energy Mater, 2020, 10, 1902500 doi: 10.1002/aenm.201902500
[7]
Wang Q, Zhang X, Jin Z, et al. Energy-down-shift CsPbCl3: Mn quantum dots for boosting the efficiency and stability of perovskite solar cells. ACS Energy Lett, 2017, 2, 1479 doi: 10.1021/acsenergylett.7b00375
[8]
Duan J, Zhao Y, He B, et al. High-purity inorganic perovskite films for solar cells with 9.72 % efficiency. Angew Chem Int Ed, 2018, 57, 3787 doi: 10.1002/anie.201800019
[9]
Zhang J, Bai D, Jin Z, et al. 3D-2D-0D interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability. Adv Energy Mater, 2018, 8, 1703246 doi: 10.1002/aenm.201703246
[10]
Wang K, Jin Z, Liang L, et al. Chlorine doping for black γ-CsPbI3 solar cells with stabilized efficiency beyond 16%. Nano Energy, 2019, 58, 175 doi: 10.1016/j.nanoen.2019.01.034
[11]
Swarnkar A, Marshall A R, Sanehira E M, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354, 92 doi: 10.1126/science.aag2700
[12]
Liu F, Zhang Y, Ding C, et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano, 2017, 11, 10373 doi: 10.1021/acsnano.7b05442
[13]
Zeng Q, Zhang X, Liu C, et al. Inorganic CsPbI2Br perovskite solar cells: The progress and perspective. Solar RRL, 2019, 3, 1800239 doi: 10.1002/solr.201800239
[14]
Liu C, Li W, Zhang C, et al. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J Am Chem Soc, 2018, 140, 3825 doi: 10.1021/jacs.7b13229
[15]
Lau C F J, Zhang M, Deng X, et al. Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Lett, 2017, 2, 2319 doi: 10.1021/acsenergylett.7b00751
[16]
Akkerman Q A, Gandini M, Di Stasio F, et al. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat Energy, 2016, 2, 16194 doi: 10.1038/nenergy.2016.194
[17]
Liang J, Wang C, Wang Y, et al. All-inorganic perovskite solar cells. J Am Chem Soc, 2016, 138, 15829 doi: 10.1021/jacs.6b10227
[18]
Zhang X, Jin Z, Zhang J, et al. All-ambient processed binary CsPbBr3-CsPb2Br5 perovskites with synergistic enhancement for high-efficiency Cs-Pb-Br-based solar cells. ACS Appl Mater Interfaces, 2018, 10, 7145 doi: 10.1021/acsami.7b18902
[19]
Zhang C, Wang K, Wang Y, et al. Low-temperature crystallization of CsPbIBr2­ perovskite for high performance solar cells. Solar RRL, 2020, 4 doi: 10.1002/solr.202000254
[20]
Chen W, Li D, Chen S, et al. Spatial distribution recast for organic bulk heterojunctions for high-performance all-inorganic perovskite/organic integrated solar cells. Adv Energy Mater, 2020, 10, 2000851 doi: 10.1002/aenm.202000851
[21]
Guo N, Zhang T, Li G, et al. HI hydrolysis-derived intermediate as booster for CsPbI3 Perovskite: from crystal structure, film fabrication to device performance. J Semicond, 2017, 38, 014004 doi: 10.1088/1674-4926/38/1/014004
[22]
Ma Q, Huang S, Wen X, et al. Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv Energy Mater, 2016, 6, 1502202 doi: 10.1002/aenm.201502202
[23]
Kulbak M, Gupta S, Kedem N, et al. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J Phys Chem Lett, 2016, 7, 167 doi: 10.1021/acs.jpclett.5b02597
[24]
Zhu W, Ma W, Su Y, et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light: Sci Appl, 2020, 9, 112 doi: 10.1038/s41377-020-00353-0
[25]
Zhao Y C, Zhou W K, Zhou X, et al. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light: Sci Appl, 2017, 6, e16243 doi: 10.1038/lsa.2016.243
[26]
Kang C-H, Dursun I, Liu G, et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light: Sci Appl, 2019, 8, 94 doi: 10.1038/s41377-019-0204-4
[27]
Fang H H, Wang F, Adjokatse S, et al. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light: Sci Appl, 2016, 5, e16056 doi: 10.1038/lsa.2016.56
[28]
Bodnarchuk M I, Boehme S C, ten Brinck S, et al. Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals. ACS Energy Lett, 2019, 4, 63 doi: 10.1021/acsenergylett.8b01669
[29]
Tian J, Xue Q, Yao Q, et al. Inorganic halide perovskite solar cells: Progress and challenges. Adv Energy Mater, 2020, 10, 2000183 doi: 10.1002/aenm.202000183
[30]
Stoumpos C C, Kanatzidis M G. The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc Chem Res, 2015, 48, 2791 doi: 10.1021/acs.accounts.5b00229
[31]
Jaffe A, Lin Y, Beavers C M, et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Cent Sci, 2016, 2, 201 doi: 10.1021/acscentsci.6b00055
[32]
Zhang H, Xiao J, Shi J, et al. Self-adhesive macroporous carbon electrodes for efficient and stable perovskite solar cells. Adv Funct Mater, 2018, 28, 1802985 doi: 10.1002/adfm.201802985
[33]
Shan Q, Wei C, Jiang Y, et al. Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light: Sci Appl, 2020, 9, 163 doi: 10.1038/s41377-020-00402-8
[34]
Brandt R E, Stevanović V, Ginley D S, et al. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: Beyond hybrid lead halide perovskites. MRS Commun, 2015, 5, 265 doi: 10.1557/mrc.2015.26
[35]
Ma T, Wang S, Zhang Y, et al. The development of all-inorganic CsPbX3 perovskite solar cells. J Mater Sci, 2019, 55, 464 doi: 10.1007/s10853-019-03974-y
[36]
Zhang M N, Wu X, Riaud A, et al. Spectrum projection with a bandgap-gradient perovskite cell for colour perception. Light: Sci Appl, 2020, 9, 162 doi: 10.1038/s41377-020-00400-w
[37]
Mondal N, Samanta A. Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals (CsPbX3). Nanoscale, 2017, 9, 1878 doi: 10.1039/C6NR09422H
[38]
Zhang J, Hodes G, Jin Z, et al. All-inorganic CsPbX3 perovskite solar cells: Progress and prospects. Angew Chem Int Ed, 2019, 58, 15596 doi: 10.1002/anie.201901081
[39]
Seth S, Mondal N, Patra S, et al. Fluorescence blinking and photoactivation of all-inorganic perovskite nanocrystals CsPbBr3 and CsPbBr2I. J Phys Chem Lett, 2016, 7, 266 doi: 10.1021/acs.jpclett.5b02639
[40]
Sanchez S, Christoph N, Grobety B, et al. Efficient and stable inorganic perovskite solar cells manufactured by pulsed flash infrared annealing. Adv Energy Mater, 2018, 8, 1802060 doi: 10.1002/aenm.201802060
[41]
Ho-Baillie A, Zhang M, Lau C F J, et al. Untapped potentials of inorganic metal halide perovskite solar cells. Joule, 2019, 3, 938 doi: 10.1016/j.joule.2019.02.002
[42]
Beal R E, Slotcavage D J, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett, 2016, 7, 746 doi: 10.1021/acs.jpclett.6b00002
[43]
Marronnier A, Roma G, Boyer-Richard S, et al. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano, 2018, 12, 3477 doi: 10.1021/acsnano.8b00267
[44]
Zhou F, Li Z, Lan W, et al. Halide perovskite, a potential scintillator for X-ray detection. Small Methods, 2020, 4, 2000506 doi: 10.1002/smtd.202000506
[45]
Lin J, Lai M, Dou L, et al. Thermochromic halide perovskite solar cells. Nat Mater, 2018, 17, 261 doi: 10.1038/s41563-017-0006-0
[46]
Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 2013, 52, 9019 doi: 10.1021/ic401215x
[47]
Wang K, Li Z, Zhou F, et al. Ruddlesden–Popper 2D component to stabilize γ-CsPbI3 perovskite phase for stable and efficient photovoltaics. Adv Energy Mater, 2019, 9, 1902529 doi: 10.1002/aenm.201902529
[48]
Knight A J, Wright A D, Patel J B, et al. Electronic traps and phase segregation in lead mixed-halide perovskite. ACS Energy Lett, 2018, 4, 75 doi: 10.1021/acsenergylett.8b02002
[49]
Slotcavage D J, Karunadasa H I, McGehee M D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett, 2016, 1, 1199 doi: 10.1021/acsenergylett.6b00495
[50]
Hoke E T, Slotcavage D J, Dohner E R, et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem Sci, 2015, 6, 613 doi: 10.1039/C4SC03141E
[51]
Xu Y, Wang M, Lei Y, et al. Crystallization kinetics in 2D perovskite solar cells. Adv Energy Mater, 2020, 10, 2002558 doi: 10.1002/aenm.202002558
[52]
Li W, Rothmann M U, Liu A, et al. Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells. Adv Energy Mater, 2017, 7, 1700946 doi: 10.1002/aenm.201700946
[53]
Tang X, van den Berg M, Gu E, et al. Local observation of phase segregation in mixed-halide perovskite. Nano Lett, 2018, 18, 2172 doi: 10.1021/acs.nanolett.8b00505
[54]
Jiang J, Onwudinanti C K, Hatton R A, et al. Stabilizing lead-free all-inorganic tin halide perovskites by ion exchange. J Phys Chem C, 2018, 122, 17660 doi: 10.1021/acs.jpcc.8b04013
[55]
Li Z, Sun Y, Yao H, et al. Intermediates transformation for efficient perovskite solar cells. J Energy Chem, 2021, 52, 102 doi: 10.1016/j.jechem.2020.04.047
[56]
Wang X, Ling Y, Lian X, et al. Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices. Nat Commun, 2019, 10, 695 doi: 10.1038/s41467-019-08610-6
[57]
Yuan Y, Wang Q, Huang J. Ion migration in hybrid perovskite solar Cells. In: Organic-Inorganic Halide Perovskite Photovoltaics. Springer, 2016, 137
[58]
Guo Y, Yin X, Liu J, et al. Inorganic CsPbIBr2-based perovskite solar cells: Fabrication technics modification and efficiency improvement. Solar RRL, 2019, 3, 1900135 doi: 10.1002/solr.201900135
[59]
Zhu W, Zhang Q, Chen D, et al. Intermolecular exchange boosts efficiency of air-stable, carbon-based all-inorganic planar CsPbIBr2 perovskite solar cells to over 9%. Adv Energy Mater, 2018, 8, 1802080 doi: 10.1002/aenm.201802080
[60]
Cao S, Wang H, Li H, et al. Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr2 perovskite solar cells. Chem Eng J, 2020, 394, 124903 doi: 10.1016/j.cej.2020.124903
[61]
Zhang Q, Zhu W, Chen D, et al. Light processing enables efficient carbon-based, all-inorganic planar CsPbIBr2 solar cells with high photovoltages. ACS Appl Mater Interfaces, 2019, 11, 2997 doi: 10.1021/acsami.8b17839
[62]
Guo Y, Yin X, Liu J, et al. Highly efficient CsPbIBr2 perovskite solar cells with efficiency over 9.8% fabricated using a preheating-assisted spin-coating method. J Mater Chem A, 2019, 7, 19008 doi: 10.1039/C9TA03336J
[63]
Zhang W, Xiong J, Li J, et al. Seed-assisted growth for low-temperature-processed all-inorganic CsPbIBr2 solar cells with efficiency over 10%. Small, 2020, 16, 2001535 doi: 10.1002/smll.202001535
[64]
Liang J, Zhao P, Wang C, et al. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J Phys Chem Lett, 2017, 139, 14009 doi: 10.1021/jacs.7b07949
[65]
Lau C F J, Deng X, Ma Q, et al. CsPbIBr2 perovskite solar cell by spray-assisted deposition. ACS Energy Lett, 2016, 1, 573 doi: 10.1021/acsenergylett.6b00341
[66]
Wang C, Zhang J, Duan J, et al. All-inorganic, hole-transporting-layer-free, carbon-based CsPbIBr2 planar perovskite solar cells by a two-step temperature-control annealing process. Mater Sci Semicond Process, 2020, 108, 104870 doi: 10.1016/j.mssp.2019.104870
[67]
Huang L, Zhang D, Bu S, et al. Synergistic interface energy band alignment optimization and defect passivation toward efficient and simple-structured perovskite solar Cell. Adv Sci, 2020, 7, 1902656 doi: 10.1002/advs.201902656
[68]
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater, 2014, 13, 897 doi: 10.1038/nmat4014
[69]
Ding C, Zhang Y, Liu F, et al. Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells. Nano Energy, 2018, 53, 17 doi: 10.1016/j.nanoen.2018.08.031
[70]
Deng Q, Li Y, Chen L, et al. The effects of electron and hole transport layer with the electrode work function on perovskite solar cells. Mod Phys Lett B, 2016, 30, 1650341 doi: 10.1142/S0217984916503413
[71]
Yang B, Wang M, Hu X, et al. Highly efficient semitransparent CsPbIBr2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer. Nano Energy, 2019, 57, 718 doi: 10.1016/j.nanoen.2018.12.097
[72]
Wang Z, Baranwal A K, kamarudin M A, et al. Xanthate-induced sulfur doped all-inorganic perovskite with superior phase stability and enhanced performance. Nano Energy, 2019, 59, 258 doi: 10.1016/j.nanoen.2019.02.049
[73]
Zhu W, Zhang Z, Chai W, et al. Band alignment engineering towards high efficiency carbon-based inorganic planar CsPbIBr2 perovskite solar cells. ChemSusChem, 2019, 12, 2318 doi: 10.1002/cssc.201900611
[74]
Subhani W S, Wang K, Du M, et al. Interface-modification-induced gradient energy band for highly efficient CsPbIBr2 perovskite solar cells. Adv Energy Mater, 2019, 9, 1803785 doi: 10.1002/aenm.201803785
[75]
Correa Baena J P, Steier L, Tress W, et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci, 2015, 8, 2928 doi: 10.1039/C5EE02608C
[76]
Zhu W, Chai W, Zhang Z, et al. Interfacial TiO2 atomic layer deposition triggers simultaneous crystallization control and band alignment for efficient CsPbIBr2 perovskite solar Cell. Org Electron, 2019, 74, 103 doi: 10.1016/j.orgel.2019.07.006
[77]
Wang C, Zhang J, Jiang L, et al. All-inorganic, hole-transporting-layer-free, carbon-based CsPbIBr2 planar solar cells with ZnO as electron-transporting materials. J Alloys Comp, 2020, 817, 152768 doi: 10.1016/j.jallcom.2019.152768
[78]
Liu C, Li W, Chen J, et al. Ultra-thin MoOx as cathode buffer layer for the improvement of all-inorganic CsPbIBr2 perovskite solar cells. Nano Energy, 2017, 41, 75 doi: 10.1016/j.nanoen.2017.08.048
[79]
Zhao J, Zhang Y, Zhao X, et al. Band alignment strategy for printable triple mesoscopic perovskite solar cells with enhanced photovoltage. ACS Appl Energy Mater, 2019, 2, 2034 doi: 10.1021/acsaem.8b02104
[80]
Li Y, Duan J, Yuan H, et al. Lattice modulation of alkali metal cations doped Cs1– xRxPbBr3 halides for inorganic perovskite solar cells. Solar RRL, 2018, 2, 1800164 doi: 10.1002/solr.201800164
[81]
Li Z, Zhou F, Wang Q, et al. Approaches for thermodynamically stabilized CsPbI3 solar cells. Nano Energy, 2020, 71, 104634 doi: 10.1016/j.nanoen.2020.104634
[82]
Zhou Y, Zhou Z, Chen M, et al. Doping and alloying for improved perovskite solar cells. J Mater Chem A, 2016, 4, 17623 doi: 10.1039/C6TA08699C
[83]
Yang Z, Rajagopal A, Jo S B, et al. Stabilized wide bandgap perovskite solar cells by tin substitution. Nano Lett, 2016, 16, 7739 doi: 10.1021/acs.nanolett.6b03857
[84]
van der Stam W, Geuchies J J, Altantzis T, et al. Highly emissive divalent-ion-doped colloidal CsPb1– xMxBr3 perovskite nanocrystals through cation exchange. J Am Chem Soc, 2017, 139, 4087 doi: 10.1021/jacs.6b13079
[85]
Maughan A E, Ganose A M, Bordelon M M, et al. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. J Phys Chem Lett, 2016, 138, 8453 doi: 10.1021/jacs.6b03207
[86]
Barker A J, Sadhanala A, Deschler F, et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett, 2017, 2, 1416 doi: 10.1021/acsenergylett.7b00282
[87]
Tan X, Liu X, Liu Z, et al. Enhancing the optical, morphological and electronic properties of the solution-processed CsPbIBr2 films by Li doping for efficient carbon-based perovskite solar cells. Appl Surf Sci, 2020, 499, 143990 doi: 10.1016/j.apsusc.2019.143990
[88]
Swarnkar A, Mir W J, Nag A. Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X = Cl, Br, I) perovskites. ACS Energy Lett, 2018, 3, 286 doi: 10.1021/acsenergylett.7b01197
[89]
Gangishetty M K, Sanders S N, Congreve D N. Mn2+ doping enhances the brightness, efficiency, and stability of bulk perovskite light-emitting diodes. ACS Photonics, 2019, 6, 1111 doi: 10.1021/acsphotonics.9b00142
[90]
Zhou F, Li Z, Chen H, et al. Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells. Nano Energy, 2020, 73, 104757 doi: 10.1016/j.nanoen.2020.104757
[91]
Liang J, Liu Z, Qiu L, et al. Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes. Adv Energy Mater, 2018, 8, 1800504 doi: 10.1002/aenm.201800504
[92]
Li N, Zhu Z, Li J, et al. Inorganic CsPb1−xSnxIBr2 for efficient wide-bandgap perovskite solar cells. Adv Energy Mater, 2018, 8, 1800525 doi: 10.1002/aenm.201800525
[93]
Subhani W S, Wang K, Du M, et al. Goldschmidt-rule-deviated perovskite CsPbIBr2 by barium substitution for efficient solar cells. Nano Energy, 2019, 61, 165 doi: 10.1016/j.nanoen.2019.04.066
[94]
Zhu W, Chai W, Chen D, et al. Recycling of FTO/TiO2 substrates: route toward simultaneously high-performance and cost-efficient carbon-based, all-inorganic CsPbIBr2 solar cells. ACS Appl Mater Interfaces, 2020, 12, 4549 doi: 10.1021/acsami.9b21331
[95]
Zhu J Y, Lou Y H, Li M, et al. Liquid-chalk painted perovskite films toward low-cost photovoltaic devices. Org Electron, 2019, 75, 105371 doi: 10.1016/j.orgel.2019.07.029
[96]
Ravi V K, Markad G B, Nag A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. ACS Energy Lett, 2016, 1, 665 doi: 10.1021/acsenergylett.6b00337
[97]
Chen W, Zhang J, Xu G, et al. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv Mater, 2018, 30, e1800855 doi: 10.1002/adma.201800855
Fig. 1.  (Color online) (a) Crystal structure of cubic CsPbX3 perovskite. Reproduced with permission[35]. Copyright 2019, Springier Publications. (b) The mechanism of bonding/antibonding orbitals of ABX3. Reproduced with permission[96]. Copyright 2016, American Chemical Society Publications. (c) The phase transition causes the angle of the M–X–M to decrease from 180°, leading to a change in the conduction band minimum and valence band maximum, thereby affecting the bandgap[30]. Copyright 2015, American Chemical Society Publications. (d) Absorbance spectra for inorganic perovskite films with different compositions of CsPb(I1–xBrx)3. Reproduced with permission[35]. Copyright 2018, Elsevier Inc Publications. (e) Absorption coefficient and steady state PL spectrum of CsPbBr2I. Reproduced with permission[22]. Copyright 2016, Wiley-VCH Publications.

Fig. 2.  (Color online) (a) Illustration depicting the perovskite crystal structure as a function of the iodine/bromine ratio. Reproduced with permission[40]. Copyright 2018, Wiley-VCH Publications. (b) The phase transition causes the angle of the M-X-M to decrease from 180° due to the influence of temperature. Reproduced with permission[31]. Copyright 2016, American Chemical Society Publications. (c) Photograph of the low-T phase (non-coloured) and high-T phase (orange-red-coloured) thin films. Reproduced with permission[45]. Copyright 2018, Nature Publications Group. (d) The low-T phase is represented by one-dimensional chains of edge-sharing lead-halide octahedra, whereas in the high-T phase, the octahedra share corners. Reproduced with permission[45]. Copyright 2018, Nature Publications Group.

Fig. 3.  (Color online) (a) The photoluminescence peak of these mixed-halide perovskites shifted exclusively to 1.87 eV after continuous illumination. The solid lines denote the spectra taken from freshly made samples, and the dashed lines dentote the measurements following 10 min illumination at an intensity of 0.3 W/cm2. Reproduced with permission[56]. Copyright 2019, Nature Publications Group. (b) Ion migration diagram of CsPb(I1–xBrx)3 in the grain interior and at the grain boundary under light. Reproduced with permission[53]. Copyright 2018, American Chemical Society Publications. (c) Secondary electron SEM image of CsPbBr2I film surface. (d) CL mapping of the CsPbBr2I film. Reproduced with permission[52]. Copyright 2017, Wiley-VCH Publications. (e) The calculated ΔGdark per volume (solid line) is negative, regardless of the Br content. (f) Under illumination, as the grain size exceeds X0, ΔGlight > 0. Reproduced with permission[56]. Copyright 2019, Nature Publications Group.

Fig. 4.  (Color online) (a) Schematic diagram of dual-source thermal evaporation. Reproduced with permission[97]. Copyright 2018, Wiley-VCH Publications. (b) Illustration of CsPbBr2I perovskite film, fabricated using a preheating-assisted spin-coating process. Reproduced with permission[62]. Copyright 2019, The Royal Society of Chemistry. (c) Illustration of intermolecular exchange strategy. Reproduced with permission[59]. Copyright 2018, Wiley-VCH Publications. (d) Schematic illustration of conventional pathway growth (CPG), and seed-assisted growth (SAG) methods. Reproduced with permission[63]. Copyright 2020, Wiley-VCH Publications. (e) Illustration of CsPbBr2I film with spray-assisted deposition. Reproduced with permission[65]. Copyright 2016, American Chemical Society Publications.

Fig. 5.  (Color online) (a) Illustration of CsXth decomposition, and sulfur doping in perovskite. Reproduced with permission[72]. Copyright 2019, Elsevier Inc Publications. (b) Schematic architecture of the cell, together with the corresponding energy band diagrams for TiO2 and TiO2/CsBr ETLs. Reproduced with permission[73]. Copyright 2019, Wiley-VCH Publications. (c) SmBr3 doping normalizes the gap between CsPbBr2I and TiO2. Reproduced with permission[74]. Copyright 2019, Wiley-VCH Publications.

Fig. 6.  (Color online) (a) Relation of the tolerance factor (τ) with a B–X–B bond angle (θ) of the ABX3 perovskite structure. Reproduced with permission[88]. Copyright 2018, American Chemical Society Publications. (b) Rotational distortion of [BX6]4−([PbX6]4−) octahedra can be restricted by reducing the B–X bond length when Pb2+ is partially substituted with smaller B-site cations. Smaller B-site cations reduce the size of the [BX6]4− octahedron, which in turn decreases the size of the cuboctahedral void for the A-site cation. Reproduced with permission[88]. Copyright 2018, American Chemical Society Publications. (c) Typical SEM images of CsPbBr2I, and CsPb0.995Mn0.005Br1.99I1.01 films, respectively. Reproduced with permission[91]. Copyright 2018, Wiley-VCH Publications. (d) SEM images of (above) CsPbBr2I and (below) CsPb(Ba)Br2I. Reproduced with permission[93]. Copyright 2017, Elsevier Inc Publications.

Table 1.   Perovskite structure, preparation techniques, and device performance for all reported variants.

Optimization strategyPerovskite structurePerovskite fabrication methodVOC (V)JSC (mA/cm2)FF (%)PCE (%)Ref.
Spin coating methodGlass/FTO/c-TiO2/CsPbBr2I/AuDual source evaporation0.9598.70.564.7[22]
ITO/SnO2/CsPbBr2I/Spiro-OMeTAD/AgPreheating assisted spin-coating1.26710.690.719.86[62]
FTO/c-TiO2/CsPbBr2I/CarbonOne-step spin coating1.1719.010.525.49[58]
Intermolecular exchange1.24510.660.699.16[59]
FTO/SnO2/CsPbBr2I/Spiro-OMeTAD/AuSeed-assisted growth1.2111.940.7310.47[63]
Glass/FTO/bl-TiO2/c-TiO2/CsPbBr2I/
Spiro-OMeTAD/Au
Spray assisted deposition1.1217.940.76.3[65]
Interface modificationITO/SnO2 NPs/CsPbBr2I/CsXth/P3HT/AuOne-step spin coating1.310.190.7389.78[72]
FTO/TiO2(CsBr)/CsPbBr2I/CarbonIntermolecular exchange1.26111.80.7210.71[73]
FTO/TiO2/SmBr3/CsPbBr2I/Spiro-OMeTAD/AuOne-step spin coating1.1712.750.7310.88[74]
FTO/SnO2/TiO2/CsPbBr2I/carbon1.27310.910.669.31[75]
ITO/In2S3/CsPbBr2I/Spiro-OMeTAD/Ag1.097.760.665.59[79]
Glass/FTO/ZnO/CsPbBr2I/Carbon1.0311.60.637.6[78]
Glass/FTO/c-TiO2/Li-CsPbBr2I/
CuPc/Carbon
1.2210.270.749.25[87]
Ion dopingFTO/c-TiO2/m-TiO2/
CsPb0.995Mn0.005Br1.99 I1.01/Carbon
Two steps spin coating0.9913.150.577.36[91]
FTO/c-TiO2/m-TiO2/
CsPb0.9Sn0.1Br2I/Carbon
1.2614.30.6311.33[64]
Glass/FTO/c-TiO2/CsPb(Ba)Br2I/Spiro-OMeTAD/AuOne-step spin coating1.1911.910.7410.51[93]
DownLoad: CSV
[1]
Wang R, Mujahid M, Duan Y, et al. A review of perovskites solar cell stability. Adv Funct Mater, 2019, 29, 1808843 doi: 10.1002/adfm.201808843
[2]
Wang K, Jin Z, Liang L, et al. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat Commun, 2018, 9, 4544 doi: 10.1038/s41467-018-06915-6
[3]
Bian H, Bai D, Jin Z, et al. Graded bandgap CsPbI2+xBr1–x perovskite solar cells with a stabilized efficiency of 14.4%. Joule, 2018, 2, 1500 doi: 10.1016/j.joule.2018.04.012
[4]
Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345, 542 doi: 10.1126/science.1254050
[5]
Yao H, Zhou F, Li Z, et al. Strategies for improving the stability of tin-based perovskite (ASnX3) solar cells. Adv Sci, 2020, 7, 1903540 doi: 10.1002/advs.201903540
[6]
Miyasaka T, Kulkarni A, Kim G M, et al. Perovskite solar cells: Can we go organic-free, lead-free, and dopant-free. Adv Energy Mater, 2020, 10, 1902500 doi: 10.1002/aenm.201902500
[7]
Wang Q, Zhang X, Jin Z, et al. Energy-down-shift CsPbCl3: Mn quantum dots for boosting the efficiency and stability of perovskite solar cells. ACS Energy Lett, 2017, 2, 1479 doi: 10.1021/acsenergylett.7b00375
[8]
Duan J, Zhao Y, He B, et al. High-purity inorganic perovskite films for solar cells with 9.72 % efficiency. Angew Chem Int Ed, 2018, 57, 3787 doi: 10.1002/anie.201800019
[9]
Zhang J, Bai D, Jin Z, et al. 3D-2D-0D interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability. Adv Energy Mater, 2018, 8, 1703246 doi: 10.1002/aenm.201703246
[10]
Wang K, Jin Z, Liang L, et al. Chlorine doping for black γ-CsPbI3 solar cells with stabilized efficiency beyond 16%. Nano Energy, 2019, 58, 175 doi: 10.1016/j.nanoen.2019.01.034
[11]
Swarnkar A, Marshall A R, Sanehira E M, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354, 92 doi: 10.1126/science.aag2700
[12]
Liu F, Zhang Y, Ding C, et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano, 2017, 11, 10373 doi: 10.1021/acsnano.7b05442
[13]
Zeng Q, Zhang X, Liu C, et al. Inorganic CsPbI2Br perovskite solar cells: The progress and perspective. Solar RRL, 2019, 3, 1800239 doi: 10.1002/solr.201800239
[14]
Liu C, Li W, Zhang C, et al. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J Am Chem Soc, 2018, 140, 3825 doi: 10.1021/jacs.7b13229
[15]
Lau C F J, Zhang M, Deng X, et al. Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Lett, 2017, 2, 2319 doi: 10.1021/acsenergylett.7b00751
[16]
Akkerman Q A, Gandini M, Di Stasio F, et al. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat Energy, 2016, 2, 16194 doi: 10.1038/nenergy.2016.194
[17]
Liang J, Wang C, Wang Y, et al. All-inorganic perovskite solar cells. J Am Chem Soc, 2016, 138, 15829 doi: 10.1021/jacs.6b10227
[18]
Zhang X, Jin Z, Zhang J, et al. All-ambient processed binary CsPbBr3-CsPb2Br5 perovskites with synergistic enhancement for high-efficiency Cs-Pb-Br-based solar cells. ACS Appl Mater Interfaces, 2018, 10, 7145 doi: 10.1021/acsami.7b18902
[19]
Zhang C, Wang K, Wang Y, et al. Low-temperature crystallization of CsPbIBr2­ perovskite for high performance solar cells. Solar RRL, 2020, 4 doi: 10.1002/solr.202000254
[20]
Chen W, Li D, Chen S, et al. Spatial distribution recast for organic bulk heterojunctions for high-performance all-inorganic perovskite/organic integrated solar cells. Adv Energy Mater, 2020, 10, 2000851 doi: 10.1002/aenm.202000851
[21]
Guo N, Zhang T, Li G, et al. HI hydrolysis-derived intermediate as booster for CsPbI3 Perovskite: from crystal structure, film fabrication to device performance. J Semicond, 2017, 38, 014004 doi: 10.1088/1674-4926/38/1/014004
[22]
Ma Q, Huang S, Wen X, et al. Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv Energy Mater, 2016, 6, 1502202 doi: 10.1002/aenm.201502202
[23]
Kulbak M, Gupta S, Kedem N, et al. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J Phys Chem Lett, 2016, 7, 167 doi: 10.1021/acs.jpclett.5b02597
[24]
Zhu W, Ma W, Su Y, et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light: Sci Appl, 2020, 9, 112 doi: 10.1038/s41377-020-00353-0
[25]
Zhao Y C, Zhou W K, Zhou X, et al. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light: Sci Appl, 2017, 6, e16243 doi: 10.1038/lsa.2016.243
[26]
Kang C-H, Dursun I, Liu G, et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light: Sci Appl, 2019, 8, 94 doi: 10.1038/s41377-019-0204-4
[27]
Fang H H, Wang F, Adjokatse S, et al. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light: Sci Appl, 2016, 5, e16056 doi: 10.1038/lsa.2016.56
[28]
Bodnarchuk M I, Boehme S C, ten Brinck S, et al. Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals. ACS Energy Lett, 2019, 4, 63 doi: 10.1021/acsenergylett.8b01669
[29]
Tian J, Xue Q, Yao Q, et al. Inorganic halide perovskite solar cells: Progress and challenges. Adv Energy Mater, 2020, 10, 2000183 doi: 10.1002/aenm.202000183
[30]
Stoumpos C C, Kanatzidis M G. The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc Chem Res, 2015, 48, 2791 doi: 10.1021/acs.accounts.5b00229
[31]
Jaffe A, Lin Y, Beavers C M, et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Cent Sci, 2016, 2, 201 doi: 10.1021/acscentsci.6b00055
[32]
Zhang H, Xiao J, Shi J, et al. Self-adhesive macroporous carbon electrodes for efficient and stable perovskite solar cells. Adv Funct Mater, 2018, 28, 1802985 doi: 10.1002/adfm.201802985
[33]
Shan Q, Wei C, Jiang Y, et al. Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light: Sci Appl, 2020, 9, 163 doi: 10.1038/s41377-020-00402-8
[34]
Brandt R E, Stevanović V, Ginley D S, et al. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: Beyond hybrid lead halide perovskites. MRS Commun, 2015, 5, 265 doi: 10.1557/mrc.2015.26
[35]
Ma T, Wang S, Zhang Y, et al. The development of all-inorganic CsPbX3 perovskite solar cells. J Mater Sci, 2019, 55, 464 doi: 10.1007/s10853-019-03974-y
[36]
Zhang M N, Wu X, Riaud A, et al. Spectrum projection with a bandgap-gradient perovskite cell for colour perception. Light: Sci Appl, 2020, 9, 162 doi: 10.1038/s41377-020-00400-w
[37]
Mondal N, Samanta A. Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals (CsPbX3). Nanoscale, 2017, 9, 1878 doi: 10.1039/C6NR09422H
[38]
Zhang J, Hodes G, Jin Z, et al. All-inorganic CsPbX3 perovskite solar cells: Progress and prospects. Angew Chem Int Ed, 2019, 58, 15596 doi: 10.1002/anie.201901081
[39]
Seth S, Mondal N, Patra S, et al. Fluorescence blinking and photoactivation of all-inorganic perovskite nanocrystals CsPbBr3 and CsPbBr2I. J Phys Chem Lett, 2016, 7, 266 doi: 10.1021/acs.jpclett.5b02639
[40]
Sanchez S, Christoph N, Grobety B, et al. Efficient and stable inorganic perovskite solar cells manufactured by pulsed flash infrared annealing. Adv Energy Mater, 2018, 8, 1802060 doi: 10.1002/aenm.201802060
[41]
Ho-Baillie A, Zhang M, Lau C F J, et al. Untapped potentials of inorganic metal halide perovskite solar cells. Joule, 2019, 3, 938 doi: 10.1016/j.joule.2019.02.002
[42]
Beal R E, Slotcavage D J, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett, 2016, 7, 746 doi: 10.1021/acs.jpclett.6b00002
[43]
Marronnier A, Roma G, Boyer-Richard S, et al. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano, 2018, 12, 3477 doi: 10.1021/acsnano.8b00267
[44]
Zhou F, Li Z, Lan W, et al. Halide perovskite, a potential scintillator for X-ray detection. Small Methods, 2020, 4, 2000506 doi: 10.1002/smtd.202000506
[45]
Lin J, Lai M, Dou L, et al. Thermochromic halide perovskite solar cells. Nat Mater, 2018, 17, 261 doi: 10.1038/s41563-017-0006-0
[46]
Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 2013, 52, 9019 doi: 10.1021/ic401215x
[47]
Wang K, Li Z, Zhou F, et al. Ruddlesden–Popper 2D component to stabilize γ-CsPbI3 perovskite phase for stable and efficient photovoltaics. Adv Energy Mater, 2019, 9, 1902529 doi: 10.1002/aenm.201902529
[48]
Knight A J, Wright A D, Patel J B, et al. Electronic traps and phase segregation in lead mixed-halide perovskite. ACS Energy Lett, 2018, 4, 75 doi: 10.1021/acsenergylett.8b02002
[49]
Slotcavage D J, Karunadasa H I, McGehee M D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett, 2016, 1, 1199 doi: 10.1021/acsenergylett.6b00495
[50]
Hoke E T, Slotcavage D J, Dohner E R, et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem Sci, 2015, 6, 613 doi: 10.1039/C4SC03141E
[51]
Xu Y, Wang M, Lei Y, et al. Crystallization kinetics in 2D perovskite solar cells. Adv Energy Mater, 2020, 10, 2002558 doi: 10.1002/aenm.202002558
[52]
Li W, Rothmann M U, Liu A, et al. Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells. Adv Energy Mater, 2017, 7, 1700946 doi: 10.1002/aenm.201700946
[53]
Tang X, van den Berg M, Gu E, et al. Local observation of phase segregation in mixed-halide perovskite. Nano Lett, 2018, 18, 2172 doi: 10.1021/acs.nanolett.8b00505
[54]
Jiang J, Onwudinanti C K, Hatton R A, et al. Stabilizing lead-free all-inorganic tin halide perovskites by ion exchange. J Phys Chem C, 2018, 122, 17660 doi: 10.1021/acs.jpcc.8b04013
[55]
Li Z, Sun Y, Yao H, et al. Intermediates transformation for efficient perovskite solar cells. J Energy Chem, 2021, 52, 102 doi: 10.1016/j.jechem.2020.04.047
[56]
Wang X, Ling Y, Lian X, et al. Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices. Nat Commun, 2019, 10, 695 doi: 10.1038/s41467-019-08610-6
[57]
Yuan Y, Wang Q, Huang J. Ion migration in hybrid perovskite solar Cells. In: Organic-Inorganic Halide Perovskite Photovoltaics. Springer, 2016, 137
[58]
Guo Y, Yin X, Liu J, et al. Inorganic CsPbIBr2-based perovskite solar cells: Fabrication technics modification and efficiency improvement. Solar RRL, 2019, 3, 1900135 doi: 10.1002/solr.201900135
[59]
Zhu W, Zhang Q, Chen D, et al. Intermolecular exchange boosts efficiency of air-stable, carbon-based all-inorganic planar CsPbIBr2 perovskite solar cells to over 9%. Adv Energy Mater, 2018, 8, 1802080 doi: 10.1002/aenm.201802080
[60]
Cao S, Wang H, Li H, et al. Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr2 perovskite solar cells. Chem Eng J, 2020, 394, 124903 doi: 10.1016/j.cej.2020.124903
[61]
Zhang Q, Zhu W, Chen D, et al. Light processing enables efficient carbon-based, all-inorganic planar CsPbIBr2 solar cells with high photovoltages. ACS Appl Mater Interfaces, 2019, 11, 2997 doi: 10.1021/acsami.8b17839
[62]
Guo Y, Yin X, Liu J, et al. Highly efficient CsPbIBr2 perovskite solar cells with efficiency over 9.8% fabricated using a preheating-assisted spin-coating method. J Mater Chem A, 2019, 7, 19008 doi: 10.1039/C9TA03336J
[63]
Zhang W, Xiong J, Li J, et al. Seed-assisted growth for low-temperature-processed all-inorganic CsPbIBr2 solar cells with efficiency over 10%. Small, 2020, 16, 2001535 doi: 10.1002/smll.202001535
[64]
Liang J, Zhao P, Wang C, et al. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J Phys Chem Lett, 2017, 139, 14009 doi: 10.1021/jacs.7b07949
[65]
Lau C F J, Deng X, Ma Q, et al. CsPbIBr2 perovskite solar cell by spray-assisted deposition. ACS Energy Lett, 2016, 1, 573 doi: 10.1021/acsenergylett.6b00341
[66]
Wang C, Zhang J, Duan J, et al. All-inorganic, hole-transporting-layer-free, carbon-based CsPbIBr2 planar perovskite solar cells by a two-step temperature-control annealing process. Mater Sci Semicond Process, 2020, 108, 104870 doi: 10.1016/j.mssp.2019.104870
[67]
Huang L, Zhang D, Bu S, et al. Synergistic interface energy band alignment optimization and defect passivation toward efficient and simple-structured perovskite solar Cell. Adv Sci, 2020, 7, 1902656 doi: 10.1002/advs.201902656
[68]
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater, 2014, 13, 897 doi: 10.1038/nmat4014
[69]
Ding C, Zhang Y, Liu F, et al. Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells. Nano Energy, 2018, 53, 17 doi: 10.1016/j.nanoen.2018.08.031
[70]
Deng Q, Li Y, Chen L, et al. The effects of electron and hole transport layer with the electrode work function on perovskite solar cells. Mod Phys Lett B, 2016, 30, 1650341 doi: 10.1142/S0217984916503413
[71]
Yang B, Wang M, Hu X, et al. Highly efficient semitransparent CsPbIBr2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer. Nano Energy, 2019, 57, 718 doi: 10.1016/j.nanoen.2018.12.097
[72]
Wang Z, Baranwal A K, kamarudin M A, et al. Xanthate-induced sulfur doped all-inorganic perovskite with superior phase stability and enhanced performance. Nano Energy, 2019, 59, 258 doi: 10.1016/j.nanoen.2019.02.049
[73]
Zhu W, Zhang Z, Chai W, et al. Band alignment engineering towards high efficiency carbon-based inorganic planar CsPbIBr2 perovskite solar cells. ChemSusChem, 2019, 12, 2318 doi: 10.1002/cssc.201900611
[74]
Subhani W S, Wang K, Du M, et al. Interface-modification-induced gradient energy band for highly efficient CsPbIBr2 perovskite solar cells. Adv Energy Mater, 2019, 9, 1803785 doi: 10.1002/aenm.201803785
[75]
Correa Baena J P, Steier L, Tress W, et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci, 2015, 8, 2928 doi: 10.1039/C5EE02608C
[76]
Zhu W, Chai W, Zhang Z, et al. Interfacial TiO2 atomic layer deposition triggers simultaneous crystallization control and band alignment for efficient CsPbIBr2 perovskite solar Cell. Org Electron, 2019, 74, 103 doi: 10.1016/j.orgel.2019.07.006
[77]
Wang C, Zhang J, Jiang L, et al. All-inorganic, hole-transporting-layer-free, carbon-based CsPbIBr2 planar solar cells with ZnO as electron-transporting materials. J Alloys Comp, 2020, 817, 152768 doi: 10.1016/j.jallcom.2019.152768
[78]
Liu C, Li W, Chen J, et al. Ultra-thin MoOx as cathode buffer layer for the improvement of all-inorganic CsPbIBr2 perovskite solar cells. Nano Energy, 2017, 41, 75 doi: 10.1016/j.nanoen.2017.08.048
[79]
Zhao J, Zhang Y, Zhao X, et al. Band alignment strategy for printable triple mesoscopic perovskite solar cells with enhanced photovoltage. ACS Appl Energy Mater, 2019, 2, 2034 doi: 10.1021/acsaem.8b02104
[80]
Li Y, Duan J, Yuan H, et al. Lattice modulation of alkali metal cations doped Cs1– xRxPbBr3 halides for inorganic perovskite solar cells. Solar RRL, 2018, 2, 1800164 doi: 10.1002/solr.201800164
[81]
Li Z, Zhou F, Wang Q, et al. Approaches for thermodynamically stabilized CsPbI3 solar cells. Nano Energy, 2020, 71, 104634 doi: 10.1016/j.nanoen.2020.104634
[82]
Zhou Y, Zhou Z, Chen M, et al. Doping and alloying for improved perovskite solar cells. J Mater Chem A, 2016, 4, 17623 doi: 10.1039/C6TA08699C
[83]
Yang Z, Rajagopal A, Jo S B, et al. Stabilized wide bandgap perovskite solar cells by tin substitution. Nano Lett, 2016, 16, 7739 doi: 10.1021/acs.nanolett.6b03857
[84]
van der Stam W, Geuchies J J, Altantzis T, et al. Highly emissive divalent-ion-doped colloidal CsPb1– xMxBr3 perovskite nanocrystals through cation exchange. J Am Chem Soc, 2017, 139, 4087 doi: 10.1021/jacs.6b13079
[85]
Maughan A E, Ganose A M, Bordelon M M, et al. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. J Phys Chem Lett, 2016, 138, 8453 doi: 10.1021/jacs.6b03207
[86]
Barker A J, Sadhanala A, Deschler F, et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett, 2017, 2, 1416 doi: 10.1021/acsenergylett.7b00282
[87]
Tan X, Liu X, Liu Z, et al. Enhancing the optical, morphological and electronic properties of the solution-processed CsPbIBr2 films by Li doping for efficient carbon-based perovskite solar cells. Appl Surf Sci, 2020, 499, 143990 doi: 10.1016/j.apsusc.2019.143990
[88]
Swarnkar A, Mir W J, Nag A. Can B-site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X = Cl, Br, I) perovskites. ACS Energy Lett, 2018, 3, 286 doi: 10.1021/acsenergylett.7b01197
[89]
Gangishetty M K, Sanders S N, Congreve D N. Mn2+ doping enhances the brightness, efficiency, and stability of bulk perovskite light-emitting diodes. ACS Photonics, 2019, 6, 1111 doi: 10.1021/acsphotonics.9b00142
[90]
Zhou F, Li Z, Chen H, et al. Application of perovskite nanocrystals (NCs)/quantum dots (QDs) in solar cells. Nano Energy, 2020, 73, 104757 doi: 10.1016/j.nanoen.2020.104757
[91]
Liang J, Liu Z, Qiu L, et al. Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes. Adv Energy Mater, 2018, 8, 1800504 doi: 10.1002/aenm.201800504
[92]
Li N, Zhu Z, Li J, et al. Inorganic CsPb1−xSnxIBr2 for efficient wide-bandgap perovskite solar cells. Adv Energy Mater, 2018, 8, 1800525 doi: 10.1002/aenm.201800525
[93]
Subhani W S, Wang K, Du M, et al. Goldschmidt-rule-deviated perovskite CsPbIBr2 by barium substitution for efficient solar cells. Nano Energy, 2019, 61, 165 doi: 10.1016/j.nanoen.2019.04.066
[94]
Zhu W, Chai W, Chen D, et al. Recycling of FTO/TiO2 substrates: route toward simultaneously high-performance and cost-efficient carbon-based, all-inorganic CsPbIBr2 solar cells. ACS Appl Mater Interfaces, 2020, 12, 4549 doi: 10.1021/acsami.9b21331
[95]
Zhu J Y, Lou Y H, Li M, et al. Liquid-chalk painted perovskite films toward low-cost photovoltaic devices. Org Electron, 2019, 75, 105371 doi: 10.1016/j.orgel.2019.07.029
[96]
Ravi V K, Markad G B, Nag A. Band edge energies and excitonic transition probabilities of colloidal CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. ACS Energy Lett, 2016, 1, 665 doi: 10.1021/acsenergylett.6b00337
[97]
Chen W, Zhang J, Xu G, et al. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv Mater, 2018, 30, e1800855 doi: 10.1002/adma.201800855
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3537 Times PDF downloads: 154 Times Cited by: 0 Times

    History

    Received: 28 December 2020 Revised: 24 January 2021 Online: Accepted Manuscript: 09 April 2021Uncorrected proof: 15 April 2021Published: 05 July 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hushan Zhang, Zhiwen Jin. Suppressed light-induced phase transition of CsPbBr2I: Strategies, progress and applications in the photovoltaic field[J]. Journal of Semiconductors, 2021, 42(7): 071901. doi: 10.1088/1674-4926/42/7/071901 H S Zhang, Z W Jin, Suppressed light-induced phase transition of CsPbBr2I: Strategies, progress and applications in the photovoltaic field[J]. J. Semicond., 2021, 42(7): 071901. doi: 10.1088/1674-4926/42/7/071901.Export: BibTex EndNote
      Citation:
      Hushan Zhang, Zhiwen Jin. Suppressed light-induced phase transition of CsPbBr2I: Strategies, progress and applications in the photovoltaic field[J]. Journal of Semiconductors, 2021, 42(7): 071901. doi: 10.1088/1674-4926/42/7/071901

      H S Zhang, Z W Jin, Suppressed light-induced phase transition of CsPbBr2I: Strategies, progress and applications in the photovoltaic field[J]. J. Semicond., 2021, 42(7): 071901. doi: 10.1088/1674-4926/42/7/071901.
      Export: BibTex EndNote

      Suppressed light-induced phase transition of CsPbBr2I: Strategies, progress and applications in the photovoltaic field

      doi: 10.1088/1674-4926/42/7/071901
      More Information
      • Author Bio:

        Hushan Zhang received his B.S. degree from Anhui University of Technology in 2015. He is currently a M.S. student at Lanzhou University. His main research focuses on inorganic perovskite based optoelectronic devices

        Zhiwen Jin received the Ph.D. degree from Institute of Chemistry, Chinese Academy of Sciences in 2016, and he joined Lanzhou University in 2018 as a professor with the School of Physical Science and Technology. His research interests include inorganic semiconductor materials, thin-film photoelectric devices and device physics

      • Corresponding author: jinzw@lzu.edu.cn
      • Received Date: 2020-12-28
      • Revised Date: 2021-01-24
      • Published Date: 2021-07-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return