J. Semicond. > Volume 40 > Issue 1 > Article Number: 011803

A review of the most recent progresses of state-of-art gallium oxide power devices

Hong Zhou , Jincheng Zhang , , Chunfu Zhang , Qian Feng , Shenglei Zhao , Peijun Ma and Yue Hao

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Until very recently, gallium oxide (Ga2O3) has aroused more and more interests in the area of power electronics due to its ultra-wide bandgap of 4.5–4.8 eV, estimated critical field of 8 MV/cm and decent intrinsic electron mobility limit of 250 cm2/(V·s), yielding a high Baliga’s figures-of-merit (FOM) of more than 3000, which is several times higher than GaN and SiC. In addition to its excellent material properties, potential low-cost and large size substrate through melt-grown methodology also endows β-Ga2O3 more potential for future low-cost power devices. This article focuses on reviewing the most recent advances of β-Ga2O3 based power devices. It will be starting with a brief introduction to the material properties of β-Ga2O3 and then the growth techniques of its native substrate, followed by the thin film epitaxial growth. The performance of state-of-art β-Ga2O3 devices, including diodes and FETs are fully discussed and compared. Finally, potential solutions to the challenges of β-Ga2O3 are also discussed and explored.

Key words: gallium oxidepower electronicspower devices

Abstract: Until very recently, gallium oxide (Ga2O3) has aroused more and more interests in the area of power electronics due to its ultra-wide bandgap of 4.5–4.8 eV, estimated critical field of 8 MV/cm and decent intrinsic electron mobility limit of 250 cm2/(V·s), yielding a high Baliga’s figures-of-merit (FOM) of more than 3000, which is several times higher than GaN and SiC. In addition to its excellent material properties, potential low-cost and large size substrate through melt-grown methodology also endows β-Ga2O3 more potential for future low-cost power devices. This article focuses on reviewing the most recent advances of β-Ga2O3 based power devices. It will be starting with a brief introduction to the material properties of β-Ga2O3 and then the growth techniques of its native substrate, followed by the thin film epitaxial growth. The performance of state-of-art β-Ga2O3 devices, including diodes and FETs are fully discussed and compared. Finally, potential solutions to the challenges of β-Ga2O3 are also discussed and explored.

Key words: gallium oxidepower electronicspower devices



References:

[1]

Zhang Y, Joishi C, Xia Z et al. Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors. Appl Phys Lett 2018, 112: 233503

[2]

Lv Y, Zhou X, Long S et al. Source-Field-Plated β-Ga2O3 MOSFET with Record Power Figure of Merit of 50.4 MW/cm2. IEEE Electron Device Lett 2019, 39

[3]

Green A J, Chabak K, Heller E R, et al. 3.8 MV/cm Breakdown strength of MOVPE-grown Sn-doped Ga2O3 MOSFETs. IEEE Electron Device Lett, 2016, 37 (7): 902.

[4]

Chabak K D, Moser N, Green A J, et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage. Appl Phys Lett, 2016, 109: 213501.

[5]

Tadjer M, Mahadik N, Wheeler V D, et al. Communications-A (001) β-Ga2O3 MOSFETs with +2.9 V threshold voltage and HfO2 gate dielectric. ECS J Solid State Sci Tech, 2016, 5: 468.

[6]

Zeng K, Wallace J S, Heimburger C, et al. Ga2O3 MOSFETs using spin-on-glass source/drain doping technology. IEEE Electron Device Lett, 2017, 38 (4): 513.

[7]

Wort C J H, Balmer R S. Diamond as an electronic material. Mater Today, 2008, 11 (1): 22.

[8]

Fu H, Baranowski I, Huang X, et al. Demonstration of AlN Schottky barrier diodes with blocking voltage over 1 kV. IEEE Electron Device Lett, 2017, 38 (9): 1286.

[9]

Baliga B J. Power semiconductor-device figure of merit for high-frequency applications. IEEE Electron Device Lett, 1989, 10(10): 455.

[10]

Wenckstern H V. Group‐III sesquioxides: growth, physical properties and devices. Adv Electron Mater, 2017, 3(9): 1600350.

[11]

Yoshioka S, Hayashi H, Kuwabara A, et al. Structures and energetics of Ga2O3 polymorphs. J Phys: Condens Matter, 2007, 19: 346211.

[12]

He H, Orlando R, Blanco M A, et al. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 2006, 74 (19): 195123.

[13]

He H, Blanco M A, Pandey R. Electronic and thermodynamic properties of Ga2O3. Appl Phys Lett, 2006, 88: 261904.

[14]

Kroll P, Dronskowski R, Martin M. Formation of spinel-type gallium oxynitrides: a density-functional study of binary and ternary phases in the system Ga–O–N. J Mater Chem, 2005, 15: 3296.

[15]

Playford H Y, Hannon A C, Barney E R, et al. Structures of Uncharacterised Polymorphs of Gallium Oxide from Total Neutron Diffraction. Eur J, 2013, 19 (8): 2803.

[16]

Peelaers H, Van de Walle C G. Brillouin zone and band structure of β‐Ga2O3. Phys Status Solidi B, 2015, 252 (4): 828.

[17]

Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97: 142106.

[18]

Vasyltsiv V I, Rym Y I, Zakharo Y M. Optical absorption and photoconductivity at the band edge of β‐Ga2−xInxO3. Phys Status Solidi B, 1996, 195, 653.

[19]

Galazka Z, Irmscher K, Uecker R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J Cryst Growth, 2014, 404 (15): 184.

[20]

Galazka Z, Uecker R, Irmscher K, et al. Czochralski growth and characterization of β‐Ga2O3 single crystals. Cryst Res Technol, 2010, 45 (12), 1229.

[21]

Kuramata A, Koshi K, Watanabe S, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J App Phys Part 1, 2016, 55, 1202A2.

[22]

Vıllora E G, Morioka Y, Atou T. Infrared reflectance and electrical conductivity of β-Ga2O3. Phys. Status Solidi A, 2002, 193: 187.

[23]

Zhang J, Li B, Xia C, Growth and spectral characterization of β-Ga2O3 single crystals. J Phys Chem Solids, 2006, 67: 2448.

[24]

Suzuki N, Ohira S, Tanaka M. Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal. Phys Status Solidi C, 2007, 4 (7): 2310.

[25]

Mohamed M, Irmscher K, Janowitz C, et al. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl Phys Lett, 2012, 101: 132106.

[26]

Suzuki K, Okamoto T, Takata M. Crystal growth of β-Ga2O3 by electric current heating method. Ceram Int, 2004, 30(7): 1679.

[27]

Zhang J, Xia C, Deng Q, et al. Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3: Sn. J Phys Chem Solids, 2006, 67: 1656.

[28]

Tomm Y, Reiche P, Klimm D, et al. Czochralski grown Ga2O3 crystals. J Cryst Growth, 2000, 220 (4): 510.

[29]

Galazka Z, Uecker R, Klimm D et al.Scaling-Up of Bulk β-Ga2O3 Single Crystals by the Czochralski Method. ECS J Solid State Sci Technol 2017, 6: Q3007

[30]

Higashiwaki M, Kuramata A, Murakami H, et al. State-of-the-art technologies of gallium oxide power devices. J Phys D, 2017, 50: 333002.

[31]

Hoshikawa K, Ohba E, Kobayashi E, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J Cryst Growth, 2016, 447 (1): 36.

[32]

Alema F, Hertog B, Osinsky A, et al. Fast growth rate of epitaxial β–Ga2O3 by close coupled showerhead MOCVD. J Cryst Growth, 2017, 475: 77.

[33]

Gogova D, Wagner G, Baldini M, et al. Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE. J Cryst Growth, 2014, 401: 665.

[34]

Baldini M, Albrecht M, Fiedler A, et al. Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy. J Mater Sci, 2016, 51(7): 3650.

[35]

Sasaki K, Higashiwaki M, Kuramata A, et al. Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy. J Cryst Growth, 2014, 392: 30.

[36]

Oshima T, Okuno T, Fujita S. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys, 2007, 46: 7217.

[37]

Okumura H, Kita M, Sasaki K, et al. Systematic investigation of the growth rate of β-Ga2O3(010) by plasma-assisted molecular beam epitaxy. Appl Phys Express, 2014, 7: 095501.

[38]

Oshima T, Arai N, Suzuki N, et al. Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy. Thin Solid Films, 2008, 516: 5768.

[39]

Y Oshima, E G Vıllora, K Shimamura. Halide vapor phase epitaxy of twin-free α-Ga2O3 on sapphire (0001) substrates. Appl Phys Express, 2015, 8: 055501.

[40]

Watahiki T, Yuda Y, Furukawa A, et al. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage. Appl Phys Lett, 2017, 111: 222104.

[41]

Murakami H, Nomura K, Goto K, et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl Phys Express, 2015, 8: 015503.

[42]

K Nomura, K Goto, R Togashi, et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy. J Cryst Growth, 2014, 405: 19.

[43]

Hebert C, Petitmangin A, Perrie're J, et al. Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition. Mater Chem Phys, 2012, 133 (1): 135.

[44]

Chen Z, Wang X, Noda S, et al. Effects of dopant contents on structural, morphological and optical properties of Er doped Ga2O3 films. Superlattices Microstruct, 2016, 90: 207.

[45]

Kawaharamura T. Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow. Jpn J Appl Phys, 2014, 53: 05FF08.

[46]

Lee S D, Kaneko K, Fujita S. Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition. Jpn J Appl Phys, 2016, 55: 1202B8.

[47]

Dang G T, Kawaharamura T, Furuta M, et al. Metal–semiconductor field-effect transistors with In–Ga–Zn–O channel grown by nonvacuum-processed mist chemical vapor deposition. IEEE Electron Device Lett, 2015, 36 (5): 463.

[48]

Fujita S, Kaneko K. Epitaxial growth of corundum-structured wide band gap III-oxide semiconductor thin films. J Cryst Growth, 2014, 401: 588.

[49]

Akaiwa K, Fujita S. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 2012, 51: 070203.

[50]

Baldini M, Albrecht M, Gogova D, et al. Effect of indium as a surfactant in (Ga1−xInx)2O3 epitaxial growth on β-Ga2O3 by metal organic vapour phase epitaxy. Semicond Sci Technol, 2015, 30: 024013.

[51]

Hu Z, Zhou H, Feng Q. Field-plated lateral β-Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high power figure-of-merit of 500 MW/cm2. IEEE Electron Device Lett, 2018, 39(10): 1564.

[52]

Sasaki K, Kuramata A, Masui T, et al. Device-quality beta-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Exp, 2012, 5: 035502.

[53]

Konishi K, Goto K, Murakami H, et al. 1-kV vertical β-Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 2017, 110 (10): 103506.

[54]

Yang J, Ahn S, Ren F, et al. High reverse breakdown voltage Schottky rectifiers without edge termination on β-Ga2O3. Appl Phys Lett, 2017, 110 (19): 192101.

[55]

Yang J, Ahn S, Ren F, et al. High breakdown voltage (−201) β-Ga2O3 Schottky rectifiers. IEEE Electron Device Lett, 2017, 38 (7): 906.

[56]

Yang J, Ren F, Pearton S J, et al. Vertical geometry 2-A forward current Ga2O3 Schottky rectifiers on bulk Ga2O3 substrates. IEEE Trans Electron Devices, 2018, 65(7): 2790.

[57]

Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal−semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett 2012, 100: 013504.

[58]

Wong M H, Sasaki K, Kuramata A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett, 2016, 37: 212.

[59]

Zeng K, Vaidya A, Singisetti U, et al. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett, 2018, 39(9): 1385.

[60]

Zeng K, Sasaki K, Kuramata A, et al. Depletion and enhancement mode β-Ga2O3 MOSFETs with ALD SiO2 gate and near 400 V breakdown voltage. Proc 74th Annu DRC, 2016: 1

[61]

Hu Z, Nomoto K, Li W, et al. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kV. IEEE Electron Device Lett, 2018, 39(6): 869.

[62]

Green A J, Chabak K D, Baldini M, et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett, 2017.38 (6): 790.

[63]

Singh M, Casbon M A, Uren M J, et al. Pulsed large signal rf performance of field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett, 2018.39 (10): 1572.

[64]

Chabak K D, Walker D E, Green A J, et al. sub-micron gallium oxide radio frequency field-effect transistors. IEEE MTT-S IMWS-AMP, 2018: 1

[65]

Hwang W S, Verma A, Peelaers H, et al. High-voltage field effect transistors with wide-bandgap beta-Ga2O3 nanomembranes. Appl Phys Lett, 2014, 104: 203111.

[66]

Hu Z, Zhou H, Dang K, et al. lateral-ga2o3 schottky barrier diode on sapphire substrate with reverse blocking voltage of 1.7 kV. IEEE J Electron Device Soc, 2018, 6: 815.

[67]

Zhou H, Maize K, Qiu G, et al. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl Phys Lett, 2017, 111: 092102.

[68]

: Zhou H, Si M, Alghamdi S, et al. High performance depletion/ enhancement mode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett, 2017, 38: 103.

[69]

Moser N A, Mccandless J P, Crespo A, et al. High pulsed density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge. Appl Phys Lett, 2017, 110: 143505.

[70]

Shin S H, Wahab M A, Masuduzzaman A, et al. Direct observation of self-heating in III–V gate-all-around nanowire MOSFETs. IEEE Trans Electron Devices, 2014, 62: 3516.

[71]

Zhou H, Maize K, Noh J, et al. Thermo-dynamic studies of β-Ga2O3 nano-membrane field-effect transistors on sapphire substrate. ACS Omega, 2017, 2: 7723.

[72]

Noh J, Si M, Zhou H, et al. The impact of substrates on the performance of top-gate β-Ga2O3 field-effect transistors: record high drain current of 980 mA/mm on diamond. IEEE Device Research Conference, 2018: 1.

[73]

Maize K, Zibari A, French W D, et al. Thermoreflectance ccd imaging of self-heating in power MOSFET arrays. IEEE Trans Electron Devices 2014, 61: 3047.

[74]

Si M, Yang L, Zhou H, et al. β-Ga2O3 Nanomembrane negative capacitance field-effect transistors with steep subthreshold slope for wide band gap logic applications. ACS Omega, 2017, 2: 7136.

[1]

Zhang Y, Joishi C, Xia Z et al. Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors. Appl Phys Lett 2018, 112: 233503

[2]

Lv Y, Zhou X, Long S et al. Source-Field-Plated β-Ga2O3 MOSFET with Record Power Figure of Merit of 50.4 MW/cm2. IEEE Electron Device Lett 2019, 39

[3]

Green A J, Chabak K, Heller E R, et al. 3.8 MV/cm Breakdown strength of MOVPE-grown Sn-doped Ga2O3 MOSFETs. IEEE Electron Device Lett, 2016, 37 (7): 902.

[4]

Chabak K D, Moser N, Green A J, et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage. Appl Phys Lett, 2016, 109: 213501.

[5]

Tadjer M, Mahadik N, Wheeler V D, et al. Communications-A (001) β-Ga2O3 MOSFETs with +2.9 V threshold voltage and HfO2 gate dielectric. ECS J Solid State Sci Tech, 2016, 5: 468.

[6]

Zeng K, Wallace J S, Heimburger C, et al. Ga2O3 MOSFETs using spin-on-glass source/drain doping technology. IEEE Electron Device Lett, 2017, 38 (4): 513.

[7]

Wort C J H, Balmer R S. Diamond as an electronic material. Mater Today, 2008, 11 (1): 22.

[8]

Fu H, Baranowski I, Huang X, et al. Demonstration of AlN Schottky barrier diodes with blocking voltage over 1 kV. IEEE Electron Device Lett, 2017, 38 (9): 1286.

[9]

Baliga B J. Power semiconductor-device figure of merit for high-frequency applications. IEEE Electron Device Lett, 1989, 10(10): 455.

[10]

Wenckstern H V. Group‐III sesquioxides: growth, physical properties and devices. Adv Electron Mater, 2017, 3(9): 1600350.

[11]

Yoshioka S, Hayashi H, Kuwabara A, et al. Structures and energetics of Ga2O3 polymorphs. J Phys: Condens Matter, 2007, 19: 346211.

[12]

He H, Orlando R, Blanco M A, et al. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 2006, 74 (19): 195123.

[13]

He H, Blanco M A, Pandey R. Electronic and thermodynamic properties of Ga2O3. Appl Phys Lett, 2006, 88: 261904.

[14]

Kroll P, Dronskowski R, Martin M. Formation of spinel-type gallium oxynitrides: a density-functional study of binary and ternary phases in the system Ga–O–N. J Mater Chem, 2005, 15: 3296.

[15]

Playford H Y, Hannon A C, Barney E R, et al. Structures of Uncharacterised Polymorphs of Gallium Oxide from Total Neutron Diffraction. Eur J, 2013, 19 (8): 2803.

[16]

Peelaers H, Van de Walle C G. Brillouin zone and band structure of β‐Ga2O3. Phys Status Solidi B, 2015, 252 (4): 828.

[17]

Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97: 142106.

[18]

Vasyltsiv V I, Rym Y I, Zakharo Y M. Optical absorption and photoconductivity at the band edge of β‐Ga2−xInxO3. Phys Status Solidi B, 1996, 195, 653.

[19]

Galazka Z, Irmscher K, Uecker R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J Cryst Growth, 2014, 404 (15): 184.

[20]

Galazka Z, Uecker R, Irmscher K, et al. Czochralski growth and characterization of β‐Ga2O3 single crystals. Cryst Res Technol, 2010, 45 (12), 1229.

[21]

Kuramata A, Koshi K, Watanabe S, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J App Phys Part 1, 2016, 55, 1202A2.

[22]

Vıllora E G, Morioka Y, Atou T. Infrared reflectance and electrical conductivity of β-Ga2O3. Phys. Status Solidi A, 2002, 193: 187.

[23]

Zhang J, Li B, Xia C, Growth and spectral characterization of β-Ga2O3 single crystals. J Phys Chem Solids, 2006, 67: 2448.

[24]

Suzuki N, Ohira S, Tanaka M. Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal. Phys Status Solidi C, 2007, 4 (7): 2310.

[25]

Mohamed M, Irmscher K, Janowitz C, et al. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl Phys Lett, 2012, 101: 132106.

[26]

Suzuki K, Okamoto T, Takata M. Crystal growth of β-Ga2O3 by electric current heating method. Ceram Int, 2004, 30(7): 1679.

[27]

Zhang J, Xia C, Deng Q, et al. Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3: Sn. J Phys Chem Solids, 2006, 67: 1656.

[28]

Tomm Y, Reiche P, Klimm D, et al. Czochralski grown Ga2O3 crystals. J Cryst Growth, 2000, 220 (4): 510.

[29]

Galazka Z, Uecker R, Klimm D et al.Scaling-Up of Bulk β-Ga2O3 Single Crystals by the Czochralski Method. ECS J Solid State Sci Technol 2017, 6: Q3007

[30]

Higashiwaki M, Kuramata A, Murakami H, et al. State-of-the-art technologies of gallium oxide power devices. J Phys D, 2017, 50: 333002.

[31]

Hoshikawa K, Ohba E, Kobayashi E, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J Cryst Growth, 2016, 447 (1): 36.

[32]

Alema F, Hertog B, Osinsky A, et al. Fast growth rate of epitaxial β–Ga2O3 by close coupled showerhead MOCVD. J Cryst Growth, 2017, 475: 77.

[33]

Gogova D, Wagner G, Baldini M, et al. Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE. J Cryst Growth, 2014, 401: 665.

[34]

Baldini M, Albrecht M, Fiedler A, et al. Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy. J Mater Sci, 2016, 51(7): 3650.

[35]

Sasaki K, Higashiwaki M, Kuramata A, et al. Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy. J Cryst Growth, 2014, 392: 30.

[36]

Oshima T, Okuno T, Fujita S. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys, 2007, 46: 7217.

[37]

Okumura H, Kita M, Sasaki K, et al. Systematic investigation of the growth rate of β-Ga2O3(010) by plasma-assisted molecular beam epitaxy. Appl Phys Express, 2014, 7: 095501.

[38]

Oshima T, Arai N, Suzuki N, et al. Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy. Thin Solid Films, 2008, 516: 5768.

[39]

Y Oshima, E G Vıllora, K Shimamura. Halide vapor phase epitaxy of twin-free α-Ga2O3 on sapphire (0001) substrates. Appl Phys Express, 2015, 8: 055501.

[40]

Watahiki T, Yuda Y, Furukawa A, et al. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage. Appl Phys Lett, 2017, 111: 222104.

[41]

Murakami H, Nomura K, Goto K, et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl Phys Express, 2015, 8: 015503.

[42]

K Nomura, K Goto, R Togashi, et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy. J Cryst Growth, 2014, 405: 19.

[43]

Hebert C, Petitmangin A, Perrie're J, et al. Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition. Mater Chem Phys, 2012, 133 (1): 135.

[44]

Chen Z, Wang X, Noda S, et al. Effects of dopant contents on structural, morphological and optical properties of Er doped Ga2O3 films. Superlattices Microstruct, 2016, 90: 207.

[45]

Kawaharamura T. Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow. Jpn J Appl Phys, 2014, 53: 05FF08.

[46]

Lee S D, Kaneko K, Fujita S. Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition. Jpn J Appl Phys, 2016, 55: 1202B8.

[47]

Dang G T, Kawaharamura T, Furuta M, et al. Metal–semiconductor field-effect transistors with In–Ga–Zn–O channel grown by nonvacuum-processed mist chemical vapor deposition. IEEE Electron Device Lett, 2015, 36 (5): 463.

[48]

Fujita S, Kaneko K. Epitaxial growth of corundum-structured wide band gap III-oxide semiconductor thin films. J Cryst Growth, 2014, 401: 588.

[49]

Akaiwa K, Fujita S. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 2012, 51: 070203.

[50]

Baldini M, Albrecht M, Gogova D, et al. Effect of indium as a surfactant in (Ga1−xInx)2O3 epitaxial growth on β-Ga2O3 by metal organic vapour phase epitaxy. Semicond Sci Technol, 2015, 30: 024013.

[51]

Hu Z, Zhou H, Feng Q. Field-plated lateral β-Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high power figure-of-merit of 500 MW/cm2. IEEE Electron Device Lett, 2018, 39(10): 1564.

[52]

Sasaki K, Kuramata A, Masui T, et al. Device-quality beta-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Exp, 2012, 5: 035502.

[53]

Konishi K, Goto K, Murakami H, et al. 1-kV vertical β-Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 2017, 110 (10): 103506.

[54]

Yang J, Ahn S, Ren F, et al. High reverse breakdown voltage Schottky rectifiers without edge termination on β-Ga2O3. Appl Phys Lett, 2017, 110 (19): 192101.

[55]

Yang J, Ahn S, Ren F, et al. High breakdown voltage (−201) β-Ga2O3 Schottky rectifiers. IEEE Electron Device Lett, 2017, 38 (7): 906.

[56]

Yang J, Ren F, Pearton S J, et al. Vertical geometry 2-A forward current Ga2O3 Schottky rectifiers on bulk Ga2O3 substrates. IEEE Trans Electron Devices, 2018, 65(7): 2790.

[57]

Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal−semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett 2012, 100: 013504.

[58]

Wong M H, Sasaki K, Kuramata A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett, 2016, 37: 212.

[59]

Zeng K, Vaidya A, Singisetti U, et al. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett, 2018, 39(9): 1385.

[60]

Zeng K, Sasaki K, Kuramata A, et al. Depletion and enhancement mode β-Ga2O3 MOSFETs with ALD SiO2 gate and near 400 V breakdown voltage. Proc 74th Annu DRC, 2016: 1

[61]

Hu Z, Nomoto K, Li W, et al. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kV. IEEE Electron Device Lett, 2018, 39(6): 869.

[62]

Green A J, Chabak K D, Baldini M, et al. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett, 2017.38 (6): 790.

[63]

Singh M, Casbon M A, Uren M J, et al. Pulsed large signal rf performance of field-plated Ga2O3 MOSFETs. IEEE Electron Device Lett, 2018.39 (10): 1572.

[64]

Chabak K D, Walker D E, Green A J, et al. sub-micron gallium oxide radio frequency field-effect transistors. IEEE MTT-S IMWS-AMP, 2018: 1

[65]

Hwang W S, Verma A, Peelaers H, et al. High-voltage field effect transistors with wide-bandgap beta-Ga2O3 nanomembranes. Appl Phys Lett, 2014, 104: 203111.

[66]

Hu Z, Zhou H, Dang K, et al. lateral-ga2o3 schottky barrier diode on sapphire substrate with reverse blocking voltage of 1.7 kV. IEEE J Electron Device Soc, 2018, 6: 815.

[67]

Zhou H, Maize K, Qiu G, et al. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl Phys Lett, 2017, 111: 092102.

[68]

: Zhou H, Si M, Alghamdi S, et al. High performance depletion/ enhancement mode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett, 2017, 38: 103.

[69]

Moser N A, Mccandless J P, Crespo A, et al. High pulsed density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge. Appl Phys Lett, 2017, 110: 143505.

[70]

Shin S H, Wahab M A, Masuduzzaman A, et al. Direct observation of self-heating in III–V gate-all-around nanowire MOSFETs. IEEE Trans Electron Devices, 2014, 62: 3516.

[71]

Zhou H, Maize K, Noh J, et al. Thermo-dynamic studies of β-Ga2O3 nano-membrane field-effect transistors on sapphire substrate. ACS Omega, 2017, 2: 7723.

[72]

Noh J, Si M, Zhou H, et al. The impact of substrates on the performance of top-gate β-Ga2O3 field-effect transistors: record high drain current of 980 mA/mm on diamond. IEEE Device Research Conference, 2018: 1.

[73]

Maize K, Zibari A, French W D, et al. Thermoreflectance ccd imaging of self-heating in power MOSFET arrays. IEEE Trans Electron Devices 2014, 61: 3047.

[74]

Si M, Yang L, Zhou H, et al. β-Ga2O3 Nanomembrane negative capacitance field-effect transistors with steep subthreshold slope for wide band gap logic applications. ACS Omega, 2017, 2: 7136.

[1]

Tsung-Han Yang, Houqiang Fu, Hong Chen, Xuanqi Huang, Jossue Montes, Izak Baranowski, Kai Fu, Yuji Zhao. Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates. J. Semicond., 2019, 40(1): 012801. doi: 10.1088/1674-4926/40/1/012801

[2]

Moufu Kong, Xingbi Chen. Novel high-voltage, high-side and low-side power devices with a single control signal. J. Semicond., 2013, 34(9): 094009. doi: 10.1088/1674-4926/34/9/094009

[3]

Bose Srikanta, S K Mazumder. Fabrication and characterization of a GaN/(4H)SiC vertical pn power diode using direct and interfaced epitaxial-growth approaches. J. Semicond., 2013, 34(4): 044001. doi: 10.1088/1674-4926/34/4/044001

[4]

Congyu Hu, Katsuhiko Saito, Tooru Tanaka, Qixin Guo. Growth properties of gallium oxide on sapphire substrate by plasma-assisted pulsed laser deposition. J. Semicond., 2019, 40(2): 000000.

[5]

Liu Jianjun, Yan Jinliang, Shi Liang, Li Ting. Electrical and optical properties of deep ultraviolet transparent conductive Ga2O3/ITO films by magnetron sputtering. J. Semicond., 2010, 31(10): 103001. doi: 10.1088/1674-4926/31/10/103001

[6]

Tongchuan Ma, Xuanhu Chen, Fangfang Ren, Shunming Zhu, Shulin Gu, Rong Zhang, Youdou Zheng, Jiandong Ye. Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique. J. Semicond., 2019, 40(1): 012804. doi: 10.1088/1674-4926/40/1/012804

[7]

Chengyang Xu, Jinliang Yan, Chao Li, Huihui Zhuang. The effect of the multi-period on the properties of deep-ultraviolet transparent conductive Ga2O3/ITO alternating multilayer films. J. Semicond., 2013, 34(10): 103004. doi: 10.1088/1674-4926/34/10/103004

[8]

Li Ting, Yan Jinliang, Ding Xingwei, Zhang Liying. Effect of substrate temperature on the properties of deep ultraviolet transparent conductive ITO/Ga2. J. Semicond., 2012, 33(1): 013002. doi: 10.1088/1674-4926/33/1/013002

[9]

Xutang Tao, Jiandong Ye, Shibing Long, Zhitai Jia. Preface to the Special Issue on Ultra-Wide Bandgap Semiconductor Gallium Oxide: from Materials to Devices. J. Semicond., 2019, 40(1): 010101. doi: 10.1088/1674-4926/40/1/010101

[10]

Li Zehong, Zhou Chunhua, Hu Yonggui, Liu Yong, Zhang Bo, Xu Shiliu. ESD Transient Model of Vertical DMOS Power Devices. J. Semicond., 2008, 29(10): 2014.

[11]

Luo Weijun, Chen Xiaojuan, Liang Xiaoxin, Ma Xiaolin, Liu Xinyu, Wang Xiaoliang. A Radial Stub Test Circuit for Microwave Power Devices. J. Semicond., 2006, 27(9): 1557.

[12]

Xutang Tao. Bulk gallium oxide single crystal growth. J. Semicond., 2019, 40(1): 010401. doi: 10.1088/1674-4926/40/1/010401

[13]

Yue Hao. Gallium oxide: promise to provide more efficient life. J. Semicond., 2019, 40(1): 010301. doi: 10.1088/1674-4926/40/1/010301

[14]

Zhiqun Cheng, Ming Zhang, Jiangzhou Li, Guohua Liu. A broadband high-efficiency Doherty power amplifier using symmetrical devices. J. Semicond., 2018, 39(4): 045004. doi: 10.1088/1674-4926/39/4/045004

[15]

Beichen Zhang, Bingbing Yao, Liyuan Liu, Jian Liu, Nanjian Wu. High power-efficient asynchronous SAR ADC for IoT devices. J. Semicond., 2017, 38(10): 105001. doi: 10.1088/1674-4926/38/10/105001

[16]

Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan. Oxide-based thin film transistors for flexible electronics. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005

[17]

Junfei Shi, Chengyuan Dong, Wenjun Dai, Jie Wu, Yuting Chen, Runze Zhan. The influence of RF power on the electrical properties of sputtered amorphous In-Ga-Zn-O thin films and devices. J. Semicond., 2013, 34(8): 084003. doi: 10.1088/1674-4926/34/8/084003

[18]

Tongtong Yang, Song Bai, Runhua Huang. Optimization of junction termination extension for ultrahigh voltage 4H-SiC planar power devices. J. Semicond., 2017, 38(4): 044004. doi: 10.1088/1674-4926/38/4/044004

[19]

Zhu Yangjun, Miao Qinghai, Zhang Xinghua, Yang Lieyong, Lu Shuojin. Real-Time and On-Line Measurement of Junction Temperature for Semiconductor Power Devices. J. Semicond., 2007, 28(6): 980.

[20]

Mingmin Huang, Xingbi Chen. A superjunction structure using high-k insulator for power devices: theory and optimization. J. Semicond., 2016, 37(6): 064014. doi: 10.1088/1674-4926/37/6/064014

Search

Advanced Search >>

GET CITATION

H Zhou, J C Zhang, C F Zhang, Q Feng, S L Zhao, P J Ma, Y Hao, A review of the most recent progresses of state-of-art gallium oxide power devices[J]. J. Semicond., 2019, 40(1): 011803. doi: 10.1088/1674-4926/40/1/011803.

Export: BibTex EndNote

Article Metrics

Article views: 1505 Times PDF downloads: 233 Times Cited by: 0 Times

History

Manuscript received: 16 October 2018 Manuscript revised: 17 December 2018 Online: Accepted Manuscript: 21 December 2018 Uncorrected proof: 24 December 2018 Published: 07 January 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误