W Feng, L J Shi, Nonlinear dynamics in a terahertz-driven double-layer graphene diode[J]. J. Semicond., 2018, 39(12): 124012. doi: 10.1088/1674-4926/39/12/124012.
Wei Feng^{ , } and Lijuan Shi^{ }
Abstract: By using the time-dependent hydrodynamic equations, we carry out a theoretical study of nonlinear dynamics in an n^{+}nn^{+} double-layer graphene diode driven by terahertz radia-tion. A cooperative nonlinear oscillatory mode shows up due to the negative differential conductance effect. We use different chaos-detecting methods, such as the Poincaré bifurcation diagram and the first return map, to examine the transitions between the periodic and chaotic states. The double-layer graphene diode shows typical nonlinear dynamical behavior with the DC bias, AC amplitudes and the AC frequency as the control parameters.
Key words: nonlinear, terahertz, double-layer graphene
Abstract: By using the time-dependent hydrodynamic equations, we carry out a theoretical study of nonlinear dynamics in an n^{+}nn^{+} double-layer graphene diode driven by terahertz radia-tion. A cooperative nonlinear oscillatory mode shows up due to the negative differential conductance effect. We use different chaos-detecting methods, such as the Poincaré bifurcation diagram and the first return map, to examine the transitions between the periodic and chaotic states. The double-layer graphene diode shows typical nonlinear dynamical behavior with the DC bias, AC amplitudes and the AC frequency as the control parameters.
Key words:
nonlinear, terahertz, double-layer graphene
References:
[1] |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666 |
[2] |
Apalkov V M, hakraborty T. Fractal butterflies in buckled graphenelike materials. Phys Rev B, 2015, 91: 235447 |
[3] |
Semnani B, Majedi A H, Safavi-Naeini S. Nonlinear quantum optical properties of graphene: the role of chirality and symmetry. Appl Phys Lett, 2015, 85: 115438 |
[4] |
Katsnelson M. Graphene: carbon in two dimensions. Cambridge: Cambridge University Press, 2012 |
[5] |
Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nat Photonics, 2010, 4: 611 |
[6] |
Zheng Y, Ni G X, Toh C T, et al. Graphene field-effect transistors with ferroelectric gating. Phys Rev Lett, 2010, 105: 166602 |
[7] |
Ferreira A, Peres N M R, Ribeiro R M, et al. Graphene-based photodetector with two cavities. Phys Rev B, 2012, 85: 115438 |
[8] |
Bae S, Kim H, Lee Y B, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotech, 2010, 5: 574 |
[9] |
Britnell L, Gorbachev R V, Geim A K, et al. Resonant tunneling and negative differential conductance in graphene transistors. Nat Commun, 2013, 4: 1794 |
[10] |
Nguyen V H, Mazzamuto F, Bournel A, et al. Resonant tunneling diodes based on graphene/h-BN heterostructure. J Phys D, 2012, 45: 325104 |
[11] |
Song Y, Wu H C, Guo Y. Negative differential resistances in graphene double barrier resonant tunneling diodes. Appl Phys Lett, 2013, 102: 093118 |
[12] |
Ferreira G J, Leuenberger M N, Loss D, et al. Low-bias negative differential resistance in graphene nanoribbon superlattices. Phys Rev B, 2011, 84: 125453 |
[13] |
Yamasue K, Fukidome H, Funakubo K, et al. Interfacial charge states in graphene on SiC studied by noncontact scanning nonlinear dielectric potentiometry. Phys Rev Lett, 2015, 114: 226103 |
[14] |
Kuroda M A, Tersoff J, Martyna G J. Nonlinear screening in multilayer graphene systems. Phys Rev Lett, 2011, 106: 116804 |
[15] |
Bykov A Y, Murzina T V, Rybin M G, et al. Second harmonic generation in multilayer graphene induced by direct electric current. Phys Rev B, 2012, 85: 121413 |
[16] |
Petrone N, McMillan J F, van der Zande A, et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat Photonics, 2012, 6: 554 |
[17] |
Entin M V, Magarill L I, Shepelyansky D L. Theory of resonant photon drag in mono-layer graphene. Phys Rev B, 2010, 81: 165441 |
[18] |
Mai S, Syzranov S V, Efetov K B. Photocurrent in a visible-light graphene photodiode. Phys Rev B, 2011, 83: 033402 |
[19] |
Chu S, Wang S, Gong Q. Ultrafast third-order nonlinear optical properties of graphene in aqueous solution and polyvinyl alcohol film. Chem Phys Lett, 2012, 523: 104 |
[20] |
Cao J C, Lei X L. Synchronization and chaos in miniband semiconductor superlattices. Phys Rev B, 1999, 60: 1871 |
[21] |
Cao J C, Liu H C, Lei X L, et al. Chaotic dynamics in terahertz-driven semiconductors with negative effective mass. Phys Rev B, 2001, 63: 115308 |
[22] |
Feng W, Cao J C. Nonlinear dynamics in GaAs_{1–x}N_{x} diodes under terahertz radiation. J Appl Phys, 2009, 106: 033708 |
[23] |
Cao J C. Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures. Phys Rev Lett, 2003, 91: 237401 |
[1] |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666 |
[2] |
Apalkov V M, hakraborty T. Fractal butterflies in buckled graphenelike materials. Phys Rev B, 2015, 91: 235447 |
[3] |
Semnani B, Majedi A H, Safavi-Naeini S. Nonlinear quantum optical properties of graphene: the role of chirality and symmetry. Appl Phys Lett, 2015, 85: 115438 |
[4] |
Katsnelson M. Graphene: carbon in two dimensions. Cambridge: Cambridge University Press, 2012 |
[5] |
Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nat Photonics, 2010, 4: 611 |
[6] |
Zheng Y, Ni G X, Toh C T, et al. Graphene field-effect transistors with ferroelectric gating. Phys Rev Lett, 2010, 105: 166602 |
[7] |
Ferreira A, Peres N M R, Ribeiro R M, et al. Graphene-based photodetector with two cavities. Phys Rev B, 2012, 85: 115438 |
[8] |
Bae S, Kim H, Lee Y B, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotech, 2010, 5: 574 |
[9] |
Britnell L, Gorbachev R V, Geim A K, et al. Resonant tunneling and negative differential conductance in graphene transistors. Nat Commun, 2013, 4: 1794 |
[10] |
Nguyen V H, Mazzamuto F, Bournel A, et al. Resonant tunneling diodes based on graphene/h-BN heterostructure. J Phys D, 2012, 45: 325104 |
[11] |
Song Y, Wu H C, Guo Y. Negative differential resistances in graphene double barrier resonant tunneling diodes. Appl Phys Lett, 2013, 102: 093118 |
[12] |
Ferreira G J, Leuenberger M N, Loss D, et al. Low-bias negative differential resistance in graphene nanoribbon superlattices. Phys Rev B, 2011, 84: 125453 |
[13] |
Yamasue K, Fukidome H, Funakubo K, et al. Interfacial charge states in graphene on SiC studied by noncontact scanning nonlinear dielectric potentiometry. Phys Rev Lett, 2015, 114: 226103 |
[14] |
Kuroda M A, Tersoff J, Martyna G J. Nonlinear screening in multilayer graphene systems. Phys Rev Lett, 2011, 106: 116804 |
[15] |
Bykov A Y, Murzina T V, Rybin M G, et al. Second harmonic generation in multilayer graphene induced by direct electric current. Phys Rev B, 2012, 85: 121413 |
[16] |
Petrone N, McMillan J F, van der Zande A, et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat Photonics, 2012, 6: 554 |
[17] |
Entin M V, Magarill L I, Shepelyansky D L. Theory of resonant photon drag in mono-layer graphene. Phys Rev B, 2010, 81: 165441 |
[18] |
Mai S, Syzranov S V, Efetov K B. Photocurrent in a visible-light graphene photodiode. Phys Rev B, 2011, 83: 033402 |
[19] |
Chu S, Wang S, Gong Q. Ultrafast third-order nonlinear optical properties of graphene in aqueous solution and polyvinyl alcohol film. Chem Phys Lett, 2012, 523: 104 |
[20] |
Cao J C, Lei X L. Synchronization and chaos in miniband semiconductor superlattices. Phys Rev B, 1999, 60: 1871 |
[21] |
Cao J C, Liu H C, Lei X L, et al. Chaotic dynamics in terahertz-driven semiconductors with negative effective mass. Phys Rev B, 2001, 63: 115308 |
[22] |
Feng W, Cao J C. Nonlinear dynamics in GaAs_{1–x}N_{x} diodes under terahertz radiation. J Appl Phys, 2009, 106: 033708 |
[23] |
Cao J C. Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures. Phys Rev Lett, 2003, 91: 237401 |
[1] |
Wei Feng. Hydrodynamic simulations of terahertz oscillation in double-layer graphene. J. Semicond., 2018, 39(12): 122005. doi: 10.1088/1674-4926/39/12/122005 |
[2] |
Liu H C, Luo H, Ban D, Wachter M, Song C Y, Wasilewski Z R, Buchanan M, Aers G C, SpringThorpe A J, Cao J C, Feng S L, Williams B S, Hu Q. Terahertz Semiconductor Quantum Well Devices. J. Semicond., 2006, 27(4): 627. |
[3] |
Hamed Ghodsi, Hassan Kaatuzian. Physical characteristics modification of a SiGe-HBT semiconductor device for performance improvement in a terahertz detecting system. J. Semicond., 2015, 36(5): 054010. doi: 10.1088/1674-4926/36/5/054010 |
[4] |
Aritra Acharyya, Suranjana Banerjee, J. P. Banerjee. Potentiality of semiconducting diamond as the base material of millimeter-wave and terahertz IMPATT devices. J. Semicond., 2014, 35(3): 034005. doi: 10.1088/1674-4926/35/3/034005 |
[5] |
Jingtao Zhou, Chengyue Yang, Ji Ge, Zhi Jin. Planar InP-based Schottky barrier diodes for terahertz applications. J. Semicond., 2013, 34(6): 064003. doi: 10.1088/1674-4926/34/6/064003 |
[6] |
Jeetendra Singh, Balwinder Raj. Comparative analysis of memristor models and memories design. J. Semicond., 2018, 39(7): 074006. doi: 10.1088/1674-4926/39/7/074006 |
[7] |
Hu Xiaoyu, Zhou Yumei. A CMOS Sampling Switch for 14bit 50MHz Pipelined A/D Converter. J. Semicond., 2007, 28(9): 1488. |
[8] |
J. Ajayan, D. Nirmal. 22 nm In_{0.75}Ga_{0.25}As channel-based HEMTs on InP/GaAs substrates for future THz applications. J. Semicond., 2017, 38(4): 044001. doi: 10.1088/1674-4926/38/4/044001 |
[9] |
Chen Rui, Lin Guijiang, Chen Songyan, Li Cheng, Lai Hongkai, Yu Jinzhong. Waveguide Simulation of a THz Si/SiGe Quantum Cascade Laser. J. Semicond., 2008, 29(5): 893. |
[10] |
Chen Chi, Hao Yue, Yang Ling, Quan Si, Ma Xiaohua, Zhang Jincheng. Nonlinear characterization of GaN HEMT. J. Semicond., 2010, 31(11): 114004. doi: 10.1088/1674-4926/31/11/114004 |
[11] |
Quanyong Lu. High performance terahertz laser. J. Semicond., 2019, 40(2): 020203. doi: 10.1088/1674-4926/40/2/020203 |
[12] |
Feng Wei. Review of terahertz semiconductor sources. J. Semicond., 2012, 33(3): 031001. doi: 10.1088/1674-4926/33/3/031001 |
[13] |
Ni Henan, Wu Liangcai, Song Zhitang, Hui Chun. Memory characteristics of an MOS capacitor structure with double-layer semiconductor and metal heterogeneous nanocrystals. J. Semicond., 2009, 30(11): 114003. doi: 10.1088/1674-4926/30/11/114003 |
[14] |
Wang Yanshuo, Chen Nuofu, Zhang Xingwang, Yang Xiaoli, Bai Yiming, Cui Min, Wang Yu, Chen Xiaofeng, Huang Tianmao. Ag surface plasmon enhanced double-layer antireflection coatings for GaAs solar cells. J. Semicond., 2009, 30(7): 072005. doi: 10.1088/1674-4926/30/7/072005 |
[15] |
Bai Yiming, Chen Nuofu, Dai Ruixuan, Wang Peng, Peng Changtao. Dispersion Effect on Double-Layer Anti-Reflection Coatingsof GaAs Solar Cells. J. Semicond., 2006, 27(4): 725. |
[16] |
Zhang Wei, Zhu Lian, Sun Qingqing, Lu Hongliang, Ding Shijin. Synthesis and Characterization of SiCOF/a-C∶F Double-Layer Films with Low Dielectric Constant for Copper Interconnects. J. Semicond., 2006, 27(3): 429. |
[17] |
Jin Meng, Dehai Zhang, Changhong Jiang, Xin Zhao, Jian Huang, Dashuai Yan. Crucial problems in the design of a terahertz tripler. J. Semicond., 2015, 36(8): 085003. doi: 10.1088/1674-4926/36/8/085003 |
[18] |
Wang Xinmei, Shi Wei, Qu Guanghui, Tian Liqiang. Transient Characteristics of a Nonlinear GaAs Photoconductive Semiconductor Switch. J. Semicond., 2008, 29(6): 1108. |
[19] |
Xueli Ma, Hong Yang, Wenwu Wang, Huaxiang Yin, Huilong Zhu, Chao Zhao, Dapeng Chen, Tianchun Ye. An effective work-function tuning method of nMOSCAP with high-k/metal gate by TiN/TaN double-layer stack thickness. J. Semicond., 2014, 35(9): 096001. doi: 10.1088/1674-4926/35/9/096001 |
[20] |
Hua Li. Semiconductor-based terahertz frequency combs. J. Semicond., 2019, 40(5): 050402. doi: 10.1088/1674-4926/40/5/050402 |
W Feng, L J Shi, Nonlinear dynamics in a terahertz-driven double-layer graphene diode[J]. J. Semicond., 2018, 39(12): 124012. doi: 10.1088/1674-4926/39/12/124012.
Article views: 227 Times PDF downloads: 19 Times Cited by: 0 Times
Manuscript received: 18 July 2018 Manuscript revised: 30 August 2018 Online: Accepted Manuscript: 09 November 2018 Uncorrected proof: 30 November 2018 Published: 13 December 2018
Journal of Semiconductors © 2017 All Rights Reserved