J. Semicond. >  In Press

Nonlinear dynamics in a terahertz-driven double-layer graphene diode

Wei Feng , and Lijuan Shi

+ Author Affilications + Find other works by these authors

PDF

Abstract: By using the time-dependent hydrodynamic equations, we carry out a theoretical study of nonlinear dynamics in an n+nn+ double-layer graphene diode driven by terahertz radia-tion. A cooperative nonlinear oscillatory mode shows up due to the negative differential conductance effect. We use different chaos-detecting methods, such as the Poincaré bifurcation diagram and the first return map, to examine the transitions between the periodic and chaotic states. The double-layer graphene diode shows typical nonlinear dynamical behavior with the DC bias, AC amplitudes and the AC frequency as the control parameters.

Key words: nonlinearterahertzdouble-layer graphene

Abstract: By using the time-dependent hydrodynamic equations, we carry out a theoretical study of nonlinear dynamics in an n+nn+ double-layer graphene diode driven by terahertz radia-tion. A cooperative nonlinear oscillatory mode shows up due to the negative differential conductance effect. We use different chaos-detecting methods, such as the Poincaré bifurcation diagram and the first return map, to examine the transitions between the periodic and chaotic states. The double-layer graphene diode shows typical nonlinear dynamical behavior with the DC bias, AC amplitudes and the AC frequency as the control parameters.

Key words: nonlinearterahertzdouble-layer graphene



References:

[1]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666

[2]

Apalkov V M, hakraborty T. Fractal butterflies in buckled graphenelike materials. Phys Rev B, 2015, 91: 235447

[3]

Semnani B, Majedi A H, Safavi-Naeini S. Nonlinear quantum optical properties of graphene: the role of chirality and symmetry. Appl Phys Lett, 2015, 85: 115438

[4]

Katsnelson M. Graphene: carbon in two dimensions. Cambridge: Cambridge University Press, 2012

[5]

Bonaccorso F, Sun Z, Hasan T, Ferrari A. Graphene photonics and optoelectronics. Nat Photonics, 2010, 4: 611

[6]

Zheng Y, Ni G X, Toh C T, et al. Graphene field-effect transistors with ferroelectric gating. Phys Rev Lett, 2010, 105: 166602

[7]

Ferreira A, Peres N M R, Ribeiro R M, et al. Graphene-based photodetector with two cavities. Phys Rev B, 2012, 85: 115438

[8]

Bae S, Kim H, Lee Y B, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotech, 2010, 5: 574

[9]

Britnell L, Gorbachev R V, Geim A K, et al. Resonant tunneling and negative differential conductance in graphene transistors. Nat Commun, 2013, 4: 1794

[10]

Nguyen V H, Mazzamuto F, Bournel A, et al. Resonant tunneling diodes based on graphene/h-BN heterostructure. J Phys D, 2012, 45: 325104

[11]

Song Y, Wu H C, Guo Y. Negative differential resistances in graphene double barrier resonant tunneling diodes. Appl Phys Lett, 2013, 102: 093118

[12]

Ferreira G J, Leuenberger M N, Loss D, et al. Low-bias negative differential resistance in graphene nanoribbon superlattices. Phys Rev B, 2011, 84: 125453

[13]

Yamasue K, Fukidome H, Funakubo K, et al. Interfacial charge states in graphene on SiC studied by noncontact scanning nonlinear dielectric potentiometry. Phys Rev Lett, 2015, 114: 226103

[14]

Kuroda M A, Tersoff J, Martyna G J. Nonlinear screening in multilayer graphene systems. Phys Rev Lett, 2011, 106: 116804

[15]

Bykov A Y, Murzina T V, Rybin M G, et al. Second harmonic generation in multilayer graphene induced by direct electric current. Phys Rev B, 2012, 85: 121413

[16]

Petrone N, McMillan J F, van der Zande A, et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat Photonics, 2012, 6: 554

[17]

Entin M V, Magarill L I, Shepelyansky D L. Theory of resonant photon drag in mono-layer graphene. Phys Rev B, 2010, 81: 165441

[18]

Mai S, Syzranov S V, Efetov K B. Photocurrent in a visible-light graphene photodiode. Phys Rev B, 2011, 83: 033402

[19]

Chu S, Wang S, Gong Q. Ultrafast third-order nonlinear optical properties of graphene in aqueous solution and polyvinyl alcohol film. Chem Phys Lett, 2012, 523: 104

[20]

Cao J C, Lei X L. Synchronization and chaos in miniband semiconductor super-lattices. Phys Rev B, 1999, 60: 1871

[21]

Cao J C, Liu H C, Lei X L, et al. Chaotic dynamics in terahertz-driven semiconductors with negative effective mass. Phys Rev B, 2001, 63: 115308

[22]

Feng W, Cao J C. Nonlinear dynamics in GaAs1–xNx diodes under terahertz radiation. J Appl Phys, 2009, 106: 033708

[23]

Cao J C. Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures. Phys Rev Lett, 2003, 91: 237401

[1]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666

[2]

Apalkov V M, hakraborty T. Fractal butterflies in buckled graphenelike materials. Phys Rev B, 2015, 91: 235447

[3]

Semnani B, Majedi A H, Safavi-Naeini S. Nonlinear quantum optical properties of graphene: the role of chirality and symmetry. Appl Phys Lett, 2015, 85: 115438

[4]

Katsnelson M. Graphene: carbon in two dimensions. Cambridge: Cambridge University Press, 2012

[5]

Bonaccorso F, Sun Z, Hasan T, Ferrari A. Graphene photonics and optoelectronics. Nat Photonics, 2010, 4: 611

[6]

Zheng Y, Ni G X, Toh C T, et al. Graphene field-effect transistors with ferroelectric gating. Phys Rev Lett, 2010, 105: 166602

[7]

Ferreira A, Peres N M R, Ribeiro R M, et al. Graphene-based photodetector with two cavities. Phys Rev B, 2012, 85: 115438

[8]

Bae S, Kim H, Lee Y B, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotech, 2010, 5: 574

[9]

Britnell L, Gorbachev R V, Geim A K, et al. Resonant tunneling and negative differential conductance in graphene transistors. Nat Commun, 2013, 4: 1794

[10]

Nguyen V H, Mazzamuto F, Bournel A, et al. Resonant tunneling diodes based on graphene/h-BN heterostructure. J Phys D, 2012, 45: 325104

[11]

Song Y, Wu H C, Guo Y. Negative differential resistances in graphene double barrier resonant tunneling diodes. Appl Phys Lett, 2013, 102: 093118

[12]

Ferreira G J, Leuenberger M N, Loss D, et al. Low-bias negative differential resistance in graphene nanoribbon superlattices. Phys Rev B, 2011, 84: 125453

[13]

Yamasue K, Fukidome H, Funakubo K, et al. Interfacial charge states in graphene on SiC studied by noncontact scanning nonlinear dielectric potentiometry. Phys Rev Lett, 2015, 114: 226103

[14]

Kuroda M A, Tersoff J, Martyna G J. Nonlinear screening in multilayer graphene systems. Phys Rev Lett, 2011, 106: 116804

[15]

Bykov A Y, Murzina T V, Rybin M G, et al. Second harmonic generation in multilayer graphene induced by direct electric current. Phys Rev B, 2012, 85: 121413

[16]

Petrone N, McMillan J F, van der Zande A, et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat Photonics, 2012, 6: 554

[17]

Entin M V, Magarill L I, Shepelyansky D L. Theory of resonant photon drag in mono-layer graphene. Phys Rev B, 2010, 81: 165441

[18]

Mai S, Syzranov S V, Efetov K B. Photocurrent in a visible-light graphene photodiode. Phys Rev B, 2011, 83: 033402

[19]

Chu S, Wang S, Gong Q. Ultrafast third-order nonlinear optical properties of graphene in aqueous solution and polyvinyl alcohol film. Chem Phys Lett, 2012, 523: 104

[20]

Cao J C, Lei X L. Synchronization and chaos in miniband semiconductor super-lattices. Phys Rev B, 1999, 60: 1871

[21]

Cao J C, Liu H C, Lei X L, et al. Chaotic dynamics in terahertz-driven semiconductors with negative effective mass. Phys Rev B, 2001, 63: 115308

[22]

Feng W, Cao J C. Nonlinear dynamics in GaAs1–xNx diodes under terahertz radiation. J Appl Phys, 2009, 106: 033708

[23]

Cao J C. Interband impact ionization and nonlinear absorption of terahertz radiation in semiconductor heterostructures. Phys Rev Lett, 2003, 91: 237401

[1]

Wei Feng. Hydrodynamic simulations of terahertz oscillation in double-layer graphene. J. Semicond., 2018, 39(12): 1.

[2]

Liu H C, Luo H, Ban D, Wachter M, Song C Y, Wasilewski Z R, Buchanan M, Aers G C, SpringThorpe A J, Cao J C, Feng S L, Williams B S, Hu Q. Terahertz Semiconductor Quantum Well Devices. J. Semicond., 2006, 27(4): 627.

[3]

Aritra Acharyya, Suranjana Banerjee, J. P. Banerjee. Potentiality of semiconducting diamond as the base material of millimeter-wave and terahertz IMPATT devices. J. Semicond., 2014, 35(3): 034005. doi: 10.1088/1674-4926/35/3/034005

[4]

Hamed Ghodsi, Hassan Kaatuzian. Physical characteristics modification of a SiGe-HBT semiconductor device for performance improvement in a terahertz detecting system. J. Semicond., 2015, 36(5): 054010. doi: 10.1088/1674-4926/36/5/054010

[5]

Jingtao Zhou, Chengyue Yang, Ji Ge, Zhi Jin. Planar InP-based Schottky barrier diodes for terahertz applications. J. Semicond., 2013, 34(6): 064003. doi: 10.1088/1674-4926/34/6/064003

[6]

Hu Xiaoyu, Zhou Yumei. A CMOS Sampling Switch for 14bit 50MHz Pipelined A/D Converter. J. Semicond., 2007, 28(9): 1488.

[7]

Jeetendra Singh, Balwinder Raj. Comparative analysis of memristor models and memories design. J. Semicond., 2018, 39(7): 074006. doi: 10.1088/1674-4926/39/7/074006

[8]

Chen Rui, Lin Guijiang, Chen Songyan, Li Cheng, Lai Hongkai, Yu Jinzhong. Waveguide Simulation of a THz Si/SiGe Quantum Cascade Laser. J. Semicond., 2008, 29(5): 893.

[9]

J. Ajayan, D. Nirmal. 22 nm In0.75Ga0.25As channel-based HEMTs on InP/GaAs substrates for future THz applications. J. Semicond., 2017, 38(4): 044001. doi: 10.1088/1674-4926/38/4/044001

[10]

Chen Chi, Hao Yue, Yang Ling, Quan Si, Ma Xiaohua, Zhang Jincheng. Nonlinear characterization of GaN HEMT. J. Semicond., 2010, 31(11): 114004. doi: 10.1088/1674-4926/31/11/114004

[11]

Feng Wei. Review of terahertz semiconductor sources. J. Semicond., 2012, 33(3): 031001. doi: 10.1088/1674-4926/33/3/031001

[12]

Jin Meng, Dehai Zhang, Changhong Jiang, Xin Zhao, Jian Huang, Dashuai Yan. Crucial problems in the design of a terahertz tripler. J. Semicond., 2015, 36(8): 085003. doi: 10.1088/1674-4926/36/8/085003

[13]

Bai Yiming, Chen Nuofu, Dai Ruixuan, Wang Peng, Peng Changtao. Dispersion Effect on Double-Layer Anti-Reflection Coatingsof GaAs Solar Cells. J. Semicond., 2006, 27(4): 725.

[14]

Zhang Wei, Zhu Lian, Sun Qingqing, Lu Hongliang, Ding Shijin. Synthesis and Characterization of SiCOF/a-C∶F Double-Layer Films with Low Dielectric Constant for Copper Interconnects. J. Semicond., 2006, 27(3): 429.

[15]

Ni Henan, Wu Liangcai, Song Zhitang, Hui Chun. Memory characteristics of an MOS capacitor structure with double-layer semiconductor and metal heterogeneous nanocrystals. J. Semicond., 2009, 30(11): 114003. doi: 10.1088/1674-4926/30/11/114003

[16]

Wang Yanshuo, Chen Nuofu, Zhang Xingwang, Yang Xiaoli, Bai Yiming, Cui Min, Wang Yu, Chen Xiaofeng, Huang Tianmao. Ag surface plasmon enhanced double-layer antireflection coatings for GaAs solar cells. J. Semicond., 2009, 30(7): 072005. doi: 10.1088/1674-4926/30/7/072005

[17]

Wang Xinmei, Shi Wei, Qu Guanghui, Tian Liqiang. Transient Characteristics of a Nonlinear GaAs Photoconductive Semiconductor Switch. J. Semicond., 2008, 29(6): 1108.

[18]

Xueli Ma, Hong Yang, Wenwu Wang, Huaxiang Yin, Huilong Zhu, Chao Zhao, Dapeng Chen, Tianchun Ye. An effective work-function tuning method of nMOSCAP with high-k/metal gate by TiN/TaN double-layer stack thickness. J. Semicond., 2014, 35(9): 096001. doi: 10.1088/1674-4926/35/9/096001

[19]

Han Lei, Zhong Jue. Nonlinear Dynamical Behaviors in Flip-Chip Thermosonic Bonding. J. Semicond., 2006, 27(11): 2056.

[20]

Liu Linsheng. Improved Nonlinear Model of HEMTs with Independent Transconductance Tail-Off Fitting. J. Semicond., 2011, 32(2): 024004. doi: 10.1088/1674-4926/32/2/024004

Search

Advanced Search >>

Article Metrics

Article views: 26 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 18 July 2018 Manuscript revised: 30 August 2018 Online: Accepted Manuscript: 09 November 2018 Uncorrected proof: 12 November 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误