ARTICLES

Compact SPAD pixels with fast and accurate photon counting in the analog domain

Zhiqiang Ma1, Zhong Wu1 and Yue Xu1, 2,

+ Author Affiliations

 Corresponding author: Yue Xu, yuex@njupt.edu.cn

PDF

Turn off MathJax

Abstract: A compact pixel for single-photon detection in the analog domain is presented. The pixel integrates a single-photon avalanche diode (SPAD), a passive quenching & active recharging circuit (PQARC), and an analog counter for fast and accurate sensing and counting of photons. Fabricated in a standard 0.18 µm CMOS technology, the simulated and experimental results reveal that the dead time of the PQARC is about 8 ns and the maximum photon-counting rate can reach 125 Mcps (counting per second). The analog counter can achieve an 8-bit counting range with a voltage step of 6.9 mV. The differential nonlinearity (DNL) and integral nonlinearity (INL) of the analog counter are within the ± 0.6 and ± 1.2 LSB, respectively, indicating high linearity of photon counting. Due to its simple circuit structure and compact layout configuration, the total area occupation of the presented pixel is about 1500 μm2, leading to a high fill factor of 9.2%. The presented in-pixel front-end circuit is very suitable for the high-density array integration of SPAD sensors.

Key words: single-photon avalanche diode (SPAD)passive quenching & active recharging circuit (PQARC)analog counternonlinearity



[1]
Jiang X D, Itzler M, O’Donnell K, et al. InP-based single-photon detectors and geiger-mode APD arrays for quantum communications applications. IEEE J Sel Top Quantum Electron, 2015, 21, 5 doi: 10.1109/JSTQE.2014.2358685
[2]
Xu H S, Perenzoni D, Tomasi A, et al. A 16 × 16 pixel post-processing free quantum random number generator based on SPADs. IEEE Trans Circuits Syst II, 2018, 65, 627 doi: 10.1109/TCSII.2018.2821904
[3]
Nissinen I, Nissinen J, Keränen P, et al. A 16 × 256 SPAD line detector with a 50-ps, 3-bit, 256-channel time-to-digital converter for Raman spectroscopy. IEEE Sens J, 2018, 18, 3789 doi: 10.1109/JSEN.2018.2813531
[4]
Bronzi D, Villa F, Tisa S, et al. 100 000 frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging. IEEE J Sel Top Quantum Electron, 2014, 20, 354 doi: 10.1109/JSTQE.2014.2341562
[5]
Zhang C, Lindner S, Antolović I M, et al. A 30-frames/s, 252 ×144 SPAD flash LiDAR with 1728 dual-clock 48.8-ps TDCs, and pixel-wise integrated histogramming. IEEE J Solid-State Circuits, 2019, 54, 1137 doi: 10.1109/JSSC.2018.2883720
[6]
Bronzi D, Zou Y, Villa F, et al. Automotive three-dimensional vision through a single-photon counting SPAD camera. IEEE Trans Intell Transp Syst, 2016, 17, 782 doi: 10.1109/TITS.2015.2482601
[7]
Li D U, Arlt J, Richardson J, et al. Real-time fluorescence lifetime imaging system with a 32 × 32 013μm CMOS low dark-count single-photon avalanche diode array. Opt Express, 2010, 18, 10257 doi: 10.1364/OE.18.010257
[8]
Ulku A C, Bruschini C, Antolović I M, et al. A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM. IEEE J Sel Top Quantum Electron, 2019, 25, 1 doi: 10.1109/JSTQE.2018.2867439
[9]
Zappa F, Lotito A, Giudice A C, et al. Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors. IEEE J Solid-State Circuits, 2003, 38, 1298 doi: 10.1109/JSSC.2003.813291
[10]
Bronzi D, Tisa S, Villa F, et al. Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects. IEEE Photonics Technol Lett, 2013, 25, 776 doi: 10.1109/LPT.2013.2251621
[11]
ZhengL X, Wu J, Shi L X, et al. Active quenching circuit for a InGaAs single-photon avalanche diode. J Semicond, 2014, 35, 045011 doi: 10.1088/1674-4926/35/4/045011
[12]
Giustolisi G, Grasso A D, Palumbo G. Integrated quenching-and-reset circuit for single-photon avalanche diodes. IEEE Trans Instrum Meas, 2015, 64, 271 doi: 10.1109/TIM.2014.2338652
[13]
Ceccarelli F, Acconcia G, Gulinatti A, et al. Fully integrated active quenching circuit driving custom-technology SPADs with 6.2-ns dead time. IEEE Photonics Technol Lett, 2019, 31, 102 doi: 10.1109/LPT.2018.2884740
[14]
Veerappan C, Richardson J, Walker R, et al. A 160 × 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter. 2011 IEEE International Solid-State Circuits Conference, 2011, 312
[15]
Villa F, Lussana R, Bronzi D, et al. CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight. IEEE J Sel Top Quantum Electron, 2014, 20, 364 doi: 10.1109/JSTQE.2014.2342197
[16]
Stoppa D, Borghetti F, Richardson J, et al. A 32 × 32-pixel array with in-pixel photon counting and arrival time measurement in the analog domain. 2009 Proceedings of ESSCIRC, 2009, 204
[17]
Chitnis D, Collins S. Compact readout circuits for SPAD arrays. Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 2010, 357
[18]
Pancheri L, Massari N, Stoppa D. SPAD image sensor with analog counting pixel for time-resolved fluorescence detection. IEEE Trans Electron Devices, 2013, 60, 3442 doi: 10.1109/TED.2013.2276752
[19]
Panina E, Pancheri L, Dalla Betta G F, et al. Compact CMOS analog counter for SPAD pixel arrays. IEEE Trans Circuits Syst II, 2014, 61, 214 doi: 10.1109/TCSII.2014.2312094
[20]
Perenzoni M, Massari N, Perenzoni D, et al. A 160 × 120-pixel analog-counting single-photon imager with Sub-ns time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging. IEEE J. Solid-State Circuits, 2016, 51, 155 doi: 10.1109/JSSC.2015.2482497
[21]
Diéguez A, Canals J, Franch N, et al. A compact analog histogramming SPAD-based CMOS chip for time-resolved fluorescence. IEEE Trans Biomed Circuits Syst, 2019, 13, 343 doi: 10.1109/TBCAS.2019.2892825
[22]
Xu Y, Zhao T C, Li D. An accurate behavioral model for single-photon avalanche diode statistical performance simulation. Superlattices Microstruct, 2018, 113, 635 doi: 10.1016/j.spmi.2017.11.049
Fig. 1.  A front-end circuit diagram of SPAD pixel, including a PQARC and an analog counter.

Fig. 2.  The timing diagram of pixel signals.

Fig. 3.  (Color online) Die micrograph of the compact SPAD pixel.

Fig. 4.  (Color online) Transient output avalanche pulse of the proposed quenching and recharging circuit. (a) Tested waveform. (b) Simulated waveform with on-chip buffer. (c) Simulated waveform without buffer.

Fig. 5.  (Color online) Readout voltage of the analog counter as a function of the photon-counting number.

Fig. 6.  (Color online) Non-linearity characteristics of the analog counter. (a) Differential non-linearity (DNL). (b) Integral non-linearity (INL).

Fig. 7.  (Color online) Output voltage step size as a function of (a) pulsewidth and (b) period for the analog counter.

Table 1.   Summary of performance Comparison with SPAD pixels reported in the literature.

ParameterRef. [10]Ref. [13]Ref. [16]Ref. [18]Ref. [19]Ref. [20]Ref. [21]This work
CMOS tech. (μm)0.350.180.130.350.350.350.180.18
Pixel size (μm)205050251525
Counting rate (Mcps)5016020125
Counting methodAnalogAnalogAnalogAnalogAnalogAnalog
Counting resolution (bit)686138
Output voltage range (V)1.511.151.31.75
DNL (LSB)< 0.7< 0.6< 1< 0.6
INL (LSB)< 1.9< 1< 1.01< 1.2
Pixel area (μm2)54001500
Fill factor (%)2.820.8219.2
Power consumption (μW)3001550010038.2
DownLoad: CSV
[1]
Jiang X D, Itzler M, O’Donnell K, et al. InP-based single-photon detectors and geiger-mode APD arrays for quantum communications applications. IEEE J Sel Top Quantum Electron, 2015, 21, 5 doi: 10.1109/JSTQE.2014.2358685
[2]
Xu H S, Perenzoni D, Tomasi A, et al. A 16 × 16 pixel post-processing free quantum random number generator based on SPADs. IEEE Trans Circuits Syst II, 2018, 65, 627 doi: 10.1109/TCSII.2018.2821904
[3]
Nissinen I, Nissinen J, Keränen P, et al. A 16 × 256 SPAD line detector with a 50-ps, 3-bit, 256-channel time-to-digital converter for Raman spectroscopy. IEEE Sens J, 2018, 18, 3789 doi: 10.1109/JSEN.2018.2813531
[4]
Bronzi D, Villa F, Tisa S, et al. 100 000 frames/s 64 × 32 single-photon detector array for 2-D imaging and 3-D ranging. IEEE J Sel Top Quantum Electron, 2014, 20, 354 doi: 10.1109/JSTQE.2014.2341562
[5]
Zhang C, Lindner S, Antolović I M, et al. A 30-frames/s, 252 ×144 SPAD flash LiDAR with 1728 dual-clock 48.8-ps TDCs, and pixel-wise integrated histogramming. IEEE J Solid-State Circuits, 2019, 54, 1137 doi: 10.1109/JSSC.2018.2883720
[6]
Bronzi D, Zou Y, Villa F, et al. Automotive three-dimensional vision through a single-photon counting SPAD camera. IEEE Trans Intell Transp Syst, 2016, 17, 782 doi: 10.1109/TITS.2015.2482601
[7]
Li D U, Arlt J, Richardson J, et al. Real-time fluorescence lifetime imaging system with a 32 × 32 013μm CMOS low dark-count single-photon avalanche diode array. Opt Express, 2010, 18, 10257 doi: 10.1364/OE.18.010257
[8]
Ulku A C, Bruschini C, Antolović I M, et al. A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM. IEEE J Sel Top Quantum Electron, 2019, 25, 1 doi: 10.1109/JSTQE.2018.2867439
[9]
Zappa F, Lotito A, Giudice A C, et al. Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors. IEEE J Solid-State Circuits, 2003, 38, 1298 doi: 10.1109/JSSC.2003.813291
[10]
Bronzi D, Tisa S, Villa F, et al. Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects. IEEE Photonics Technol Lett, 2013, 25, 776 doi: 10.1109/LPT.2013.2251621
[11]
ZhengL X, Wu J, Shi L X, et al. Active quenching circuit for a InGaAs single-photon avalanche diode. J Semicond, 2014, 35, 045011 doi: 10.1088/1674-4926/35/4/045011
[12]
Giustolisi G, Grasso A D, Palumbo G. Integrated quenching-and-reset circuit for single-photon avalanche diodes. IEEE Trans Instrum Meas, 2015, 64, 271 doi: 10.1109/TIM.2014.2338652
[13]
Ceccarelli F, Acconcia G, Gulinatti A, et al. Fully integrated active quenching circuit driving custom-technology SPADs with 6.2-ns dead time. IEEE Photonics Technol Lett, 2019, 31, 102 doi: 10.1109/LPT.2018.2884740
[14]
Veerappan C, Richardson J, Walker R, et al. A 160 × 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter. 2011 IEEE International Solid-State Circuits Conference, 2011, 312
[15]
Villa F, Lussana R, Bronzi D, et al. CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight. IEEE J Sel Top Quantum Electron, 2014, 20, 364 doi: 10.1109/JSTQE.2014.2342197
[16]
Stoppa D, Borghetti F, Richardson J, et al. A 32 × 32-pixel array with in-pixel photon counting and arrival time measurement in the analog domain. 2009 Proceedings of ESSCIRC, 2009, 204
[17]
Chitnis D, Collins S. Compact readout circuits for SPAD arrays. Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 2010, 357
[18]
Pancheri L, Massari N, Stoppa D. SPAD image sensor with analog counting pixel for time-resolved fluorescence detection. IEEE Trans Electron Devices, 2013, 60, 3442 doi: 10.1109/TED.2013.2276752
[19]
Panina E, Pancheri L, Dalla Betta G F, et al. Compact CMOS analog counter for SPAD pixel arrays. IEEE Trans Circuits Syst II, 2014, 61, 214 doi: 10.1109/TCSII.2014.2312094
[20]
Perenzoni M, Massari N, Perenzoni D, et al. A 160 × 120-pixel analog-counting single-photon imager with Sub-ns time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imaging. IEEE J. Solid-State Circuits, 2016, 51, 155 doi: 10.1109/JSSC.2015.2482497
[21]
Diéguez A, Canals J, Franch N, et al. A compact analog histogramming SPAD-based CMOS chip for time-resolved fluorescence. IEEE Trans Biomed Circuits Syst, 2019, 13, 343 doi: 10.1109/TBCAS.2019.2892825
[22]
Xu Y, Zhao T C, Li D. An accurate behavioral model for single-photon avalanche diode statistical performance simulation. Superlattices Microstruct, 2018, 113, 635 doi: 10.1016/j.spmi.2017.11.049
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3603 Times PDF downloads: 133 Times Cited by: 0 Times

    History

    Received: 11 August 2020 Revised: 27 January 2021 Online: Accepted Manuscript: 25 March 2021Uncorrected proof: 26 March 2021Published: 01 May 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhiqiang Ma, Zhong Wu, Yue Xu. Compact SPAD pixels with fast and accurate photon counting in the analog domain[J]. Journal of Semiconductors, 2021, 42(5): 052402. doi: 10.1088/1674-4926/42/5/052402 Z Q Ma, Z Wu, Y Xu, Compact SPAD pixels with fast and accurate photon counting in the analog domain[J]. J. Semicond., 2021, 42(5): 052402. doi: 10.1088/1674-4926/42/5/052402.Export: BibTex EndNote
      Citation:
      Zhiqiang Ma, Zhong Wu, Yue Xu. Compact SPAD pixels with fast and accurate photon counting in the analog domain[J]. Journal of Semiconductors, 2021, 42(5): 052402. doi: 10.1088/1674-4926/42/5/052402

      Z Q Ma, Z Wu, Y Xu, Compact SPAD pixels with fast and accurate photon counting in the analog domain[J]. J. Semicond., 2021, 42(5): 052402. doi: 10.1088/1674-4926/42/5/052402.
      Export: BibTex EndNote

      Compact SPAD pixels with fast and accurate photon counting in the analog domain

      doi: 10.1088/1674-4926/42/5/052402
      More Information
      • Author Bio:

        Zhiqiang Ma received a bachelor’s degree in measurement & control technology and instruments from Taiyuan Institute of Technology, Taiyuan, China, in 2019. He is currently pursuing a master’s degree with the Nanjing University of Posts and Telecommunications, Nanjing, China

        Yue Xu received a PhD degree in microelectronics and solid-state electronics from Nanjing University, China, in 2012. He is currently a professor with the Nanjing University of Posts and Telecommunications, Nanjing, China. His main research interests include the CMOS detector, analog integrated circuit design and device reliability

      • Corresponding author: yuex@njupt.edu.cn
      • Received Date: 2020-08-11
      • Revised Date: 2021-01-27
      • Published Date: 2021-05-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return