SEMICONDUCTOR DEVICES

An improved large signal model of InP HEMTs

Tianhao Li, Wenjun Li and Jun Liu

+ Author Affiliations

 Corresponding author: Wenjun Li, Email: liwenjun@hdu.edu.cn

PDF

Turn off MathJax

Abstract: An improved large signal model for InP HEMTs is proposed in this paper. The channel current and charge model equations are constructed based on the Angelov model equations. Both the equations for channel current and gate charge models were all continuous and high order drivable, and the proposed gate charge model satisfied the charge conservation. For the strong leakage induced barrier reduction effect of InP HEMTs, the Angelov current model equations are improved. The channel current model could fit DC performance of devices. A 2 × 25 μm × 70 nm InP HEMT device is used to demonstrate the extraction and validation of the model, in which the model has predicted the DC I–V, C–V and bias related S parameters accurately.

Key words: InP HEMTlarge-signalmodel



[1]
Lai R, Mei X B, Deal W R, et al. Sub 50 nm InP HEMT device with Fmax greater than 1 THz. IEEE International Electron Devices Meeting, 2007: 609 doi: 10.1109/IEDM.2007.4419013
[2]
Khan M A, Bhattarai A, Kuznia J N, et al. High electron mobility transistor based on a GaN–AlxGa1–xN heterojunction. Appl Phys Lett, 1993, 63(09): 1214 doi: 10.1063/1.109775
[3]
Schreurs D, Baeyens Y, Van der Zanden K, et al. Large-signal HEMT modelling, specifically optimized for InP based HEMTs. Indium Phosphide and Related Materials, 1996: 638
[4]
Radisic V, Leong M K, Mei X, et al. A 50 mW 220 GHz power amplifier module. IEEE MTT-S International Microwave Symposium Digest, 2010: 45 doi: 10.1109/MWSYM.2010.5515248
[5]
Lai R, Mei X B, Deal W R, et al. Sub 50 nm InP HEMT device with Fmax greater than 1 THz. IEEE International Electron Devices Meeting, 2007: 609
[6]
Kim T W, Kim D H, Alamo J. 60 nm self-aligned-gate InGaAs HEMTs with record high-frequency characteristics. IEEE International Electron Devices Meeting, 2010: 30 doi: 10.1109/IEDM.2010.5703454
[7]
Miyajima Y, Nukariya T, Suzuki S. Terahertz detector using 70-nm T-gate InAlAs/InGaAs HEMT integrated with bow-tie antenna. 39th International Conference on Infrared, Millimeter, and Terahertz Waves, 2014: 1 doi: 10.1109/IRMMW-THz.2014.6956520
[8]
Curtice W R, Ettenberg M. A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers. IEEE Trans Microw Theory Tech, 1985, 33(12): 1383 doi: 10.1109/TMTT.1985.1133229
[9]
Statz H, Newman P, Smith I W, et al. GaAs FET device and circuit simulation in SPICE. IEEE Trans Electron Devices, 1987, 34(2): 160 doi: 10.1109/T-ED.1987.22902
[10]
Angelov I, Zirath H, Rosman N. A new empirical nonlinear model for HEMT and MESFET devices. IEEE Trans Microw Theory Tech, 1992, 40(12): 2258 doi: 10.1109/22.179888
[11]
Agilent Technologies, ICCAP Software Documentation. Palo Alto, CA: Agilent Technologies Inc., 2009
[12]
Liu Y, Reese E. AlGaN/GaN HEMT large signal nonlinear compact model accounting for thermal effects and trapping dispersion. IEEE Compound Semiconductor Integrated Circuit Symposium, 2013: 1 doi: 10.1109/CSICS.2013.6659214
[13]
Tarazi J, Schwitter B K, Parker A E, et al. AlGaN/GaN HEMT nonlinear model fitting including a trap model. IEEE MTT-S International Microwave Symposium, 2015: 1 doi: 10.1109/MWSYM.2015.7167138
[14]
King J B, Brazil T J. Nonlinear electrothermal GaN HEMT model applied to high-efficiency power amplifier design. IEEE Trans Microw Theory Tech, 2013, 61(1): 444 doi: 10.1109/TMTT.2012.2229712
[15]
Hajji R, Poulton M, Crittenden D B, et al. GaN-HEMT nonlinear modeling of single-ended and Doherty high-power amplifiers. 44th European Microwave Integrated Circuit Conference, 2014: 1317 doi: 10.1109/EuMC.2014.6986686
[16]
Marcoux N L, Fisher C J, White D, et al. A new GaN HEMT nonlinear model for evaluation and design of 1–2 watt power amplifiers. IEEE 55th International Midwest Symposium on Circuits and Systems, 2012: 53 doi: 10.1109/MWSCAS.2012.6291955
[17]
Gao J J. RF and microwave modeling and measurement techniques for field effect transistors. IET Digital Library, 2010: 268
[18]
Strahle S, Geiger D, Henle B, et al. Drift region characteristics of InP-based HEMT devices evaluated by a simple drift region model. Proceedings of 1994 IEEE 6th International Conference on Indium Phosphide and Related Materials (IPRM), 1994: 327
[19]
Schreurs D, Verspecht J, Vandenberghe S, et al. Advanced non-linear InP HEMT model parameter estimation from vectorial large-signal measurements. Eleventh International Conference on Indium Phosphide and Related Materials, 1999: 459 doi: 10.1109/ICIPRM.1999.773732
[20]
Bengtsson L, Garcia M, Karisson C, et al. Characterization and large signal modeling of InP HEMT devices. 25th European Microwave Conference, Bologna, Italy, 1995: 1168 doi: 10.1109/EUMA.1995.337148
[21]
Schreurs D, Baeyens Y, Van der Zanden K, et al. Large-signal HEMT modelling, specifically optimized for InP based HEMTs. Eighth International Conference on Indium Phosphide and Related Materials, Schwabisch-Gmund, Germany, 1996: 638 doi: 10.1109/ICIPRM.1996.492330
[22]
Schreurs D, Meer H V, Zanden K V D, et al. Improved HEMT model for low phase-noise InP-based MMIC oscillators. IEEE Trans Microw Theory Tech, 1998, 46(10): 1583 doi: 10.1109/22.721169
[23]
Schreurs D, Meer H V, Van der Zanden K, et al. Scaleable non-linear and bias-dependent low-frequency noise model for improved InP HEMT based MMIC oscillator design. Workshop on High Performance Electron Devices for Microwave and Optoelectronic Applications, 2002: 187 doi: 10.1109/EDMO.1997.668597
[24]
Guan L, Christou A, Halkias G, et al. Modeling of current-voltage characteristics for strained and lattice matched HEMT's on InP substrate using a variational charge control model. IEEE Trans Electron Devices, 1995, 42(4): 612 doi: 10.1109/16.372062
[25]
Han C J, Ruden P P, Grider D, et al. Short channel effects in submicron self-aligned gate heterostructure field effect transistors. International Electron Devices Meeting, 1988: 696
[26]
Liu Y N, Du G W, Hu Z D, et al. Study of terahertz InP HEMT device. Semicond Technol, 2016, 41(8): 599
[27]
Arora N. MOSFET modeling for VLSI simulation: theory and practice. New Jersey: World Scientific, 2007
[28]
Angelov I, Bengtsson L, Garcia M. Extensions of the chalmers nonlinear HEMT and MESFET model. IEEE Trans Microw Theory Tech, 1996, 44(10): 1664 doi: 10.1109/22.538957
[29]
Alt A R, Marti D, Bolognesi C R. Transistor modeling: robust small-signal equivalent circuit extraction in various HEMT technologies. IEEE Microwave Mag, 2013, 14(4): 83 doi: 10.1109/MMM.2013.2248593
Fig. 1.  (Color online) Large-signal model topology for compound semiconductor HEMTs.

Fig. 2.  (Color online) Schematic cross-section of InP HEMTs.

Fig. 3.  (Color online) Micrograph of InP HEMTs.

Fig. 4.  (Color online) Schematic of regional drain current fitting method.

Fig. 5.  (Color online) Measured and simulated Ids versus Vds at Tnom = 25 °C for Vgs = −0.5 to 0.1 V, 0.1 V steps and Vds = 0 to 1.2 V, 0.05 V steps.

Fig. 6.  (Color online) Measured and simulated gds versus Vds at Tnom = 25 °C for Vgs = −0.5 to 0.1 V, 0.1 V steps and Vds= 0 to 1.2 V, 0.05 V steps.

Fig. 7.  (Color online) Measured and simulated gm versus Vgs at Tnom = 25 °C for Vds = 0 to 1.2 V, 0.2 V steps and Vgs = −0.5 to 0.1 V, 0.025 V steps.

Fig. 8.  (Color online) Measured and simulated Ids versus Vgs at Tnom = 25 °C for Vds = 0 to 1.2 V, 0.2 V steps and Vgs = −0.5 to 0.1 V, 0.025 V steps.

Fig. 9.  (Color online) Cgs and Cgd extracted from measured and simulated S-parameters at Freq = 10 GHz, Tnom = 25 °C for Vgs = −0.5 to 0.1 V, 0.05 V steps and Vds= 0 to 0.9 V, 0.3 V steps.

Fig. 10.  (Color online) Measured and modeled S-parameters for 1 to 40 GHz, 1 GHz steps at (a) Vds = 0.8 V, Vgs = −0.1 V and (b) Vds = 0.8 V, Vgs = −0.05 V.

Table 2.   Extracted terminal charges model parameter values from a 2-finger InP HEMT.

Parameter Value Parameter Value
P10 1.761 P40 0.9383
P11 7.353 P41 3.108
P111 0.1626 Cgs0 1.720 fF
P20 0.2277 Cgdi 9.869 fF
P21 0.9625 Cgd0 6.456 fF
P30 1.275 Cgdi 0.2882 fF
P31 0.9696
DownLoad: CSV

Table 1.   Extracted drain current model parameter values from a 2-finger InP HEMT.

Parameter Value Parameter Value
Ipk0a 3.264 mA Ipk0b 0.010 81 mA
Vpks_a −280.7 mV Vpks_b −378.8 mV
Dvpks_a −183.5 mV Dvpks_b −1.152 V
P1a 0.6875 P1b 0.9929
P2a 0.2338 P2b 0.4749
P3a 0.4857 P3b 0.6076
Alphar_a 13.58 Alphar_b 2.111
Alphas_a 0.045 07 Alphas_b 2.194
Vkna 1.0 V Vknb 1.0 V
Vtra 50.0 V Vtrb 50.0 V
Lambda_a 2.467 Lambda_b 0.4419
Lambda1_a 0.004 526 Lambda1_b 0.067 31
B1a 1.852 B1b 2.882
B2a 0.1618 B2b 0.072 43
DownLoad: CSV
[1]
Lai R, Mei X B, Deal W R, et al. Sub 50 nm InP HEMT device with Fmax greater than 1 THz. IEEE International Electron Devices Meeting, 2007: 609 doi: 10.1109/IEDM.2007.4419013
[2]
Khan M A, Bhattarai A, Kuznia J N, et al. High electron mobility transistor based on a GaN–AlxGa1–xN heterojunction. Appl Phys Lett, 1993, 63(09): 1214 doi: 10.1063/1.109775
[3]
Schreurs D, Baeyens Y, Van der Zanden K, et al. Large-signal HEMT modelling, specifically optimized for InP based HEMTs. Indium Phosphide and Related Materials, 1996: 638
[4]
Radisic V, Leong M K, Mei X, et al. A 50 mW 220 GHz power amplifier module. IEEE MTT-S International Microwave Symposium Digest, 2010: 45 doi: 10.1109/MWSYM.2010.5515248
[5]
Lai R, Mei X B, Deal W R, et al. Sub 50 nm InP HEMT device with Fmax greater than 1 THz. IEEE International Electron Devices Meeting, 2007: 609
[6]
Kim T W, Kim D H, Alamo J. 60 nm self-aligned-gate InGaAs HEMTs with record high-frequency characteristics. IEEE International Electron Devices Meeting, 2010: 30 doi: 10.1109/IEDM.2010.5703454
[7]
Miyajima Y, Nukariya T, Suzuki S. Terahertz detector using 70-nm T-gate InAlAs/InGaAs HEMT integrated with bow-tie antenna. 39th International Conference on Infrared, Millimeter, and Terahertz Waves, 2014: 1 doi: 10.1109/IRMMW-THz.2014.6956520
[8]
Curtice W R, Ettenberg M. A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers. IEEE Trans Microw Theory Tech, 1985, 33(12): 1383 doi: 10.1109/TMTT.1985.1133229
[9]
Statz H, Newman P, Smith I W, et al. GaAs FET device and circuit simulation in SPICE. IEEE Trans Electron Devices, 1987, 34(2): 160 doi: 10.1109/T-ED.1987.22902
[10]
Angelov I, Zirath H, Rosman N. A new empirical nonlinear model for HEMT and MESFET devices. IEEE Trans Microw Theory Tech, 1992, 40(12): 2258 doi: 10.1109/22.179888
[11]
Agilent Technologies, ICCAP Software Documentation. Palo Alto, CA: Agilent Technologies Inc., 2009
[12]
Liu Y, Reese E. AlGaN/GaN HEMT large signal nonlinear compact model accounting for thermal effects and trapping dispersion. IEEE Compound Semiconductor Integrated Circuit Symposium, 2013: 1 doi: 10.1109/CSICS.2013.6659214
[13]
Tarazi J, Schwitter B K, Parker A E, et al. AlGaN/GaN HEMT nonlinear model fitting including a trap model. IEEE MTT-S International Microwave Symposium, 2015: 1 doi: 10.1109/MWSYM.2015.7167138
[14]
King J B, Brazil T J. Nonlinear electrothermal GaN HEMT model applied to high-efficiency power amplifier design. IEEE Trans Microw Theory Tech, 2013, 61(1): 444 doi: 10.1109/TMTT.2012.2229712
[15]
Hajji R, Poulton M, Crittenden D B, et al. GaN-HEMT nonlinear modeling of single-ended and Doherty high-power amplifiers. 44th European Microwave Integrated Circuit Conference, 2014: 1317 doi: 10.1109/EuMC.2014.6986686
[16]
Marcoux N L, Fisher C J, White D, et al. A new GaN HEMT nonlinear model for evaluation and design of 1–2 watt power amplifiers. IEEE 55th International Midwest Symposium on Circuits and Systems, 2012: 53 doi: 10.1109/MWSCAS.2012.6291955
[17]
Gao J J. RF and microwave modeling and measurement techniques for field effect transistors. IET Digital Library, 2010: 268
[18]
Strahle S, Geiger D, Henle B, et al. Drift region characteristics of InP-based HEMT devices evaluated by a simple drift region model. Proceedings of 1994 IEEE 6th International Conference on Indium Phosphide and Related Materials (IPRM), 1994: 327
[19]
Schreurs D, Verspecht J, Vandenberghe S, et al. Advanced non-linear InP HEMT model parameter estimation from vectorial large-signal measurements. Eleventh International Conference on Indium Phosphide and Related Materials, 1999: 459 doi: 10.1109/ICIPRM.1999.773732
[20]
Bengtsson L, Garcia M, Karisson C, et al. Characterization and large signal modeling of InP HEMT devices. 25th European Microwave Conference, Bologna, Italy, 1995: 1168 doi: 10.1109/EUMA.1995.337148
[21]
Schreurs D, Baeyens Y, Van der Zanden K, et al. Large-signal HEMT modelling, specifically optimized for InP based HEMTs. Eighth International Conference on Indium Phosphide and Related Materials, Schwabisch-Gmund, Germany, 1996: 638 doi: 10.1109/ICIPRM.1996.492330
[22]
Schreurs D, Meer H V, Zanden K V D, et al. Improved HEMT model for low phase-noise InP-based MMIC oscillators. IEEE Trans Microw Theory Tech, 1998, 46(10): 1583 doi: 10.1109/22.721169
[23]
Schreurs D, Meer H V, Van der Zanden K, et al. Scaleable non-linear and bias-dependent low-frequency noise model for improved InP HEMT based MMIC oscillator design. Workshop on High Performance Electron Devices for Microwave and Optoelectronic Applications, 2002: 187 doi: 10.1109/EDMO.1997.668597
[24]
Guan L, Christou A, Halkias G, et al. Modeling of current-voltage characteristics for strained and lattice matched HEMT's on InP substrate using a variational charge control model. IEEE Trans Electron Devices, 1995, 42(4): 612 doi: 10.1109/16.372062
[25]
Han C J, Ruden P P, Grider D, et al. Short channel effects in submicron self-aligned gate heterostructure field effect transistors. International Electron Devices Meeting, 1988: 696
[26]
Liu Y N, Du G W, Hu Z D, et al. Study of terahertz InP HEMT device. Semicond Technol, 2016, 41(8): 599
[27]
Arora N. MOSFET modeling for VLSI simulation: theory and practice. New Jersey: World Scientific, 2007
[28]
Angelov I, Bengtsson L, Garcia M. Extensions of the chalmers nonlinear HEMT and MESFET model. IEEE Trans Microw Theory Tech, 1996, 44(10): 1664 doi: 10.1109/22.538957
[29]
Alt A R, Marti D, Bolognesi C R. Transistor modeling: robust small-signal equivalent circuit extraction in various HEMT technologies. IEEE Microwave Mag, 2013, 14(4): 83 doi: 10.1109/MMM.2013.2248593
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4622 Times PDF downloads: 108 Times Cited by: 0 Times

    History

    Received: 14 September 2017 Revised: 11 November 2017 Online: Accepted Manuscript: 19 January 2018Uncorrected proof: 24 January 2018Published: 01 May 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Tianhao Li, Wenjun Li, Jun Liu. An improved large signal model of InP HEMTs[J]. Journal of Semiconductors, 2018, 39(5): 054003. doi: 10.1088/1674-4926/39/5/054003 T H Li, W J Li, J Liu. An improved large signal model of InP HEMTs[J]. J. Semicond., 2018, 39(5): 054003. doi: 10.1088/1674-4926/39/5/054003.Export: BibTex EndNote
      Citation:
      Tianhao Li, Wenjun Li, Jun Liu. An improved large signal model of InP HEMTs[J]. Journal of Semiconductors, 2018, 39(5): 054003. doi: 10.1088/1674-4926/39/5/054003

      T H Li, W J Li, J Liu. An improved large signal model of InP HEMTs[J]. J. Semicond., 2018, 39(5): 054003. doi: 10.1088/1674-4926/39/5/054003.
      Export: BibTex EndNote

      An improved large signal model of InP HEMTs

      doi: 10.1088/1674-4926/39/5/054003
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 61331006).

      More Information
      • Corresponding author: Email: liwenjun@hdu.edu.cn
      • Received Date: 2017-09-14
      • Revised Date: 2017-11-11
      • Published Date: 2018-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return