J. Semicond. > Volume 39 > Issue 1 > Article Number: 011008

Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes

Jiazhen Sheng , Ki-Lim Han , TaeHyun Hong , Wan-Ho Choi and Jin-Seong Park ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors (TFTs), fabricating with atomic layer deposition (ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types (directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields.

Key words: atomic layer deposition (ALD)oxide semiconductorthin film transistorflexible devicemechanical stress

Abstract: The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors (TFTs), fabricating with atomic layer deposition (ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types (directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields.

Key words: atomic layer deposition (ALD)oxide semiconductorthin film transistorflexible devicemechanical stress



References:

[1]

Komatsu R, Nakazato R, Sasaki T, et al. Repeatedly foldable AMOLED display. J Soc Inform Display, 2015, 23(2): 41

[2]

Nakajima Y, Takei T, Motomura G, et al. Flexible AMOLED display using an oxide-TFT backplane and inverted OLEDs. Photonics Conference (IPC), IEEE, 2014: 42

[3]

Choi M C, Kim Y, Ha C S. Polymers for flexible displays: From material selection to device applications. Prog Polym Sci, 2008, 33581

[4]

Heremans P, Tripathi A K, de Jamblinne de Meux A, et al. Mechanical and electronic properties of thin‐film transistors on plastic, and their integration in flexible electronic applications. Adv Mater, 2016, 28: 4266

[5]

Street R A. Thin film transistors. Adv Mater, 2009, 21(20): 2007

[6]

Powell M J. The physics of amorphous-silicon thin-film transistors. IEEE Trans Electron Devices, 1989, 36(12): 2753

[7]

Nathan A, Kumar A, Sakariya K, et al. Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic. IEEE J Solid-State Circuits, 2004, 39(9): 1477

[8]

Klauk H. Organic thin-film transistors. Chem Soc Rev, 2010, 39(7): 2643

[9]

Dimitrakopoulos C D, Malenfant P R. Organic thin film transistors for large area electronics. Adv Mater, 2002, 14(2): 99

[10]

Matters M, De Leeuw D, Herwig P, et al. Bias-stress induced instability of organic thin film transistors. Synthetic Metals, 1999, 102(1–3): 998

[11]

Gomes H L, Stallinga P, Dinelli F, et al. Bias-induced threshold voltages shifts in thin-film organic transistors. Appl Phys Lett, 2004, 84(16): 3184

[12]

Powell M. Charge trapping instabilities in amorphous silicon‐silicon nitride thin‐film transistors. Appl Phys Lett, 1983, 43(6): 597

[13]

Theiss S, Wagner S. Amorphous silicon thin-film transistors on steel foil substrates. IEEE Electron Device Lett, 1996, 17(12): 578

[14]

Serikawa T, Omata F. High-quality polycrystalline Si TFTs fabricated on stainless-steel foils by using sputtered Si films. IEEE Trans Electron Devices, 2002, 49(5): 820

[15]

Jeong J K. The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond Sci Technol, 2011, 26(3): 034008

[16]

Kenji N, Hiromichi O, Akihiro T, et al. Room-temperature fabrication of transparent f1 exible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432: 488

[17]

Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 2012, 24(22): 2945

[18]

Xingwei D, Hao Z, He D, et al. Growth of IZO/IGZO dual-active-layer for low-voltage-drive and high-mobility thin film transistors based on an ALD grown Al2O3 gate insulator. Superlattices Microstruct, 2014, 76: 156

[19]

Kenji N, Hiromichi O, Kazushige U, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 2003, 300: 1269

[20]

Han D D, Zhang Y, Cong Y Y, et al. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate. Sci Rep, 2016, 6: 38984

[21]

Choi M C, Kim Y, Ha C S. Polymers for flexible displays: from material selection to device applications. Prog Polym Sci, 2008, 33(6): 581

[22]

Ok K C, Ko Park S H, Hwang C S, et al. The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates. Appl Phys Lett, 2014, 104(6): 063508

[23]

Jeong J K, Jeong J H, Yang H W, et al. High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel. Appl Phys Lett, 2007, 91(11): 113505

[24]

Bayraktaroglu B, Leedy K, Neidhard R. Microwave ZnO thin-film transistors. IEEE Electron Device Lett, 2008, 29(9): 1024

[25]

Mativenga M, Choi M H, Choi J W, et al. Transparent flexible circuits based on amorphous-indium–gallium–zinc–oxide thin-film transistors. IEEE Electron Device Lett, 2011, 32(2): 170

[26]

Yang S, Bak J Y, Yoon S M, et al. Low-temperature processed flexible In–Ga–Zn–O thin-film transistors exhibiting high electrical performance. IEEE Electron Device Lett, 1692, 32(12): 1692

[27]

Johnson R W, Hultqvist A, Bent S F. A brief review of atomic layer deposition: from fundamentals to applications. Mater Today, 2014, 17(5): 236

[28]

Kim H, Maeng W J. Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films, 2009, 517(8): 2563

[29]

Seol Y, Noh H, Lee S, et al. Mechanically flexible low-leakage multilayer gate dielectrics for flexible organic thin film transistors. Appl Phys Lett, 2008, 93(1): 244

[30]

Seol Y, Park J, Tien N, et al. Reduction of electrical hysteresis in cyclically bent organic field effect transistors by incorporating multistack hybrid gate dielectrics. J Electrochem Soc, 2010, 157(11): H1046

[31]

Kim D, Hwang B, Park J, et al. Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors. Org Electron, 2012, 13(11): 2401

[32]

Carcia P, McLean R, Groner M, et al. Gas diffusion ultrabarriers on polymer substrates using Al2O3 atomic layer deposition and SiN plasma-enhanced chemical vapor deposition. J Appl Phys, 2009, 106(2): 023533

[33]

Wu D S, Chen T N, Lay E, et al. Transparent barrier coatings on high temperature resisting polymer substrates for flexible electronic applications. J Electrochem Soc, 2010, 157(2): C47

[34]

Sykes G F, St Clair A K. The effect of molecular structure on the gas transmission rates of aromatic polyimides. J Appl Polym Sci, 1986, 32(2): 3725

[35]

Park J S, Kim T W, Stryakhilev D, et al. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl Phys Lett, 2009, 95(1): 013503

[36]

Hekmatshoar B, Kattamis A Z, Cherenack K H, et al. Reliability of active-matrix organic light-emitting-diode arrays with amorphous silicon thin-film transistor backplanes on clear plastic. IEEE Electron Device Lett, 2008, 29(1): 63

[37]

Hsu H H, Chang C Y, Cheng C H. A flexible IGZO thin-film transistor with stacked TiO2-based dielectrics fabricated at room temperature. IEEE Electron Device Lett, 2013, 34(6): 768

[38]

Kim Y H, Chung C H, Moon J, et al. Oxide-silicon-oxide buffer structure for ultralow temperature polycrystalline silicon thin-film transistor on plastic substrate. IEEE Electron Device Lett, 2006, 27(7): 579

[39]

Yun S J, Ko Y W, Lim J W. Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition. Appl Phys Lett, 2004, 85(21): 4896

[40]

Ghosh A, Gerenser L, Jarman C, et al. Thin-film encapsulation of organic light-emitting devices. Appl Phys Lett, 2005, 86(22): 223503

[41]

Murley D, French I, Deane S, et al. The effect of hydrogen dilution on the aminosilane plasma regime used to deposit nitrogen-rich amorphous silicon nitride. J Non-cryst Solids, 1996, 198: 1058

[42]

Smith D L, Alimonda A S, Chen C C, et al. Mechanism of SiNxHy deposition from NH3–SiH4 plasma. J Electrochem Soc, 1990, 137(2): 614

[43]

Park M J, Yun D J, Ryu M K, et al. Improvements in the bending performance and bias stability of flexible InGaZnO thin film transistors and optimum barrier structures for plastic poly (ethylene naphthalate) substrates. J Mater Chem C, 2015, 3(18): 4779

[44]

Sheng J, Choi D W, Lee S H, et al. Performance modulation of transparent ALD indium oxide films on flexible substrates: transition between metal-like conductor and high performance semiconductor states. J Mater Chem C, 2016, 4(32): 7571

[45]

Jeong H J, Han K L, Ok K C, et al. Effect of mechanical stress on the stability of flexible InGaZnO thin-film transistors. J Inform Display, 2017, 18: 87

[46]

Ok K C, Oh S, Jeong H J, et al. Effect of alumina buffers on the stability of top-gate amorphous ingazno thin-film transistors on flexible substrates. IEEE Electron Device Lett, 2015, 36(9): 917

[47]

Jeong J K, Jin D U, Shin H S, et al. Flexible full-color AMOLED on ultrathin metal foil. IEEE Electron Device Lett, 2007, 28(5): 389

[48]

Sekitani T, Zschieschang U, Klauk H, et al. Flexible organic transistors and circuits with extreme bending stability. Nat Mater, 2010, 9(12): 1015

[49]

Hwang B U, Kim D I, Cho S W, et al. Role of ultrathin Al2O3 layer in organic/inorganic hybrid gate dielectrics for flexibility improvement of InGaZnO thin film transistors. Org Electron, 2014, 15(7): 1458

[50]

Münzenrieder N, Petti L, Zysset C, et al. Flexible self-aligned amorphous InGaZnO thin-film transistors with submicrometer channel length and a transit frequency of 135 MHz. IEEE Trans Electron Devices, 2013, 60(9): 2815

[51]

Munzenrieder N, Voser P, Petti L, et al. Flexible self-aligned double-gate IGZO TFT. IEEE Electron Device Lett, 2014, 35(1): 69

[52]

Park M J, Yun D J, Ryu M K, et al. Device characteristics comparisons for the InGaZnO thin film transistors fabricated on two-type surfaces of the plastic poly (ethylene naphthalate) substrates with hybrid barrier layers. J Vac Sci Technol B, 2015, 33(5): 051209

[53]

Sheng J, Lee H J, Oh S, et al. Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-temperature atomic layer deposition. ACS Appl Mater Interf, 2016, 8(49): 33821

[54]

Sheng J, Park J, Choi D W, et al. A study on the electrical properties of atomic layer deposition grown InOx on flexible substrates with respect to N2O plasma treatment and the associated thin-film transistor behavior under repetitive mechanical stress. ACS Appl Mater Interf, 2016, 8(45): 31136

[55]

Lee H E, Kim S, Ko J, et al. Skin‐like oxide thin‐film transistors for transparent displays. Adv Funct Mater, 2016, 26(34): 6170

[56]

Li H U, Jackson T N. Flexibility testing strategies and apparatus for flexible electronics. IEEE Trans Electron Devices, 2016, 63(5): 1934

[57]

Pyshkin S L, Ballato J. Optoelectronics: advanced materials and devices. Croatia: InTech Rijeka, 2013

[58]

Bak J Y, Yoon S M, Yang S, et al. Effect of In–Ga–Zn–O active layer channel composition on process temperature for flexible oxide thin-film transistors. J Vac Sci Technol B, 2012, 30(4): 041208

[59]

Lin Y Y, Hsu C C, Tseng M H, et al. Stable and high-performance flexible ZnO thin-film transistors by atomic layer deposition. ACS Appl Mater Interf, 2015, 7(40): 22610

[60]

Nayak P K, Wang Z, Anjum D H, et al. Highly stable thin film transistors using multilayer channel structure. Appl Phys Lett, 2015, 106(10): 103505

[61]

Chung Y J, Choi W J, Kang S G, et al. A study on the influence of local doping in atomic layer deposited Al:ZnO thin film transistors. J Mater Chem C, 2014, 2(43): 9274

[62]

Kim J M, Nam T, Lim S, et al. Atomic layer deposition ZnO: N flexible thin film transistors and the effects of bending on device properties. Appl Phys Lett, 2011, 98(14): 142113

[63]

Ahn C H, Hee Kim S, Gu Yun M, et al. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition. Appl Phys Lett, 2014, 105(22): 223513

[64]

Cho S W, Yun M G, Ahn C H, et al. Bi-layer channel structure-based oxide thin-film transistors consisting of ZnO and Al-doped ZnO with different Al compositions and stacking sequences. Electron Mater Lett, 2015, 11(2): 198

[65]

Geng Y, Yang W, Lu H L, et al. Mobility enhancement and OFF current suppression in atomic-layer-deposited ZnO thin-film transistors by post annealing in O2. IEEE Electron Device Lett, 2014, 35(12): 1266

[66]

Ahn C H, Kim S H, Kim Y K, et al. Effect of post-annealing temperatures on thin-film transistors with ZnO/Al2O3 superlattice channels. Thin Solid Films, 2015, 584: 336

[67]

Lee S J, Hwang C S, Pi J E, et al. High performance amorphous multilayered ZnO–SnO2 heterostructure thin-film transistors: Fabrication and characteristics. ETRI J, 2015, 37(6): 1135

[68]

Ahn B D, Choi D W, Choi C, et al. The effect of the annealing temperature on the transition from conductor to semiconductor behavior in zinc tin oxide deposited atomic layer deposition. Appl Phys Lett, 2014, 105(9): 092103

[69]

Kim J I, Hwan J K, Yoon J H, et al. Improvement in both mobility and bias stability of ZnSnO transistors by inserting ultra-thin InSnO layer at the gate insulator/channel interface. Appl Phys Lett, 2011, 99(12): 122102

[70]

Park J C, Kim S, Kim S, et al. Highly stable transparent amorphous oxide semiconductor thin‐film transistors having double‐stacked active layers. Adv Mater, 2010, 22(48): 5512

[71]

Yang J, Park J K, Kim S, et al. Atomic‐layer‐deposited ZnO thin‐film transistors with various gate dielectrics. Phys Status Solidi A, 2012, 209(10): 2087

[72]

Weiher R, Ley R. Optical properties of indium oxide. J Appl Phys, 1966, 37(1): 299

[73]

Kawazoe H, Ueda N, Un’no H, et al. Generation of electron carriers in insulating thin film of MgIn2O4 spinel by Li+ implantation. J Appl Phys, 1994, 76(12): 7935

[74]

Kumaresan Y, Pak Y, Lim N. Highly bendable In–Ga–ZnO thin film transistors by using a thermally stable organic dielectric layer. Sci Rep, 2016, 6: 37764

[75]

Petti L, Faber H, Münzenrieder N, et al. Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits. Appl Phys Lett, 2015, 106(9): 092105

[76]

Cantarella G, Münzenrieder N, Petti L, et al. Flexible In–Ga–Zn–O thin-film transistors on elastomeric substrate bent to 2.3% strain. IEEE Electron Device Lett, 2015, 36(8): 781

[77]

Petti L, Munzenrieder N, Salvatore G A, et al. Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs. IEEE Trans Electron Devices, 2014, 61(4): 1085

[78]

Jin D U, Kim T W, Koo H W, et al. In 47.1: Invited paper: highly robust flexible AMOLED display on plastic substrate with new structure. SID Symposium Digest of Technical Papers, 2010: 703

[79]

Münzenrieder N, Cherenack K, Tröster G. Testing of flexible InGaZnO-based thin-film transistors under mechanical strain. Eur Phys J Appl Phys, 2011, 55(2): 23904

[80]

Tripathi A K, Myny K, Hou B, et al. Electrical characterization of flexible InGaZnO transistors and 8-b transponder chip down to a bending radius of 2 mm. IEEE Trans Electron Devices, 2015, 62(12): 4063

[81]

Kim Y H, Lee E, Um J G, et al. Highly robust neutral plane oxide TFTs withstanding 0.25 mm bending radius for stretchable electronics. Sci Rep, 2016, 6: 25734

[82]

Münzenrieder N, Kunigunde H C, et al. The effects of mechanical bending and illumination on the performance of flexible IGZO TFTs. IEEE Trans Electron Devices, 2011, 58(7): 2041

[83]

Li X, Billa M M, Mativenga M, et al. Highly robust flexible oxide thin-film transistors by bulk accumulation. IEEE Electron Device Lett, 2015, 36(8): 811

[84]

Petti L, Münzenrieder N, Vogt C, et al. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl Phys Rev, 2016, 3: 021303

[85]

Billah M M, Hasan M M, Chowdhury M H, et al. Excellent mechanical bending stability of flexible a-IGZO TFT by dual gate dual sweep using TCAD simulation. Soc Inform Display, 2016, 47(1): 1155

[86]

Rockett A. The materials science of semiconductors. Springer Science & Business Media, 2007

[87]

Kohan A, Ceder G, Morgan D, et al. First-principles study of native point defects in ZnO. Phys Rev B, 2000, 61(22): 15019

[88]

Look D C, Farlow G C, Reunchan P, et al. Evidence for native-defect donors in n-type ZnO. Phys Rev Lett, 2005, 95(22): 225502

[89]

Kim Y S, Park C. Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: origin of n-type doping. Phys Rev Lett, 2009, 102(8): 086403

[90]

de Meux A d J, Pourtois G, Genoe J, et al. Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor: structure, tail states and strain effects. J Phys D, 2015, 48(43): 435104

[91]

Hasan M M, Billah M M, Naik M N, et al. Bending stress induced performance change in plastic oxide thin-film transistor and recovery by annealing at 300 °C. IEEE Electron Device Lett, 2017, 38(8): 1035

[1]

Komatsu R, Nakazato R, Sasaki T, et al. Repeatedly foldable AMOLED display. J Soc Inform Display, 2015, 23(2): 41

[2]

Nakajima Y, Takei T, Motomura G, et al. Flexible AMOLED display using an oxide-TFT backplane and inverted OLEDs. Photonics Conference (IPC), IEEE, 2014: 42

[3]

Choi M C, Kim Y, Ha C S. Polymers for flexible displays: From material selection to device applications. Prog Polym Sci, 2008, 33581

[4]

Heremans P, Tripathi A K, de Jamblinne de Meux A, et al. Mechanical and electronic properties of thin‐film transistors on plastic, and their integration in flexible electronic applications. Adv Mater, 2016, 28: 4266

[5]

Street R A. Thin film transistors. Adv Mater, 2009, 21(20): 2007

[6]

Powell M J. The physics of amorphous-silicon thin-film transistors. IEEE Trans Electron Devices, 1989, 36(12): 2753

[7]

Nathan A, Kumar A, Sakariya K, et al. Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic. IEEE J Solid-State Circuits, 2004, 39(9): 1477

[8]

Klauk H. Organic thin-film transistors. Chem Soc Rev, 2010, 39(7): 2643

[9]

Dimitrakopoulos C D, Malenfant P R. Organic thin film transistors for large area electronics. Adv Mater, 2002, 14(2): 99

[10]

Matters M, De Leeuw D, Herwig P, et al. Bias-stress induced instability of organic thin film transistors. Synthetic Metals, 1999, 102(1–3): 998

[11]

Gomes H L, Stallinga P, Dinelli F, et al. Bias-induced threshold voltages shifts in thin-film organic transistors. Appl Phys Lett, 2004, 84(16): 3184

[12]

Powell M. Charge trapping instabilities in amorphous silicon‐silicon nitride thin‐film transistors. Appl Phys Lett, 1983, 43(6): 597

[13]

Theiss S, Wagner S. Amorphous silicon thin-film transistors on steel foil substrates. IEEE Electron Device Lett, 1996, 17(12): 578

[14]

Serikawa T, Omata F. High-quality polycrystalline Si TFTs fabricated on stainless-steel foils by using sputtered Si films. IEEE Trans Electron Devices, 2002, 49(5): 820

[15]

Jeong J K. The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond Sci Technol, 2011, 26(3): 034008

[16]

Kenji N, Hiromichi O, Akihiro T, et al. Room-temperature fabrication of transparent f1 exible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432: 488

[17]

Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 2012, 24(22): 2945

[18]

Xingwei D, Hao Z, He D, et al. Growth of IZO/IGZO dual-active-layer for low-voltage-drive and high-mobility thin film transistors based on an ALD grown Al2O3 gate insulator. Superlattices Microstruct, 2014, 76: 156

[19]

Kenji N, Hiromichi O, Kazushige U, et al. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 2003, 300: 1269

[20]

Han D D, Zhang Y, Cong Y Y, et al. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate. Sci Rep, 2016, 6: 38984

[21]

Choi M C, Kim Y, Ha C S. Polymers for flexible displays: from material selection to device applications. Prog Polym Sci, 2008, 33(6): 581

[22]

Ok K C, Ko Park S H, Hwang C S, et al. The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates. Appl Phys Lett, 2014, 104(6): 063508

[23]

Jeong J K, Jeong J H, Yang H W, et al. High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel. Appl Phys Lett, 2007, 91(11): 113505

[24]

Bayraktaroglu B, Leedy K, Neidhard R. Microwave ZnO thin-film transistors. IEEE Electron Device Lett, 2008, 29(9): 1024

[25]

Mativenga M, Choi M H, Choi J W, et al. Transparent flexible circuits based on amorphous-indium–gallium–zinc–oxide thin-film transistors. IEEE Electron Device Lett, 2011, 32(2): 170

[26]

Yang S, Bak J Y, Yoon S M, et al. Low-temperature processed flexible In–Ga–Zn–O thin-film transistors exhibiting high electrical performance. IEEE Electron Device Lett, 1692, 32(12): 1692

[27]

Johnson R W, Hultqvist A, Bent S F. A brief review of atomic layer deposition: from fundamentals to applications. Mater Today, 2014, 17(5): 236

[28]

Kim H, Maeng W J. Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films, 2009, 517(8): 2563

[29]

Seol Y, Noh H, Lee S, et al. Mechanically flexible low-leakage multilayer gate dielectrics for flexible organic thin film transistors. Appl Phys Lett, 2008, 93(1): 244

[30]

Seol Y, Park J, Tien N, et al. Reduction of electrical hysteresis in cyclically bent organic field effect transistors by incorporating multistack hybrid gate dielectrics. J Electrochem Soc, 2010, 157(11): H1046

[31]

Kim D, Hwang B, Park J, et al. Mechanical bending of flexible complementary inverters based on organic and oxide thin film transistors. Org Electron, 2012, 13(11): 2401

[32]

Carcia P, McLean R, Groner M, et al. Gas diffusion ultrabarriers on polymer substrates using Al2O3 atomic layer deposition and SiN plasma-enhanced chemical vapor deposition. J Appl Phys, 2009, 106(2): 023533

[33]

Wu D S, Chen T N, Lay E, et al. Transparent barrier coatings on high temperature resisting polymer substrates for flexible electronic applications. J Electrochem Soc, 2010, 157(2): C47

[34]

Sykes G F, St Clair A K. The effect of molecular structure on the gas transmission rates of aromatic polyimides. J Appl Polym Sci, 1986, 32(2): 3725

[35]

Park J S, Kim T W, Stryakhilev D, et al. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl Phys Lett, 2009, 95(1): 013503

[36]

Hekmatshoar B, Kattamis A Z, Cherenack K H, et al. Reliability of active-matrix organic light-emitting-diode arrays with amorphous silicon thin-film transistor backplanes on clear plastic. IEEE Electron Device Lett, 2008, 29(1): 63

[37]

Hsu H H, Chang C Y, Cheng C H. A flexible IGZO thin-film transistor with stacked TiO2-based dielectrics fabricated at room temperature. IEEE Electron Device Lett, 2013, 34(6): 768

[38]

Kim Y H, Chung C H, Moon J, et al. Oxide-silicon-oxide buffer structure for ultralow temperature polycrystalline silicon thin-film transistor on plastic substrate. IEEE Electron Device Lett, 2006, 27(7): 579

[39]

Yun S J, Ko Y W, Lim J W. Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition. Appl Phys Lett, 2004, 85(21): 4896

[40]

Ghosh A, Gerenser L, Jarman C, et al. Thin-film encapsulation of organic light-emitting devices. Appl Phys Lett, 2005, 86(22): 223503

[41]

Murley D, French I, Deane S, et al. The effect of hydrogen dilution on the aminosilane plasma regime used to deposit nitrogen-rich amorphous silicon nitride. J Non-cryst Solids, 1996, 198: 1058

[42]

Smith D L, Alimonda A S, Chen C C, et al. Mechanism of SiNxHy deposition from NH3–SiH4 plasma. J Electrochem Soc, 1990, 137(2): 614

[43]

Park M J, Yun D J, Ryu M K, et al. Improvements in the bending performance and bias stability of flexible InGaZnO thin film transistors and optimum barrier structures for plastic poly (ethylene naphthalate) substrates. J Mater Chem C, 2015, 3(18): 4779

[44]

Sheng J, Choi D W, Lee S H, et al. Performance modulation of transparent ALD indium oxide films on flexible substrates: transition between metal-like conductor and high performance semiconductor states. J Mater Chem C, 2016, 4(32): 7571

[45]

Jeong H J, Han K L, Ok K C, et al. Effect of mechanical stress on the stability of flexible InGaZnO thin-film transistors. J Inform Display, 2017, 18: 87

[46]

Ok K C, Oh S, Jeong H J, et al. Effect of alumina buffers on the stability of top-gate amorphous ingazno thin-film transistors on flexible substrates. IEEE Electron Device Lett, 2015, 36(9): 917

[47]

Jeong J K, Jin D U, Shin H S, et al. Flexible full-color AMOLED on ultrathin metal foil. IEEE Electron Device Lett, 2007, 28(5): 389

[48]

Sekitani T, Zschieschang U, Klauk H, et al. Flexible organic transistors and circuits with extreme bending stability. Nat Mater, 2010, 9(12): 1015

[49]

Hwang B U, Kim D I, Cho S W, et al. Role of ultrathin Al2O3 layer in organic/inorganic hybrid gate dielectrics for flexibility improvement of InGaZnO thin film transistors. Org Electron, 2014, 15(7): 1458

[50]

Münzenrieder N, Petti L, Zysset C, et al. Flexible self-aligned amorphous InGaZnO thin-film transistors with submicrometer channel length and a transit frequency of 135 MHz. IEEE Trans Electron Devices, 2013, 60(9): 2815

[51]

Munzenrieder N, Voser P, Petti L, et al. Flexible self-aligned double-gate IGZO TFT. IEEE Electron Device Lett, 2014, 35(1): 69

[52]

Park M J, Yun D J, Ryu M K, et al. Device characteristics comparisons for the InGaZnO thin film transistors fabricated on two-type surfaces of the plastic poly (ethylene naphthalate) substrates with hybrid barrier layers. J Vac Sci Technol B, 2015, 33(5): 051209

[53]

Sheng J, Lee H J, Oh S, et al. Flexible and high-performance amorphous indium zinc oxide thin-film transistor using low-temperature atomic layer deposition. ACS Appl Mater Interf, 2016, 8(49): 33821

[54]

Sheng J, Park J, Choi D W, et al. A study on the electrical properties of atomic layer deposition grown InOx on flexible substrates with respect to N2O plasma treatment and the associated thin-film transistor behavior under repetitive mechanical stress. ACS Appl Mater Interf, 2016, 8(45): 31136

[55]

Lee H E, Kim S, Ko J, et al. Skin‐like oxide thin‐film transistors for transparent displays. Adv Funct Mater, 2016, 26(34): 6170

[56]

Li H U, Jackson T N. Flexibility testing strategies and apparatus for flexible electronics. IEEE Trans Electron Devices, 2016, 63(5): 1934

[57]

Pyshkin S L, Ballato J. Optoelectronics: advanced materials and devices. Croatia: InTech Rijeka, 2013

[58]

Bak J Y, Yoon S M, Yang S, et al. Effect of In–Ga–Zn–O active layer channel composition on process temperature for flexible oxide thin-film transistors. J Vac Sci Technol B, 2012, 30(4): 041208

[59]

Lin Y Y, Hsu C C, Tseng M H, et al. Stable and high-performance flexible ZnO thin-film transistors by atomic layer deposition. ACS Appl Mater Interf, 2015, 7(40): 22610

[60]

Nayak P K, Wang Z, Anjum D H, et al. Highly stable thin film transistors using multilayer channel structure. Appl Phys Lett, 2015, 106(10): 103505

[61]

Chung Y J, Choi W J, Kang S G, et al. A study on the influence of local doping in atomic layer deposited Al:ZnO thin film transistors. J Mater Chem C, 2014, 2(43): 9274

[62]

Kim J M, Nam T, Lim S, et al. Atomic layer deposition ZnO: N flexible thin film transistors and the effects of bending on device properties. Appl Phys Lett, 2011, 98(14): 142113

[63]

Ahn C H, Hee Kim S, Gu Yun M, et al. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition. Appl Phys Lett, 2014, 105(22): 223513

[64]

Cho S W, Yun M G, Ahn C H, et al. Bi-layer channel structure-based oxide thin-film transistors consisting of ZnO and Al-doped ZnO with different Al compositions and stacking sequences. Electron Mater Lett, 2015, 11(2): 198

[65]

Geng Y, Yang W, Lu H L, et al. Mobility enhancement and OFF current suppression in atomic-layer-deposited ZnO thin-film transistors by post annealing in O2. IEEE Electron Device Lett, 2014, 35(12): 1266

[66]

Ahn C H, Kim S H, Kim Y K, et al. Effect of post-annealing temperatures on thin-film transistors with ZnO/Al2O3 superlattice channels. Thin Solid Films, 2015, 584: 336

[67]

Lee S J, Hwang C S, Pi J E, et al. High performance amorphous multilayered ZnO–SnO2 heterostructure thin-film transistors: Fabrication and characteristics. ETRI J, 2015, 37(6): 1135

[68]

Ahn B D, Choi D W, Choi C, et al. The effect of the annealing temperature on the transition from conductor to semiconductor behavior in zinc tin oxide deposited atomic layer deposition. Appl Phys Lett, 2014, 105(9): 092103

[69]

Kim J I, Hwan J K, Yoon J H, et al. Improvement in both mobility and bias stability of ZnSnO transistors by inserting ultra-thin InSnO layer at the gate insulator/channel interface. Appl Phys Lett, 2011, 99(12): 122102

[70]

Park J C, Kim S, Kim S, et al. Highly stable transparent amorphous oxide semiconductor thin‐film transistors having double‐stacked active layers. Adv Mater, 2010, 22(48): 5512

[71]

Yang J, Park J K, Kim S, et al. Atomic‐layer‐deposited ZnO thin‐film transistors with various gate dielectrics. Phys Status Solidi A, 2012, 209(10): 2087

[72]

Weiher R, Ley R. Optical properties of indium oxide. J Appl Phys, 1966, 37(1): 299

[73]

Kawazoe H, Ueda N, Un’no H, et al. Generation of electron carriers in insulating thin film of MgIn2O4 spinel by Li+ implantation. J Appl Phys, 1994, 76(12): 7935

[74]

Kumaresan Y, Pak Y, Lim N. Highly bendable In–Ga–ZnO thin film transistors by using a thermally stable organic dielectric layer. Sci Rep, 2016, 6: 37764

[75]

Petti L, Faber H, Münzenrieder N, et al. Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits. Appl Phys Lett, 2015, 106(9): 092105

[76]

Cantarella G, Münzenrieder N, Petti L, et al. Flexible In–Ga–Zn–O thin-film transistors on elastomeric substrate bent to 2.3% strain. IEEE Electron Device Lett, 2015, 36(8): 781

[77]

Petti L, Munzenrieder N, Salvatore G A, et al. Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs. IEEE Trans Electron Devices, 2014, 61(4): 1085

[78]

Jin D U, Kim T W, Koo H W, et al. In 47.1: Invited paper: highly robust flexible AMOLED display on plastic substrate with new structure. SID Symposium Digest of Technical Papers, 2010: 703

[79]

Münzenrieder N, Cherenack K, Tröster G. Testing of flexible InGaZnO-based thin-film transistors under mechanical strain. Eur Phys J Appl Phys, 2011, 55(2): 23904

[80]

Tripathi A K, Myny K, Hou B, et al. Electrical characterization of flexible InGaZnO transistors and 8-b transponder chip down to a bending radius of 2 mm. IEEE Trans Electron Devices, 2015, 62(12): 4063

[81]

Kim Y H, Lee E, Um J G, et al. Highly robust neutral plane oxide TFTs withstanding 0.25 mm bending radius for stretchable electronics. Sci Rep, 2016, 6: 25734

[82]

Münzenrieder N, Kunigunde H C, et al. The effects of mechanical bending and illumination on the performance of flexible IGZO TFTs. IEEE Trans Electron Devices, 2011, 58(7): 2041

[83]

Li X, Billa M M, Mativenga M, et al. Highly robust flexible oxide thin-film transistors by bulk accumulation. IEEE Electron Device Lett, 2015, 36(8): 811

[84]

Petti L, Münzenrieder N, Vogt C, et al. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl Phys Rev, 2016, 3: 021303

[85]

Billah M M, Hasan M M, Chowdhury M H, et al. Excellent mechanical bending stability of flexible a-IGZO TFT by dual gate dual sweep using TCAD simulation. Soc Inform Display, 2016, 47(1): 1155

[86]

Rockett A. The materials science of semiconductors. Springer Science & Business Media, 2007

[87]

Kohan A, Ceder G, Morgan D, et al. First-principles study of native point defects in ZnO. Phys Rev B, 2000, 61(22): 15019

[88]

Look D C, Farlow G C, Reunchan P, et al. Evidence for native-defect donors in n-type ZnO. Phys Rev Lett, 2005, 95(22): 225502

[89]

Kim Y S, Park C. Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: origin of n-type doping. Phys Rev Lett, 2009, 102(8): 086403

[90]

de Meux A d J, Pourtois G, Genoe J, et al. Comparison of the electronic structure of amorphous versus crystalline indium gallium zinc oxide semiconductor: structure, tail states and strain effects. J Phys D, 2015, 48(43): 435104

[91]

Hasan M M, Billah M M, Naik M N, et al. Bending stress induced performance change in plastic oxide thin-film transistor and recovery by annealing at 300 °C. IEEE Electron Device Lett, 2017, 38(8): 1035

[1]

Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan. Oxide-based thin film transistors for flexible electronics. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005

[2]

Zheli Wang, Jianjun Zhou, Yuechan Kong, Cen Kong, Xun Dong, Yang Yang, Tangsheng Chen. Thin-barrier enhancement-mode AlGaN/GaN MIS-HEMT using ALD Al2O3 as gate insulator. J. Semicond., 2015, 36(9): 094004. doi: 10.1088/1674-4926/36/9/094004

[3]

Zhang Xin'an, Zhang Jingwen, Wang Dong, Bi Zhen, Bian Xuming, Zhang Weifeng, Hou Xun. Enhancement Mode Thin Film Transistor with Nitrogen-Doped ZnO Channel Layer Fabricated on SiO2/Si Substrate. J. Semicond., 2007, 28(S1): 306.

[4]

Tao Gao, Ruimin Xu, Kai Zhang, Yuechan Kong, Jianjun Zhou, Cen Kong, Xinxin Yu, Xun Dong, Tangsheng Chen. High-performance enhancement-mode AlGaN/GaN MOS-HEMTs with fluorinated stack gate dielectrics and thin barrier layer. J. Semicond., 2016, 37(6): 064013. doi: 10.1088/1674-4926/37/6/064013

[5]

Yang Zhenyu, Wang Mingxiang, Wang Huaisheng. Finite Element Analysis of Temperature Distribution of Polysilicon TFTsUnder Self-Heating Stress. J. Semicond., 2008, 29(5): 954.

[6]

Liu Xueqiang, Zhang Tong, Wang Lijie, Xia Zhiqiang, Li Mingyou, Liu Shiyong. A Testing Method on a Thin Film Transistor Array for Active Matrix Organic Emitting Diode. J. Semicond., 2007, 28(7): 1161.

[7]

Xiaofeng Zhao, Dianzhong Wen, Meiwei Lü, Hanyu Guan, Gang Liu. Fabrication and characterization of the split-drain MAGFET based on the nano-polysilicon thin film transistor. J. Semicond., 2014, 35(9): 094004. doi: 10.1088/1674-4926/35/9/094004

[8]

Zhang Xin’an, Zhang Jingwen, Zhang Weifeng, Wang Dong, Bi Zhen, Bian Xuming, Hou Xun. Fabrication of Bottom-Gate and Top-Gate Transparent ZnO Thin Film Transistors. J. Semicond., 2008, 29(5): 859.

[9]

Zhang Xin’an, Zhang Jingwen, Yang Xiaodong, Lou Hui, , Liu Zhenling, Zhang Weifeng. Fabrication of ZnO Thin-Film Transistors by L-MBE. J. Semicond., 2006, 27(6): 1051.

[10]

Hui Hao, Xiao Chen, Zhengcheng Li, Yang Shen, Hu Wang, Yanfei Zhao, Rong Huang, Tong Liu, Jian Liang, Yuxin An, Qing Peng, Sunan Ding. Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH3 plasma pretreatment. J. Semicond., 2019, 40(1): 012806. doi: 10.1088/1674-4926/40/1/012806

[11]

Ma Junwei, Ran Feng, Xu Meihua, Ji Huijie. Influence of substrate temperature on the performance of zinc oxide thin film transistor. J. Semicond., 2011, 32(4): 044002. doi: 10.1088/1674-4926/32/4/044002

[12]

Chen Liu, Yuming Zhang, Yimen Zhang, Hongliang Lü, Bin Lu. Temperature dependent interfacial and electrical characteristics during atomic layer deposition and annealing of HfO2 films in p-GaAs metal-oxide-semiconductor capacitors. J. Semicond., 2015, 36(12): 124003. doi: 10.1088/1674-4926/36/12/124003

[13]

Li Chen, Xinliang Chen, Zhongxin Zhou, Sheng Guo, Ying Zhao, Xiaodan Zhang. Studies on morphology, electrical and optical characteristics of Al-doped ZnO thin films grown by atomic layer deposition. J. Semicond., 2018, 39(3): 033004. doi: 10.1088/1674-4926/39/3/033004

[14]

Jiang Weiwei, Zhao Suling, Zhang Fujun, Xu Zheng. Luminescence Characteristics of a Blue-Green Emission Thin Film Electroluminescence Device Based on a ZnSe Emitting Layer. J. Semicond., 2008, 29(4): 754.

[15]

Hao Chen, Xiuming Dou, Kun Ding, Baoquan Sun. Electrically driven uniaxial stress device for tuning in situ semiconductor quantum dot symmetry and exciton emission in cryostat. J. Semicond., 2019, 40(7): 072901. doi: 10.1088/1674-4926/40/7/072901

[16]

Lin Liu, Yingyi Wang, Guanghui Li, Sujie Qin, Ting Zhang. Ultrathin free-standing graphene oxide film based flexible touchless sensor. J. Semicond., 2018, 39(1): 013002. doi: 10.1088/1674-4926/39/1/013002

[17]

Kai Han, Xiaolei Wang, Wenwu Wang. Physical origin investigation of the flatband voltage roll off for metal-oxide-semiconductor device with high-k/metal gate structure. J. Semicond., 2015, 36(9): 094006. doi: 10.1088/1674-4926/36/9/094006

[18]

Peng Kun, Wang Biao, Xiao Deyuan, Qiu Shengfen, Lin D C, Wu Ping, Yang S F. TDDB improvement by optimized processes on metal–insulator–silicon capacitors with atomic layer deposition of Al2O3 and multi layers of TiN film structure. J. Semicond., 2009, 30(8): 082005. doi: 10.1088/1674-4926/30/8/082005

[19]

Hu Shigang, Hao Yue, Cao Yanrong, Ma Xiaohua, Wu Xiaofeng, Chen Chi, Zhou Qingjun. Degradation of ultra-thin gate oxide LDD NMOSFET under GIDL stress. J. Semicond., 2009, 30(4): 044004. doi: 10.1088/1674-4926/30/4/044004

[20]

Bo Duan, Jianwei Zhou, Yuling Liu, Chenwei Wang, Yufeng Zhang. Slurry components of TiO2 thin film in chemical mechanical polishing. J. Semicond., 2014, 35(10): 106003. doi: 10.1088/1674-4926/35/10/106003

Search

Advanced Search >>

GET CITATION

J Z Sheng, K Han, T Hong, W Choi, J Park, Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes[J]. J. Semicond., 2018, 39(1): 011008. doi: 10.1088/1674-4926/39/1/011008.

Export: BibTex EndNote

Article Metrics

Article views: 1654 Times PDF downloads: 95 Times Cited by: 0 Times

History

Manuscript received: 12 October 2017 Manuscript revised: 18 November 2017 Online: Accepted Manuscript: 27 December 2017 Published: 01 January 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误