ARTICLES

An antiferromagnetic two-dimensional material: Chromium diiodides monolayer

Jingjing Zhang1, Jin Yang1, Liangzhong Lin2 and JiaJi Zhu1,

+ Author Affiliations

 Corresponding author: JiaJi Zhu, Email: zhujj@cqupt.edu.cn

PDF

Turn off MathJax

Abstract: The two-dimensional (2D) ferromagnetic materials and the related van der Waals homostructures have attracted considerable interest, while the 2D antiferromagnetic material has not yet been reported. Based on first-principles calculations, we investigate both electronic structures and magnetic orderings of bulk and monolayer of chromium diiodides (CrI2). We demonstrate a counter-intuitive fact that the ground state of the free-standing monolayer of CrI2 is antiferromagnetic though the bulk possesses macroscopic ferromagnetic ordering. The interlayer interaction remains antiferromagnetic up to few-layer scenarios. The unique feature of CrI2 makes it an ideal workbench to investigate the relation between magnetic couplings and interlayer van der Waals interactions, and may offer an opportunity to 2D antiferromagnetic spintronic devices.

Key words: first-principles calculationchromium diiodidetwo-dimensional materialstwo-dimensional antiferromagnet



[1]
Tokmachev A M, Averyanov D V, Parfenov O E, et al. Emerging two-dimensional ferromagnetism in silicene materials. Nat Commun, 2018, 9, 1672 doi: 10.1038/s41467-018-04012-2
[2]
Shi X Y, Huang Z J, Huttula M, et al. Introducing magnetism into 2D nonmagnetic inorganic layered crystals: A brief review from first-principles aspects. Crystals, 2018, 8, 24 doi: 10.3390/cryst8010024
[3]
Tao P, Guo H H, Yang T, et al. Strain-induced magnetism in MoS2 monolayer with defects. J Appl Phys, 2014, 115, 054305 doi: 10.1063/1.4864015
[4]
Kochat V, Apte A, Hachtel J A, et al. Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv Mater, 2017, 29, 1703754 doi: 10.1002/adma.201703754
[5]
Hallal A, Ibrahim F, Yang H X, et al. Tailoring magnetic insulator proximity effects in graphene: First-principles calculations. 2D Mater, 2017, 4, 025074 doi: 10.1088/2053-1583/aa6663
[6]
Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 1966, 17, 1133 doi: 10.1103/PhysRevLett.17.1133
[7]
Miao N H, Xu B, Zhu L G, et al. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc, 2018, 140, 2417 doi: 10.1021/jacs.7b12976
[8]
Lin X, Yang W, Wang K L, et al. Two-dimensional spintronics for low-power electronics. Nat Electron, 2019, 2, 274 doi: 10.1038/s41928-019-0273-7
[9]
Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270 doi: 10.1038/nature22391
[10]
Gong C, Li L, Li Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265 doi: 10.1038/nature22060
[11]
Sheng X L, Nikolić B K. Monolayer of the 5d transition metal trichloride OsCl3: A playground for two-dimensional magnetism, room-temperature quantum anomalous Hall effect, and topological phase transitions. Phys Rev B, 2017, 95, 201402 doi: 10.1103/PhysRevB.95.201402
[12]
Kuo C T, Neumann M, Balamurugan K, et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der waals crystals. Sci Rep, 2016, 6, 20904 doi: 10.1038/srep20904
[13]
Zhu W, Gan W, Muhammad Z, et al. Exfoliation of ultrathin FePS3 layers as a promising electrocatalyst for the oxygen evolution reaction. Chem Commun, 2018, 54, 4481 doi: 10.1039/C8CC01076E
[14]
Li X X, Yang J L. CrXTe3 (X = Si, Ge) nanosheets: Two dimensional intrinsic ferromagnetic semiconductors. J Mater Chem C, 2014, 2, 7071 doi: 10.1039/C4TC01193G
[15]
Zhuang H L, Kent P R C, Hennig R G. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Phys Rev B, 2016, 93, 134407 doi: 10.1103/PhysRevB.93.134407
[16]
Yadav C S, Rastogi A K. Transport and magnetic properties of FexVSe2 (x = 0–0.33). J Phys: Condens Matter, 2008, 20, 465219 doi: 10.1088/0953-8984/20/46/465219
[17]
Sun J J, Li C, Chen D, et al. Controlled synthesis of ferromagnetic MnSex particles. Chin Phys B, 2016, 25, 107405 doi: 10.1088/1674-1056/25/10/107405
[18]
Lado J L, Fernández-Rossier J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater, 2017, 4, 035002 doi: 10.1088/2053-1583/aa75ed
[19]
Abramchuk M, Jaszewski S, Metz K R, et al. Controlling magnetic and optical properties of the van der waals crystal CrCl3− xBrx via mixed halide chemistry. Adv Mater, 2018, 30, 1801325 doi: 10.1002/adma.201801325
[20]
Gibertini M, Koperski M, Morpurgo A F, et al. Magnetic 2D materials and heterostructures. Nat Nanotechnol, 2019, 14, 408 doi: 10.1038/s41565-019-0438-6
[21]
Gong S J, Gong C, Sun Y Y, et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. PNAS, 2018, 115, 8511 doi: 10.1073/pnas.1715465115
[22]
Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136, b864 doi: 10.1103/PhysRev.136.B864
[23]
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140, a1133 doi: 10.1103/PhysRev.140.A1133
[24]
Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B, 1994, 49, 14251 doi: 10.1103/PhysRevB.49.14251
[25]
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6, 15 doi: 10.1016/0927-0256(96)00008-0
[26]
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54, 11169 doi: 10.1103/physrevb.54.11169
[27]
Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50, 17953 doi: 10.1103/PhysRevB.50.17953
[28]
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59, 1758 doi: 10.1103/PhysRevB.59.1758
Fig. 1.  (Color online) (a) Crystal structure of bulk CrI2, and spin-polarized band structure and spin spatial distribution of (b) ferromagnetic and (c) antiferromagnetic orderings.

Fig. 2.  (Color online) (a) 1T and (b) 2H phases of CrI2 monolayers. The chromium and iodine atoms are illustrated with blue and purple spheres, respectively.

Fig. 3.  (Color online) The spin-resolved band structures, total spin density of states (DOS) and spin spatial distributions of (a) 1T-FM, (b) 1T-AFM, (c) 2H-FM, and (d) 2H-AFM.

Fig. 4.  (Color online) Configurations of the model (a) AA-FM, (b) AA-AFM-a, (c) AA-AFM-f, (d) AB-FM, (e) AB-AFM-a, and (f) AB-AFM-f. The up and down arrows indicate the signs of initial magnetic moments in constrained DFT calculations.

Fig. 5.  (Color online) (The spin-resolved band structures, total spin density of states (DOS) and spin spatial distributions of model (a) AA-FM, (b) AA-AFM-a, (c) AA-AFM-f, (d) AB-FM, (e) AB-AFM-a, and (f) AB-AFM-f.

Table 1.   The total energies of 1T and 2H phases.

ParameterFM (eV)AFM (eV)
1T–26.464–26.467
2H–25.065–25.148
DownLoad: CSV

Table 2.   The DFT+U total energies and energy difference for the 1T phase AFM and FM state.

J (eV)U (eV)
234
0.9AFM–25.417–24.519–23.560
FM–25.361–24.416–23.525
$\left| {\Delta E} \right|$0.0560.1030.035
0.5AFM–25.031–24.092–23.217
FM–24.976–24.053–23.184
$\left| {\Delta E} \right|$0.0550.0390.033
0.1AFM–24.679–23.735–22.883
FM–24.600–23.699–22.851
$\left| {\Delta E} \right|$0.0790.0360.032
DownLoad: CSV

Table 3.   AA and AB total energies.

ParameterFM (eV)AFM-a (eV)AFM-f (eV)
AA–52.277–52.333–52.271
AB–52.890–52.935–52.926
DownLoad: CSV
[1]
Tokmachev A M, Averyanov D V, Parfenov O E, et al. Emerging two-dimensional ferromagnetism in silicene materials. Nat Commun, 2018, 9, 1672 doi: 10.1038/s41467-018-04012-2
[2]
Shi X Y, Huang Z J, Huttula M, et al. Introducing magnetism into 2D nonmagnetic inorganic layered crystals: A brief review from first-principles aspects. Crystals, 2018, 8, 24 doi: 10.3390/cryst8010024
[3]
Tao P, Guo H H, Yang T, et al. Strain-induced magnetism in MoS2 monolayer with defects. J Appl Phys, 2014, 115, 054305 doi: 10.1063/1.4864015
[4]
Kochat V, Apte A, Hachtel J A, et al. Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv Mater, 2017, 29, 1703754 doi: 10.1002/adma.201703754
[5]
Hallal A, Ibrahim F, Yang H X, et al. Tailoring magnetic insulator proximity effects in graphene: First-principles calculations. 2D Mater, 2017, 4, 025074 doi: 10.1088/2053-1583/aa6663
[6]
Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 1966, 17, 1133 doi: 10.1103/PhysRevLett.17.1133
[7]
Miao N H, Xu B, Zhu L G, et al. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc, 2018, 140, 2417 doi: 10.1021/jacs.7b12976
[8]
Lin X, Yang W, Wang K L, et al. Two-dimensional spintronics for low-power electronics. Nat Electron, 2019, 2, 274 doi: 10.1038/s41928-019-0273-7
[9]
Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270 doi: 10.1038/nature22391
[10]
Gong C, Li L, Li Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265 doi: 10.1038/nature22060
[11]
Sheng X L, Nikolić B K. Monolayer of the 5d transition metal trichloride OsCl3: A playground for two-dimensional magnetism, room-temperature quantum anomalous Hall effect, and topological phase transitions. Phys Rev B, 2017, 95, 201402 doi: 10.1103/PhysRevB.95.201402
[12]
Kuo C T, Neumann M, Balamurugan K, et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der waals crystals. Sci Rep, 2016, 6, 20904 doi: 10.1038/srep20904
[13]
Zhu W, Gan W, Muhammad Z, et al. Exfoliation of ultrathin FePS3 layers as a promising electrocatalyst for the oxygen evolution reaction. Chem Commun, 2018, 54, 4481 doi: 10.1039/C8CC01076E
[14]
Li X X, Yang J L. CrXTe3 (X = Si, Ge) nanosheets: Two dimensional intrinsic ferromagnetic semiconductors. J Mater Chem C, 2014, 2, 7071 doi: 10.1039/C4TC01193G
[15]
Zhuang H L, Kent P R C, Hennig R G. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Phys Rev B, 2016, 93, 134407 doi: 10.1103/PhysRevB.93.134407
[16]
Yadav C S, Rastogi A K. Transport and magnetic properties of FexVSe2 (x = 0–0.33). J Phys: Condens Matter, 2008, 20, 465219 doi: 10.1088/0953-8984/20/46/465219
[17]
Sun J J, Li C, Chen D, et al. Controlled synthesis of ferromagnetic MnSex particles. Chin Phys B, 2016, 25, 107405 doi: 10.1088/1674-1056/25/10/107405
[18]
Lado J L, Fernández-Rossier J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater, 2017, 4, 035002 doi: 10.1088/2053-1583/aa75ed
[19]
Abramchuk M, Jaszewski S, Metz K R, et al. Controlling magnetic and optical properties of the van der waals crystal CrCl3− xBrx via mixed halide chemistry. Adv Mater, 2018, 30, 1801325 doi: 10.1002/adma.201801325
[20]
Gibertini M, Koperski M, Morpurgo A F, et al. Magnetic 2D materials and heterostructures. Nat Nanotechnol, 2019, 14, 408 doi: 10.1038/s41565-019-0438-6
[21]
Gong S J, Gong C, Sun Y Y, et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. PNAS, 2018, 115, 8511 doi: 10.1073/pnas.1715465115
[22]
Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136, b864 doi: 10.1103/PhysRev.136.B864
[23]
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140, a1133 doi: 10.1103/PhysRev.140.A1133
[24]
Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B, 1994, 49, 14251 doi: 10.1103/PhysRevB.49.14251
[25]
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6, 15 doi: 10.1016/0927-0256(96)00008-0
[26]
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54, 11169 doi: 10.1103/physrevb.54.11169
[27]
Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50, 17953 doi: 10.1103/PhysRevB.50.17953
[28]
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59, 1758 doi: 10.1103/PhysRevB.59.1758
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4862 Times PDF downloads: 88 Times Cited by: 0 Times

    History

    Received: 17 April 2020 Revised: 07 May 2020 Online: Accepted Manuscript: 03 August 2020Uncorrected proof: 07 August 2020Published: 08 December 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jingjing Zhang, Jin Yang, Liangzhong Lin, JiaJi Zhu. An antiferromagnetic two-dimensional material: Chromium diiodides monolayer[J]. Journal of Semiconductors, 2020, 41(12): 122502. doi: 10.1088/1674-4926/41/12/122502 J J Zhang, J Yang, L Z Lin, J J Zhu, An antiferromagnetic two-dimensional material: Chromium diiodides monolayer[J]. J. Semicond., 2020, 41(12): 122502. doi: 10.1088/1674-4926/41/12/122502.Export: BibTex EndNote
      Citation:
      Jingjing Zhang, Jin Yang, Liangzhong Lin, JiaJi Zhu. An antiferromagnetic two-dimensional material: Chromium diiodides monolayer[J]. Journal of Semiconductors, 2020, 41(12): 122502. doi: 10.1088/1674-4926/41/12/122502

      J J Zhang, J Yang, L Z Lin, J J Zhu, An antiferromagnetic two-dimensional material: Chromium diiodides monolayer[J]. J. Semicond., 2020, 41(12): 122502. doi: 10.1088/1674-4926/41/12/122502.
      Export: BibTex EndNote

      An antiferromagnetic two-dimensional material: Chromium diiodides monolayer

      doi: 10.1088/1674-4926/41/12/122502
      More Information
      • Corresponding author: Email: zhujj@cqupt.edu.cn
      • Received Date: 2020-04-17
      • Revised Date: 2020-05-07
      • Published Date: 2020-12-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return