J. Semicond. > Volume 38 > Issue 1 > Article Number: 011002

Recent progress in stability of perovskite solar cells

Xiaojun Qin 1, 2, , Zhiguo Zhao 1, 2, , Yidan Wang 1, 2, , Junbo Wu 1, 2, , Qi Jiang 3, and Jingbi You 3, 4, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Perovskite solar cells have attracted significant attention in just the past few years in solar cell research fields, where the power conversion efficiency was beyond 22. 1%. Now, the most important challenge for perovskite solar cells in practical applications is the stability issue. In this mini-review, we will summarize the degradation mechanism of perovskite solar cells, including the perovskite material itself and also the interfaces. While we also provide our opinion on improving the stability of perovskite solar cells.

Key words: perovskitesolar cellsstability

Abstract: Perovskite solar cells have attracted significant attention in just the past few years in solar cell research fields, where the power conversion efficiency was beyond 22. 1%. Now, the most important challenge for perovskite solar cells in practical applications is the stability issue. In this mini-review, we will summarize the degradation mechanism of perovskite solar cells, including the perovskite material itself and also the interfaces. While we also provide our opinion on improving the stability of perovskite solar cells.

Key words: perovskitesolar cellsstability



References:

[1]

Kojima A, Teshima K, Shirai Y. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131: 6050. doi: 10.1021/ja809598r

[2]

Kim H S, Lee C R, Im J H. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2: 591.

[3]

Lee M M, Teuscher J, Miyasaka T. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338: 643. doi: 10.1126/science.1228604

[4]

Burschka J, Pellet N, Moon S J. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499: 316. doi: 10.1038/nature12340

[5]

Jeon N J, Noh J H, Kim Y C. Solvent engineering for highperformance inorganic-organic hybrid perovskite solar cells[J]. Nat Mater, 2014, 13: 897. doi: 10.1038/nmat4014

[6]

Jeon N J, Noh J H, Yang W S. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517: 476. doi: 10.1038/nature14133

[7]

Yang W S, Noh J H, Jeon N J. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348: 1234. doi: 10.1126/science.aaa9272

[8]

National renewable energy laboratory best research-cell efficiencies. www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2016

[9]

Christians J A, Herrera P, Kamat P V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air[J]. J Am Chem Soc, 2015, 137: 1530. doi: 10.1021/ja511132a

[10]

Habisreutinger S N, Leijtens T, Eperon E. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells[J]. Nano Lett, 2014, 14: 5561. doi: 10.1021/nl501982b

[11]

Supasai T, Rujisamphan N, Ullrich K. Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers[J]. Appl Phys Lett, 2013, 103: 183906. doi: 10.1063/1.4826116

[12]

Conings B, Drijkoningen J, Gauquelin N. Intrinsic thermal instability of methylammonium lead trihalide perovskite[J]. Adv Energy Mater, 2015, 5: 1500477. doi: 10.1002/aenm.201500477

[13]

Chen Q, Zhou H P, Song T B. Controllable self-induced passivation of hybrid lead iodide perovskites toward high perfor mance solar cells[J]. Nano Lett, 2014, 14: 4158. doi: 10.1021/nl501838y

[14]

Azpiroz J M, Mosconi E, Bisquert J. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation[J]. Energy Environ Sci, 2015, 8: 2118. doi: 10.1039/C5EE01265A

[15]

Berhe T A, Su W N, Chen C H. Organometal halide perovskite solar cells: degradation and stability[J]. Energy Environ Sci, 2016, 9: 323. doi: 10.1039/C5EE02733K

[16]

You J B, Meng L, Song T B. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J]. Nat Nanotech, 2016, 11: 75.

[17]

Kim J H, Liang P W, Williams S T. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer[J]. Adv Mater, 2015, 27: 695. doi: 10.1002/adma.201404189

[18]

Ono L K, Raga S R, Remeika M. Pinhole-free hole transport layers significantly improve the stability of MAPbI3-based perovskite solar cells under operating conditions[J]. J Mater Chem A, 2015, 3: 15451. doi: 10.1039/C5TA03443D

[19]

Leijtens T, Eperon G E, Pathak S. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nat Commun, 2013, 4: 2885.

[20]

Nagabhushana G P, Shivaramaiah R, Navrotsky A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites[J]. PNAS, 2016, 113: 7717. doi: 10.1073/pnas.1607850113

[21]

Eperon G E, Stranks S D, Menelaou C. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ Sci, 2014, 7: 982. doi: 10.1039/c3ee43822h

[22]

Li Z, Yang M J, Park J S. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys[J]. Chem Mater, 2016, 28: 284. doi: 10.1021/acs.chemmater.5b04107

[23]

Lee J W, Kim D H, Kim H S. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell[J]. Adv Energy Mater, 2015, 5: 1501310. doi: 10.1002/aenm.201501310

[24]

Saliba M, Matsui T, Seo J Y. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency[J]. Energy Environ Sci, 2016, 9: 1989. doi: 10.1039/C5EE03874J

[25]

Saliba M, Matsui T, Domanski K. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J]. Science, 2016, 354: 206. doi: 10.1126/science.aah5557

[26]

Choi H, Jeong J, Kim H B. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells[J]. Nano Energy, 2014, 7: 80. doi: 10.1016/j.nanoen.2014.04.017

[27]

Mei A, Li X, Liu L. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345: 295. doi: 10.1126/science.1254763

[28]

Smith I C, Hoke E T, Solis-Ibarra D. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angew Chem, 2014, 126: 11414. doi: 10.1002/ange.201406466

[29]

Quan L N, Yuan M J, Comin R. Ligand-stabilized reduceddimensionality perovskites[J]. J Am Chem Soc, 2016, 138: 2649. doi: 10.1021/jacs.5b11740

[30]

Tsai H, Nie W Y, Jean-Christophe B. High-efficiency twodimensional Ruddlesden-Popper perovskite solar cells[J]. Nature, 2016, 536: 312. doi: 10.1038/nature18306

[31]

Colella S, Mosconi E, Fedeli P. MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties[J]. Chem Mater, 2013, 25: 4613. doi: 10.1021/cm402919x

[32]

You J, Hong Z, Yang Y. Low-temperature solutionprocessed perovskite solar cells with high efficiency and flexibility[J]. ACS Nano, 2014, 8: 1674. doi: 10.1021/nn406020d

[33]

Noh J H, Im S H, Heo J H. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Lett, 2013, 13: 1764. doi: 10.1021/nl400349b

[34]

Jeon N J, Noh J H, Yang W S. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517: 476. doi: 10.1038/nature14133

[35]

Liu Y S, Hong Z R, Chen Q. Perovskite solar cells employing dopant-free organic hole transport materials with tunable energy levels[J]. Adv Mater, 2016, 28: 440. doi: 10.1002/adma.v28.3

[36]

Liu Y S, Chen Q, Duan H S. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells[J]. J Mater Chem A, 2015, 3: 11940. doi: 10.1039/C5TA02502H

[37]

Qin P, Tanaka S, Ito S. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nat Commun, 2014, 5: 3834.

[38]

Christians J A, Fung R C M, Kamat P V. An inorganic hole conductor for organo-lead halide perovskite solar cells improved hole conductivity with copper iodide[J]. J Am Chem Soc, 2014, 136: 758. doi: 10.1021/ja411014k

[39]

Jeng J Y, Chen K C, Chiang T Y. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planarheterojunction hybrid solar cells[J]. Adv Mater, 2014, 26: 4107. doi: 10.1002/adma.v26.24

[40]

Kim J H, Liang P W, Williams S T. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer[J]. Adv Mater, 2015, 27: 695. doi: 10.1002/adma.201404189

[41]

Park J H, Seo J, Park S. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition[J]. Adv Mater, 2015, 27: 4013. doi: 10.1002/adma.201500523

[42]

Ye S, Sun W, Li Y. CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%[J]. Nano Lett, 2015, 15: 3723. doi: 10.1021/acs.nanolett.5b00116

[43]

Liu D Y, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nat Photonics, 2014, 8: 133.

[44]

Dong Q, Shi Y T, Wang K. Insight into perovskite solar cells based on SnO2 compact electron-selective layer[J]. J Phys Chem C, 2015, 119: 10212.

[45]

Song J, Zheng E, Bian J. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells[J]. J Mater Chem A, 2015, 3: 10837. doi: 10.1039/C5TA01207D

[46]

Li Y, Zhu J, Huang Y. Mesoporous SnO2 nanoparticle films as electron transporting material in perovskite solar cells[J]. RSC Adv, 2015, 5: 28424. doi: 10.1039/C5RA01540E

[47]

Ke W, Fang G J, Liu Q. Low-temperature solutionprocessed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells[J]. J Am Chem Soc, 2015, 137: 6730. doi: 10.1021/jacs.5b01994

[48]

Baena J P C, Steier L, Tress W. A highly efficient planar perovskite solar cells through band alignment engineering[J]. Energy Environ Sci, 2015, 8: 2928. doi: 10.1039/C5EE02608C

[49]

Jiang Q, Zhang L Q, Wang H L. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells[J]. Nat Energy, 2016, 1: 16117. doi: 10.1038/nenergy.2016.117

[50]

Chen W, Wu Y Z, Yue Y F. , Efficient and stable largearea perovskite solar cells with inorganic charge extraction layers[J]. Science, 2015, 350: 944. doi: 10.1126/science.aad1015

[51]

Zhu Z, Bai Y, Liu X. , Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer[J]. Adv Mater, 2016, 28: 6478. doi: 10.1002/adma.201600619

[1]

Kojima A, Teshima K, Shirai Y. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131: 6050. doi: 10.1021/ja809598r

[2]

Kim H S, Lee C R, Im J H. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2: 591.

[3]

Lee M M, Teuscher J, Miyasaka T. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338: 643. doi: 10.1126/science.1228604

[4]

Burschka J, Pellet N, Moon S J. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499: 316. doi: 10.1038/nature12340

[5]

Jeon N J, Noh J H, Kim Y C. Solvent engineering for highperformance inorganic-organic hybrid perovskite solar cells[J]. Nat Mater, 2014, 13: 897. doi: 10.1038/nmat4014

[6]

Jeon N J, Noh J H, Yang W S. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517: 476. doi: 10.1038/nature14133

[7]

Yang W S, Noh J H, Jeon N J. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348: 1234. doi: 10.1126/science.aaa9272

[8]

National renewable energy laboratory best research-cell efficiencies. www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2016

[9]

Christians J A, Herrera P, Kamat P V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air[J]. J Am Chem Soc, 2015, 137: 1530. doi: 10.1021/ja511132a

[10]

Habisreutinger S N, Leijtens T, Eperon E. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells[J]. Nano Lett, 2014, 14: 5561. doi: 10.1021/nl501982b

[11]

Supasai T, Rujisamphan N, Ullrich K. Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers[J]. Appl Phys Lett, 2013, 103: 183906. doi: 10.1063/1.4826116

[12]

Conings B, Drijkoningen J, Gauquelin N. Intrinsic thermal instability of methylammonium lead trihalide perovskite[J]. Adv Energy Mater, 2015, 5: 1500477. doi: 10.1002/aenm.201500477

[13]

Chen Q, Zhou H P, Song T B. Controllable self-induced passivation of hybrid lead iodide perovskites toward high perfor mance solar cells[J]. Nano Lett, 2014, 14: 4158. doi: 10.1021/nl501838y

[14]

Azpiroz J M, Mosconi E, Bisquert J. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation[J]. Energy Environ Sci, 2015, 8: 2118. doi: 10.1039/C5EE01265A

[15]

Berhe T A, Su W N, Chen C H. Organometal halide perovskite solar cells: degradation and stability[J]. Energy Environ Sci, 2016, 9: 323. doi: 10.1039/C5EE02733K

[16]

You J B, Meng L, Song T B. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J]. Nat Nanotech, 2016, 11: 75.

[17]

Kim J H, Liang P W, Williams S T. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer[J]. Adv Mater, 2015, 27: 695. doi: 10.1002/adma.201404189

[18]

Ono L K, Raga S R, Remeika M. Pinhole-free hole transport layers significantly improve the stability of MAPbI3-based perovskite solar cells under operating conditions[J]. J Mater Chem A, 2015, 3: 15451. doi: 10.1039/C5TA03443D

[19]

Leijtens T, Eperon G E, Pathak S. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nat Commun, 2013, 4: 2885.

[20]

Nagabhushana G P, Shivaramaiah R, Navrotsky A. Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites[J]. PNAS, 2016, 113: 7717. doi: 10.1073/pnas.1607850113

[21]

Eperon G E, Stranks S D, Menelaou C. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ Sci, 2014, 7: 982. doi: 10.1039/c3ee43822h

[22]

Li Z, Yang M J, Park J S. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys[J]. Chem Mater, 2016, 28: 284. doi: 10.1021/acs.chemmater.5b04107

[23]

Lee J W, Kim D H, Kim H S. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell[J]. Adv Energy Mater, 2015, 5: 1501310. doi: 10.1002/aenm.201501310

[24]

Saliba M, Matsui T, Seo J Y. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency[J]. Energy Environ Sci, 2016, 9: 1989. doi: 10.1039/C5EE03874J

[25]

Saliba M, Matsui T, Domanski K. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J]. Science, 2016, 354: 206. doi: 10.1126/science.aah5557

[26]

Choi H, Jeong J, Kim H B. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells[J]. Nano Energy, 2014, 7: 80. doi: 10.1016/j.nanoen.2014.04.017

[27]

Mei A, Li X, Liu L. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345: 295. doi: 10.1126/science.1254763

[28]

Smith I C, Hoke E T, Solis-Ibarra D. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angew Chem, 2014, 126: 11414. doi: 10.1002/ange.201406466

[29]

Quan L N, Yuan M J, Comin R. Ligand-stabilized reduceddimensionality perovskites[J]. J Am Chem Soc, 2016, 138: 2649. doi: 10.1021/jacs.5b11740

[30]

Tsai H, Nie W Y, Jean-Christophe B. High-efficiency twodimensional Ruddlesden-Popper perovskite solar cells[J]. Nature, 2016, 536: 312. doi: 10.1038/nature18306

[31]

Colella S, Mosconi E, Fedeli P. MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties[J]. Chem Mater, 2013, 25: 4613. doi: 10.1021/cm402919x

[32]

You J, Hong Z, Yang Y. Low-temperature solutionprocessed perovskite solar cells with high efficiency and flexibility[J]. ACS Nano, 2014, 8: 1674. doi: 10.1021/nn406020d

[33]

Noh J H, Im S H, Heo J H. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Lett, 2013, 13: 1764. doi: 10.1021/nl400349b

[34]

Jeon N J, Noh J H, Yang W S. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517: 476. doi: 10.1038/nature14133

[35]

Liu Y S, Hong Z R, Chen Q. Perovskite solar cells employing dopant-free organic hole transport materials with tunable energy levels[J]. Adv Mater, 2016, 28: 440. doi: 10.1002/adma.v28.3

[36]

Liu Y S, Chen Q, Duan H S. A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells[J]. J Mater Chem A, 2015, 3: 11940. doi: 10.1039/C5TA02502H

[37]

Qin P, Tanaka S, Ito S. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nat Commun, 2014, 5: 3834.

[38]

Christians J A, Fung R C M, Kamat P V. An inorganic hole conductor for organo-lead halide perovskite solar cells improved hole conductivity with copper iodide[J]. J Am Chem Soc, 2014, 136: 758. doi: 10.1021/ja411014k

[39]

Jeng J Y, Chen K C, Chiang T Y. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planarheterojunction hybrid solar cells[J]. Adv Mater, 2014, 26: 4107. doi: 10.1002/adma.v26.24

[40]

Kim J H, Liang P W, Williams S T. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer[J]. Adv Mater, 2015, 27: 695. doi: 10.1002/adma.201404189

[41]

Park J H, Seo J, Park S. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition[J]. Adv Mater, 2015, 27: 4013. doi: 10.1002/adma.201500523

[42]

Ye S, Sun W, Li Y. CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%[J]. Nano Lett, 2015, 15: 3723. doi: 10.1021/acs.nanolett.5b00116

[43]

Liu D Y, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nat Photonics, 2014, 8: 133.

[44]

Dong Q, Shi Y T, Wang K. Insight into perovskite solar cells based on SnO2 compact electron-selective layer[J]. J Phys Chem C, 2015, 119: 10212.

[45]

Song J, Zheng E, Bian J. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells[J]. J Mater Chem A, 2015, 3: 10837. doi: 10.1039/C5TA01207D

[46]

Li Y, Zhu J, Huang Y. Mesoporous SnO2 nanoparticle films as electron transporting material in perovskite solar cells[J]. RSC Adv, 2015, 5: 28424. doi: 10.1039/C5RA01540E

[47]

Ke W, Fang G J, Liu Q. Low-temperature solutionprocessed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells[J]. J Am Chem Soc, 2015, 137: 6730. doi: 10.1021/jacs.5b01994

[48]

Baena J P C, Steier L, Tress W. A highly efficient planar perovskite solar cells through band alignment engineering[J]. Energy Environ Sci, 2015, 8: 2928. doi: 10.1039/C5EE02608C

[49]

Jiang Q, Zhang L Q, Wang H L. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells[J]. Nat Energy, 2016, 1: 16117. doi: 10.1038/nenergy.2016.117

[50]

Chen W, Wu Y Z, Yue Y F. , Efficient and stable largearea perovskite solar cells with inorganic charge extraction layers[J]. Science, 2015, 350: 944. doi: 10.1126/science.aad1015

[51]

Zhu Z, Bai Y, Liu X. , Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer[J]. Adv Mater, 2016, 28: 6478. doi: 10.1002/adma.201600619

[1]

Dongxue Liu, Yongsheng Liu. Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells. J. Semicond., 2017, 38(1): 011005. doi: 10.1088/1674-4926/38/1/011005

[2]

Guanhaojie Zheng, Liang Li, Ligang Wang, Xingyu Gao, Huanping Zhou. The investigation of an amidine-based additive in the perovskite films and solar cells. J. Semicond., 2017, 38(1): 014001. doi: 10.1088/1674-4926/38/1/014001

[3]

Fengjing Liu, Jiawei Wang, Liang Wang, Xiaoyong Cai, Chao Jiang, Gongtang Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J. Semicond., 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002

[4]

Wang Yikai, Wang Yi, Gong Wenchao, He Lenian. High Stability LDO with Large Output Current. J. Semicond., 2007, 28(7): 1149.

[5]

Kunpeng Jia, Jie Yang, Yajuan Su, Pengfei Nie, Jian Zhong, Qingqing Liang, Huilong Zhu. Stability analysis of a back-gate graphene transistor in air environment. J. Semicond., 2013, 34(8): 084004. doi: 10.1088/1674-4926/34/8/084004

[6]

Yan Senlin. Bifurcation and Dynamic Stability of a Light-InjectionMQW Semiconductor Laser. J. Semicond., 2006, 27(5): 910.

[7]

Wang Han, Ye Qing. Design and Stability Analysis of a 0.6V Supply CMOS Voltage Reference. J. Semicond., 2006, 27(8): 1508.

[8]

Caihong Yao, Chenwei Wang, Xinhuan Niu, Yan Wang, Shengjun Tian, Zichao Jiang, Yuling Liu. The stability of a novel weakly alkaline slurry of copper interconnection CMP for GLSI. J. Semicond., 2018, 39(2): 026002. doi: 10.1088/1674-4926/39/2/026002

[9]

Xiaosheng Qu, Hongyin Bao, Hanieh. S. Nikjalal, Liling Xiong, Hongxin Zhen. An InGaAs graded buffer layer in solar cells. J. Semicond., 2014, 35(1): 014011. doi: 10.1088/1674-4926/35/1/014011

[10]

Li Chen, Xinliang Chen, Yiming Liu, Ying Zhao, Xiaodan Zhang. Research on ZnO/Si heterojunction solar cells. J. Semicond., 2017, 38(5): 054005. doi: 10.1088/1674-4926/38/5/054005

[11]

Guodong Chen, Yuling Liu, Chenwei Wang, Weijuan Liu, Mengting Jiang, Haobo Yuan. Stability for a novel low-pH alkaline slurry during the copper chemical mechanical planarization. J. Semicond., 2014, 35(8): 086001. doi: 10.1088/1674-4926/35/8/086001

[12]

Chen Xinliang, Xue Junming, Sun Jian, Zhao Ying, Geng Xinhua. Growth of Textured ZnO Thin Films and Their Front Electrodes for Application in Solar Cells. J. Semicond., 2007, 28(7): 1072.

[13]

Liu Junpeng, Qu Shengchun, Zeng Xiangbo, Xu Ying, Chen Yonghai, Wang Zhijie, Zhou Huiying, Wang Zhanguo. Hybrid Organic/Inorganic Bulk Heteroj unction Solar Cells. J. Semicond., 2007, 28(S1): 364.

[14]

A. Nasr, A. Aly. Theoretical investigation of some parameters into the behavior of quantum dot solar cells. J. Semicond., 2014, 35(12): 124001. doi: 10.1088/1674-4926/35/12/124001

[15]

Lou Chaogang, Yan Ting, Sun Qiang, Xu Jun, Zhang Xiaobing, Lei Wei. External Quantum Efficiency of Quantum Well Solar Cells. J. Semicond., 2008, 29(11): 2088.

[16]

Xing Zhao, Jia Rui, Ding Wuchang, Meng Yanlong, Jin Zhi, Liu Xinyu. Improving poor fill factors for solar cells via light-induced plating. J. Semicond., 2012, 33(9): 094008. doi: 10.1088/1674-4926/33/9/094008

[17]

Tang Yehua, Zhou Chunlan, Wang Wenjing, Zhou Su, Zhao Yan, Zhao Lei, Li Hailing, Yan Baojun, Chen Jingwei, Fei Jianming, Cao Hongbin. Characterization of the nanosized porous structure of black Si solar cells fabricated via a screen printing process. J. Semicond., 2012, 33(6): 064007. doi: 10.1088/1674-4926/33/6/064007

[18]

Zhang Qunfang, Zhu Meifang, Liu Fengzhen, Zhou Yuqin. High-Efficiency n-nc-Si:H/p-c-Si Heterojunction Solar Cells. J. Semicond., 2007, 28(1): 96.

[19]

Muhammad Nawaz, Ashfaq Ahmad. Influence of absorber doping in a-SiC:H/a-Si:H/a-SiGe:H solar cells. J. Semicond., 2012, 33(4): 042001. doi: 10.1088/1674-4926/33/4/042001

[20]

Chen Yongsheng, Yang Shi'e, Wang Jianhua, Lu Jingxiao, Gao Xiaoyong, Gu Jinhua, Zheng Wen, Zhao Shangli. Deposition of p-Type Microcrystalline Silicon Film and Its Application in Microcrystalline Silicon Solar Cells. J. Semicond., 2008, 29(11): 2130.

Search

Advanced Search >>

GET CITATION

X J Qin, Z G Zhao, Y D Wang, J B Wu, Q Jiang, J B You. Recent progress in stability of perovskite solar cells[J]. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002.

Export: BibTex EndNote

Article Metrics

Article views: 2162 Times PDF downloads: 51 Times Cited by: 0 Times

History

Manuscript received: 15 November 2016 Manuscript revised: 03 December 2016 Online: Published: 01 January 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误