SEMICONDUCTOR TECHNOLOGY

Wet nitrogen oxidation technology and its anisotropy influence on VCSELs

Yan He1, 2, Xiaoying He1, , Shuai Hu1, 2, Jiale Su2, Chong Li2, Anqi Hu1 and Xia Guo1,

+ Author Affiliations

 Corresponding author: Xiaoying He, xyhe@bjut.edu.cn; Xia Guo, Email: guox@bupt.edu.cn

PDF

Turn off MathJax

Abstract: Vertical cavity surface emitting lasers (VCSELs) are widely used in optical communications and optical interconnects due to their advantages of low threshold, low power consumption and so on. Wet nitrogen oxidation technology, which utilizes H2O molecules to oxidize the Al0.98Ga0.02As, is used for electrical and optical mode confinement. In this paper, the effects of oxidation time, oxidation temperature and oxidation anisotropy on the oxidation rate are explored and demonstrated. The ratio of oxidation rate on [0–11] to [011] crystal orientation is defined as oxidation anisotropy coefficient, which decreases with the increase of oxidation temperature and oxidation time. In order to analyze the effect of the oxidation anisotropy on the VCSEL performance, an oxide-aperture of the VCSELs with two difference shapes is designed and then fabricated. The static performance of these fabricated VCSELs has been measured, whose threshold current ratio ~ 0.714 is a good agreement with that of the theoretical calculation value ~ 0.785. Our research on wet nitrogen oxidation and its anisotropy serves as an important reference in the batch fabrication of large-area VCSELs.

Key words: wet nitrogen oxidationvertical-cavity surface-emitting laseroxidation anisotropy



[1]
Chen H D, Zuo C. Very short distance optical transmission technology. Beijing: Science Press, 2005
[2]
Kuchta D M, Rylyakov A V, Schow C L, et al. A 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90 °C. J Lightwave Technol, 2015, 33(4): 802 doi: 10.1109/JLT.2014.2363848
[3]
Larsson A, Westbergh P, Gustavsson J, et al. High-speed VCSELs for short reach communication. Semicond Sci Tech, 2010, 26(1): 014017
[4]
Westbergh P, Safaisini R, Haglund E, et al. High-speed oxide confined 850-nm VCSELs operating error-free at 40 Gb/s up to 85 °C. IEEE Photonic Tech Lett, 2013, 25(8): 768 doi: 10.1109/LPT.2013.2250946
[5]
Moser P, Lott J A, Bimberg D. Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects. IEEE J Sel Topics Quantum Electron, 2013, 19(4): 1702212 doi: 10.1109/JSTQE.2013.2255266
[6]
Safaisini R, Haglund E, Westbergh P, et al. 20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL. Electron Lett, 2014, 50(1): 40 doi: 10.1049/el.2013.2774
[7]
Ledentsov N, Shchukin V A, Ledentsov N N, et al. Direct evidence of the leaky emission in oxide-confined vertical cavity lasers. IEEE J Quantum Electron, 2016, 52(3): 1
[8]
AL-Omari A N, Ababneh A, Lear K L. High-speed inverted-polarity oxide-confined Copper-plated 850-nm vertical-cavity lasers. IEEE J Sel Top Quantum Electron, 2015, 21(6): 462 doi: 10.1109/JSTQE.2015.2448053
[9]
Shi G Z, Guan B L, Li S, et al. Power dissipation in oxide-confined 980-nm vertical-cavity surface-emitting lasers. Chin Phys B, 2013, 22(1): 014206 doi: 10.1088/1674-1056/22/1/014206
[10]
Li H, Wolf P, Moser P, et al. Temperature-stable, energy-efficient, and high-bit rate oxide-confined 980-nm VCSELs for optical interconnects. IEEE J Sel Top Quantum Electron, 2015, 21(6): 405 doi: 10.1109/JSTQE.2015.2389731
[11]
Haglund E, Westbergh P, Gustavsson J S, et al. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s. Electron Lett, 2015, 51(14): 1096 doi: 10.1049/el.2015.0785
[12]
Liu M, Wang C Y, Feng M, et al. 850 nm oxide-confined VCSELs with 50 Gb/s error-free transmission operating up to 85 °C. 2016 Conference on Lasers and Electro-Optics (CLEO), 2016: 1
[13]
Guha S, Agahi F, Pezeshki B, et al. Microstructure of AlGaAs-oxide heterolayers formed by wet oxidation. Appl Phys Lett, 1996, 68(7): 906 doi: 10.1063/1.116226
[14]
Sugg A R, Holonyak J N, Baker J E, et al. Native oxide stabilization of AlAs-GaAs heterostructures. Appl Phys Lett, 1991, 58(11): 1199 doi: 10.1063/1.105213
[15]
Jia H Q, Chen H, Wang W C, et al. Improved thermal stability of wet-oxidized AlAs. Appl Phys Lett, 2002, 80(6): 974 doi: 10.1063/1.1448166
[16]
Choquette K D, Geib K M, Ashby C I H, et al. Advances in selective wet oxidation of AlGaAs alloys. IEEE J Sel Top Quantum Electron, 1997, 3(3): 916 doi: 10.1109/2944.640645
[17]
Coldren L A, Corzine S W, Mashanovitch M L. Diode lasers and photonic integrated circuits. Hoboken: John Wiley & Sons, 2012
Fig. 1.  (Color online) The oxidation aperture microscope images of three mesa shapes at different oxidation time at 430 °C. Un-oxidized zone is purple and oxidized zone is pink.

Fig. 2.  (Color online) (a) Effect of oxidation time on oxidation depth at 430 and 410 °C. (b) Effect of oxidation time on oxidation rate at 430 and 410 °C.

Fig. 3.  (Color online) Effect of temperature on oxidation rate with different shapes and anisotropies of VCSELs. Inset: a close-up of the oxidation rate lines with different shapes and anisotropies of VCSELs.

Fig. 4.  (Color online) (a) The variation of anisotropy coefficient with oxidation time of three mesa shapes of diamond, round and square at 430 °C. (b) The variation of the anisotropy coefficient with the temperature of three mesa shapes of diamond, round and square in 1 h oxidation.

Fig. 5.  (Color online) The P–I–V characteristic curves of diamond and circular devices.

[1]
Chen H D, Zuo C. Very short distance optical transmission technology. Beijing: Science Press, 2005
[2]
Kuchta D M, Rylyakov A V, Schow C L, et al. A 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90 °C. J Lightwave Technol, 2015, 33(4): 802 doi: 10.1109/JLT.2014.2363848
[3]
Larsson A, Westbergh P, Gustavsson J, et al. High-speed VCSELs for short reach communication. Semicond Sci Tech, 2010, 26(1): 014017
[4]
Westbergh P, Safaisini R, Haglund E, et al. High-speed oxide confined 850-nm VCSELs operating error-free at 40 Gb/s up to 85 °C. IEEE Photonic Tech Lett, 2013, 25(8): 768 doi: 10.1109/LPT.2013.2250946
[5]
Moser P, Lott J A, Bimberg D. Energy efficiency of directly modulated oxide-confined high bit rate 850-nm VCSELs for optical interconnects. IEEE J Sel Topics Quantum Electron, 2013, 19(4): 1702212 doi: 10.1109/JSTQE.2013.2255266
[6]
Safaisini R, Haglund E, Westbergh P, et al. 20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL. Electron Lett, 2014, 50(1): 40 doi: 10.1049/el.2013.2774
[7]
Ledentsov N, Shchukin V A, Ledentsov N N, et al. Direct evidence of the leaky emission in oxide-confined vertical cavity lasers. IEEE J Quantum Electron, 2016, 52(3): 1
[8]
AL-Omari A N, Ababneh A, Lear K L. High-speed inverted-polarity oxide-confined Copper-plated 850-nm vertical-cavity lasers. IEEE J Sel Top Quantum Electron, 2015, 21(6): 462 doi: 10.1109/JSTQE.2015.2448053
[9]
Shi G Z, Guan B L, Li S, et al. Power dissipation in oxide-confined 980-nm vertical-cavity surface-emitting lasers. Chin Phys B, 2013, 22(1): 014206 doi: 10.1088/1674-1056/22/1/014206
[10]
Li H, Wolf P, Moser P, et al. Temperature-stable, energy-efficient, and high-bit rate oxide-confined 980-nm VCSELs for optical interconnects. IEEE J Sel Top Quantum Electron, 2015, 21(6): 405 doi: 10.1109/JSTQE.2015.2389731
[11]
Haglund E, Westbergh P, Gustavsson J S, et al. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s. Electron Lett, 2015, 51(14): 1096 doi: 10.1049/el.2015.0785
[12]
Liu M, Wang C Y, Feng M, et al. 850 nm oxide-confined VCSELs with 50 Gb/s error-free transmission operating up to 85 °C. 2016 Conference on Lasers and Electro-Optics (CLEO), 2016: 1
[13]
Guha S, Agahi F, Pezeshki B, et al. Microstructure of AlGaAs-oxide heterolayers formed by wet oxidation. Appl Phys Lett, 1996, 68(7): 906 doi: 10.1063/1.116226
[14]
Sugg A R, Holonyak J N, Baker J E, et al. Native oxide stabilization of AlAs-GaAs heterostructures. Appl Phys Lett, 1991, 58(11): 1199 doi: 10.1063/1.105213
[15]
Jia H Q, Chen H, Wang W C, et al. Improved thermal stability of wet-oxidized AlAs. Appl Phys Lett, 2002, 80(6): 974 doi: 10.1063/1.1448166
[16]
Choquette K D, Geib K M, Ashby C I H, et al. Advances in selective wet oxidation of AlGaAs alloys. IEEE J Sel Top Quantum Electron, 1997, 3(3): 916 doi: 10.1109/2944.640645
[17]
Coldren L A, Corzine S W, Mashanovitch M L. Diode lasers and photonic integrated circuits. Hoboken: John Wiley & Sons, 2012
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4109 Times PDF downloads: 63 Times Cited by: 0 Times

    History

    Received: 16 March 2018 Revised: 25 April 2018 Online: Uncorrected proof: 20 June 2018Corrected proof: 01 November 2018Published: 13 December 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yan He, Xiaoying He, Shuai Hu, Jiale Su, Chong Li, Anqi Hu, Xia Guo. Wet nitrogen oxidation technology and its anisotropy influence on VCSELs[J]. Journal of Semiconductors, 2018, 39(12): 126001. doi: 10.1088/1674-4926/39/12/126001 Y He, X Y He, S Hu, J L Su, C Li, A Q Hu, X Guo, Wet nitrogen oxidation technology and its anisotropy influence on VCSELs[J]. J. Semicond., 2018, 39(12): 126001. doi: 10.1088/1674-4926/39/12/126001.Export: BibTex EndNote
      Citation:
      Yan He, Xiaoying He, Shuai Hu, Jiale Su, Chong Li, Anqi Hu, Xia Guo. Wet nitrogen oxidation technology and its anisotropy influence on VCSELs[J]. Journal of Semiconductors, 2018, 39(12): 126001. doi: 10.1088/1674-4926/39/12/126001

      Y He, X Y He, S Hu, J L Su, C Li, A Q Hu, X Guo, Wet nitrogen oxidation technology and its anisotropy influence on VCSELs[J]. J. Semicond., 2018, 39(12): 126001. doi: 10.1088/1674-4926/39/12/126001.
      Export: BibTex EndNote

      Wet nitrogen oxidation technology and its anisotropy influence on VCSELs

      doi: 10.1088/1674-4926/39/12/126001
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 61335004, 61675046, 61505003) and the Open Fund of IPOC2017B011 (BUPT).

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return