J. Semicond. > Volume 38 > Issue 3 > Article Number: 031002

Optoelectronics based on 2D TMDs and heterostructures

Nengjie Huo 1, §, , Yujue Yang 1, §, and Jingbo Li 1, 2, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: 2D materials including graphene and TMDs have proven interesting physical properties and promising optoelectronic applications. We reviewed the growth, characterization and optoelectronics based on 2D TMDs and their heterostructures, and demonstrated their unique and high quality of performances. For example, we observed the large mobility, fast response and high photo-responsivity in MoS2, WS2 and WSe2 phototransistors, as well as the novel performances in vdW heterostructures such as the strong interlayer coupling, am-bipolar and rectifying behaviour, and the obvious photovoltaic effect. It is being possible that 2D family materials could play an increasingly important role in the future nano- and opto-electronics, more even than traditional semiconductors such as silicon.

Key words: 2D TMDsheterostructuresoptoelectronicsphototransistors

Abstract: 2D materials including graphene and TMDs have proven interesting physical properties and promising optoelectronic applications. We reviewed the growth, characterization and optoelectronics based on 2D TMDs and their heterostructures, and demonstrated their unique and high quality of performances. For example, we observed the large mobility, fast response and high photo-responsivity in MoS2, WS2 and WSe2 phototransistors, as well as the novel performances in vdW heterostructures such as the strong interlayer coupling, am-bipolar and rectifying behaviour, and the obvious photovoltaic effect. It is being possible that 2D family materials could play an increasingly important role in the future nano- and opto-electronics, more even than traditional semiconductors such as silicon.

Key words: 2D TMDsheterostructuresoptoelectronicsphototransistors



References:

[1]

Elias D C, Gorbachev R V, Mayorov A S. Dirac cones reshaped by interaction effects in suspended graphene[J]. Nat Phys, 2011, 7: 701. doi: 10.1038/nphys2049

[2]

Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6: 183. doi: 10.1038/nmat1849

[3]

Mueller T, Xia F, Avouris P. Graphene photodetectors for highspeed optical communications[J]. Nat Photonics, 2010, 4: 297. doi: 10.1038/nphoton.2010.40

[4]

Nair R R, Blake P, Grigorenko A N. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320: 1308. doi: 10.1126/science.1156965

[5]

Konstantatos G, Badioli M, Gaudreau L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nat Nanotechnol, 2012, 7: 363. doi: 10.1038/nnano.2012.60

[6]

Tsai D S, Liu K, Lien D H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments[J]. ACS Nano, 2013, 7: 3905. doi: 10.1021/nn305301b

[7]

Tongay S, Zhou J, Ataca C. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating[J]. Nano Lett, 2013, 13: 2831. doi: 10.1021/nl4011172

[8]

Hu P A, Wang L, Yoon M. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates[J]. Nano Lett, 2013, 13: 1649. doi: 10.1021/nl400107k

[9]

Hu P A, Wen Z, Wang L. Synthesis of few-layer GaSe nanosheets for high performance photodetectors[J]. ACS Nano, 2013, 6: 5988.

[10]

Liu W, Kang J, Sarkar D. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors[J]. Nano Lett, 2013, 13: 1983. doi: 10.1021/nl304777e

[11]

Mak K, He K, Shan J. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nat Nanotechnol, 2012, 7: 494. doi: 10.1038/nnano.2012.96

[12]

Podzorov V, Gershenson M E, Kloc C. High-mobility fieldeffect transistors based on transition metal dichalcogenides[J]. Appl Phys Lett, 2004, 84: 3301. doi: 10.1063/1.1723695

[13]

Ayari A, Cobas E, Ogundadegbe O. Realization and electrical characterization of ultrathin crystals of layered transitionmetal dichalcogenides[J]. J Appl Phys, 2007, 101: 014507. doi: 10.1063/1.2407388

[14]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6: 147. doi: 10.1038/nnano.2010.279

[15]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotechnol, 2013, 8: 497. doi: 10.1038/nnano.2013.100

[16]

Britnell L, Gorbachev R V, Jalil R. Field-effect tunnelling transistor based on vertical graphene heterostructures[J]. Science, 2012, 335: 947. doi: 10.1126/science.1218461

[17]

Yu W J, Li Z, Zhou H L. Vertically stacked multiheterostructures of layered materials for logic transistors and complementary inverters[J]. Nat Mater, 2013, 12: 246.

[18]

Gong C, Zhang H, Wang W. Band alignment of twodimensional transition metal dichalcogenides:application in tunnel field effect transistors[J]. Appl Phys Lett, 2013, 103: 053513. doi: 10.1063/1.4817409

[19]

Kang J, Tongay S, Zhou J. Band offsets and heterostructures of two-dimensional semiconductors[J]. Appl Phys Lett, 2013, 102: 012111. doi: 10.1063/1.4774090

[20]

Komsa H, Krasheninnikov A. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles[J]. Phys Rev B, 2013, 88: 085318. doi: 10.1103/PhysRevB.88.085318

[21]

Huo N J, Kang J, Wei Z M. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors[J]. Adv Funct Mater, 2014, 24: 7025. doi: 10.1002/adfm.201401504

[22]

Hao N J, Tangay S, Guo W L. Novel optical and electrical transport properties in atomically thin WSe2/MoS2 p-n heterostructures[J]. Adv Electron Mater, 2015, 1: 1400066. doi: 10.1002/aelm.201400066

[23]

Huo N J, Yang J H, Huang L. Tunable polarity behavior and self-driven photoswitching in p-WSe2/n-WS2 heterojunctions[J]. Small, 2015, 11: 5430. doi: 10.1002/smll.v11.40

[24]

Wang Y, Ni Z H, Shen Z X. Interference enhancement of Raman signal of graphene[J]. Appl Phys Lett, 2008, 92: 043121. doi: 10.1063/1.2838745

[25]

Zhao Y, Luo X, Li H. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2[J]. Nano Lett, 2013, 13: 1007. doi: 10.1021/nl304169w

[26]

Li H, Lu G, Wang Y. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2[J]. Small, 2013, 9: 1974. doi: 10.1002/smll.v9.11

[27]

Huo N J, Yang S X, Wei Z M. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes[J]. Sci Rep, 2014, 4: 5209.

[28]

Kufer D, Nikitskiy I, Lasanta T. Hybrid 2D-0D MoS2-PbS quantum dot photodetector[J]. Adv Mater, 2015, 27: 176. doi: 10.1002/adma.v27.1

[29]

Huo N J, Wei Z M, Meng X Q. Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS2 and WS2[J]. J Mater Chem C, 2015, 3: 5467.

[1]

Elias D C, Gorbachev R V, Mayorov A S. Dirac cones reshaped by interaction effects in suspended graphene[J]. Nat Phys, 2011, 7: 701. doi: 10.1038/nphys2049

[2]

Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6: 183. doi: 10.1038/nmat1849

[3]

Mueller T, Xia F, Avouris P. Graphene photodetectors for highspeed optical communications[J]. Nat Photonics, 2010, 4: 297. doi: 10.1038/nphoton.2010.40

[4]

Nair R R, Blake P, Grigorenko A N. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320: 1308. doi: 10.1126/science.1156965

[5]

Konstantatos G, Badioli M, Gaudreau L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nat Nanotechnol, 2012, 7: 363. doi: 10.1038/nnano.2012.60

[6]

Tsai D S, Liu K, Lien D H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments[J]. ACS Nano, 2013, 7: 3905. doi: 10.1021/nn305301b

[7]

Tongay S, Zhou J, Ataca C. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating[J]. Nano Lett, 2013, 13: 2831. doi: 10.1021/nl4011172

[8]

Hu P A, Wang L, Yoon M. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates[J]. Nano Lett, 2013, 13: 1649. doi: 10.1021/nl400107k

[9]

Hu P A, Wen Z, Wang L. Synthesis of few-layer GaSe nanosheets for high performance photodetectors[J]. ACS Nano, 2013, 6: 5988.

[10]

Liu W, Kang J, Sarkar D. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors[J]. Nano Lett, 2013, 13: 1983. doi: 10.1021/nl304777e

[11]

Mak K, He K, Shan J. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nat Nanotechnol, 2012, 7: 494. doi: 10.1038/nnano.2012.96

[12]

Podzorov V, Gershenson M E, Kloc C. High-mobility fieldeffect transistors based on transition metal dichalcogenides[J]. Appl Phys Lett, 2004, 84: 3301. doi: 10.1063/1.1723695

[13]

Ayari A, Cobas E, Ogundadegbe O. Realization and electrical characterization of ultrathin crystals of layered transitionmetal dichalcogenides[J]. J Appl Phys, 2007, 101: 014507. doi: 10.1063/1.2407388

[14]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6: 147. doi: 10.1038/nnano.2010.279

[15]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotechnol, 2013, 8: 497. doi: 10.1038/nnano.2013.100

[16]

Britnell L, Gorbachev R V, Jalil R. Field-effect tunnelling transistor based on vertical graphene heterostructures[J]. Science, 2012, 335: 947. doi: 10.1126/science.1218461

[17]

Yu W J, Li Z, Zhou H L. Vertically stacked multiheterostructures of layered materials for logic transistors and complementary inverters[J]. Nat Mater, 2013, 12: 246.

[18]

Gong C, Zhang H, Wang W. Band alignment of twodimensional transition metal dichalcogenides:application in tunnel field effect transistors[J]. Appl Phys Lett, 2013, 103: 053513. doi: 10.1063/1.4817409

[19]

Kang J, Tongay S, Zhou J. Band offsets and heterostructures of two-dimensional semiconductors[J]. Appl Phys Lett, 2013, 102: 012111. doi: 10.1063/1.4774090

[20]

Komsa H, Krasheninnikov A. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles[J]. Phys Rev B, 2013, 88: 085318. doi: 10.1103/PhysRevB.88.085318

[21]

Huo N J, Kang J, Wei Z M. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors[J]. Adv Funct Mater, 2014, 24: 7025. doi: 10.1002/adfm.201401504

[22]

Hao N J, Tangay S, Guo W L. Novel optical and electrical transport properties in atomically thin WSe2/MoS2 p-n heterostructures[J]. Adv Electron Mater, 2015, 1: 1400066. doi: 10.1002/aelm.201400066

[23]

Huo N J, Yang J H, Huang L. Tunable polarity behavior and self-driven photoswitching in p-WSe2/n-WS2 heterojunctions[J]. Small, 2015, 11: 5430. doi: 10.1002/smll.v11.40

[24]

Wang Y, Ni Z H, Shen Z X. Interference enhancement of Raman signal of graphene[J]. Appl Phys Lett, 2008, 92: 043121. doi: 10.1063/1.2838745

[25]

Zhao Y, Luo X, Li H. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2[J]. Nano Lett, 2013, 13: 1007. doi: 10.1021/nl304169w

[26]

Li H, Lu G, Wang Y. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2[J]. Small, 2013, 9: 1974. doi: 10.1002/smll.v9.11

[27]

Huo N J, Yang S X, Wei Z M. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes[J]. Sci Rep, 2014, 4: 5209.

[28]

Kufer D, Nikitskiy I, Lasanta T. Hybrid 2D-0D MoS2-PbS quantum dot photodetector[J]. Adv Mater, 2015, 27: 176. doi: 10.1002/adma.v27.1

[29]

Huo N J, Wei Z M, Meng X Q. Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS2 and WS2[J]. J Mater Chem C, 2015, 3: 5467.

[1]

Haizhen Wang, Chen Fang, Hongmei Luo, Dehui Li. Recent progress of the optoelectronic properties of 2D Ruddlesden-Popper perovskites. J. Semicond., 2019, 40(4): 041901. doi: 10.1088/1674-4926/40/4/041901

[2]

Jiajun Deng, Pei Chen, Wenjie Wang, Bing Hu, Jiantao Che, Lin Chen, Hailong Wang, Jianhua Zhao. The structural and magnetic properties of Fe/(Ga, Mn)As heterostructures. J. Semicond., 2013, 34(8): 083003. doi: 10.1088/1674-4926/34/8/083003

[3]

Shiyi Zhuo, Xi Liu, Xuechao Liu, Erwei Shi. Recent progress in research of f-SiC codoped with N-B-Al pairs for optoelectronics. J. Semicond., 2015, 36(8): 083003. doi: 10.1088/1674-4926/36/8/083003

[4]

Huihui Yang, Feng Gao, Mingjin Dai, Dechang Jia, Yu Zhou, Ping'an Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond., 2017, 38(3): 031004. doi: 10.1088/1674-4926/38/3/031004

[5]

Hongtao Ren, Yachao Liu, Lei Zhang, Kai Liu. Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition. J. Semicond., 2019, 40(6): 061003. doi: 10.1088/1674-4926/40/6/061003

[6]

Zhu Haobo, Mao Luhong, Yu Changliang, Chen Hongda, Tang Jun. A High Speed,12-Channel Parallel,Monolithic IntegratedCMOS OEIC Receiver. J. Semicond., 2007, 28(9): 1341.

[7]

Nasir Alfaraj, Jung-Wook Min, Chun Hong Kang, Abdullah A. Alatawi, Davide Priante, Ram Chandra Subedi, Malleswararao Tangi, Tien Khee Ng, Boon S. Ooi. Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group III–nitrides, III–oxides, and two-dimensional materials. J. Semicond., 2019, 40(0): 000000.

[8]

Zhang Xulin, Ma Huilian, Jin Zhonghe, Ding Chun. An Open-Loop Test of a Resonator Fiber Optic Gyro. J. Semicond., 2006, 27(4): 688.

[9]

Wei Kangliang, Liu Xiaoyan, Du Gang, Han Ruqi. Simulation of carrier transport in heterostructures using the 2D self-consistent full-band ensemble Monte Carlo method. J. Semicond., 2010, 31(8): 084004. doi: 10.1088/1674-4926/31/8/084004

[10]

Tao Chunmin, Tao Yaqi, Chen Cheng, Kong Yuechan, Chen Dunjun, Shen Bo, , Jiao Gang, Chen Tangsheng, Zhang Rong. High-Temperature Transport Properties of 2DEG in AlGaN/GaN Heterostructures. J. Semicond., 2006, 27(7): 1251.

[11]

Li Tong, Pei Zhijun, Sun Shoumei, Ma Xingbing, Feng Liying, Zhang Ming, Yan Hui. Effect of Thickness on the Rectifying Properties of La0.85Sr0.15MnO3/TiO2 Heterostructures. J. Semicond., 2008, 29(9): 1794.

[12]

Chuanbo Li, Ming Li. 2D metamaterials coherently steer nonlinear valley photons of 2D semiconductor. J. Semicond., 2019, 40(6): 060201. doi: 10.1088/1674-4926/40/6/060201

[13]

Han Dejun, Sun Caiming, Sheng Liyan, Zhang Xiurong, Zhang Haijun, Yan Fengzhang, Yang Ru, Zhang Lu, Ning Baojun. High Linearity Float-Zone Silicon Phototransistors with High Sensitivity and Stability. J. Semicond., 2006, 27(S1): 223.

[14]

Jianlu Wang. A novel spin-FET based on 2D antiferromagnet. J. Semicond., 2019, 40(2): 020401. doi: 10.1088/1674-4926/40/2/020401

[15]

Jingbo Li, Xinran Wang. Preface to the Special Topic on 2D Materials and Devices. J. Semicond., 2017, 38(3): 031001. doi: 10.1088/1674-4926/38/3/031001

[16]

Li Yanhui, Li Weihua. 2D Numerical Simulation of Sacrificial Layer Etching. J. Semicond., 2006, 27(7): 1321.

[17]

Shen Guangping, Wu Jian, Zhang Hua, Qin Ming, Huang Qing’an. Design of a 2D Thermal Wind Sensor Based on MEMS Process. J. Semicond., 2007, 28(11): 1830.

[18]

Zhijie Wang. Unique interfacial thermodynamics of few-layer 2D MoS. J. Semicond., 2019, 40(6): 060202. doi: 10.1088/1674-4926/40/6/060202

[19]

Chao Li, Peng Zhou, David Wei Zhang. Devices and applications of van der Waals heterostructures. J. Semicond., 2017, 38(3): 031005. doi: 10.1088/1674-4926/38/3/031005

[20]

Deng Ning, Xiao Hong, Chen Peiyi, Li Zhijian. Kinetic monte Carlo simulation of initial nucleation stage of 2D Ge islands. J. Semicond., 2003, 24(S1): 56.

Search

Advanced Search >>

GET CITATION

N J Huo, Y J Yang, J B Li. Optoelectronics based on 2D TMDs and heterostructures[J]. J. Semicond., 2017, 38(3): 031002. doi: 10.1088/1674-4926/38/3/031002.

Export: BibTex EndNote

Article Metrics

Article views: 2316 Times PDF downloads: 49 Times Cited by: 0 Times

History

Manuscript received: 27 September 2016 Manuscript revised: 13 January 2017 Online: Published: 01 March 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误