ARTICLES

Observation of resistive switching in a graphite/hexagonal boron nitride/graphite heterostructure memristor

Yafeng Deng1, , Yixiang Li2, , , Pengfei Wang2, Shuang Wang2, Xuan Pan2 and Dong Wang1,

+ Author Affiliations

 Corresponding author: Yixiang Li, liyx@nju.edu.cn; Dong Wang, xjrshwd@henau.edu.cn

PDF

Turn off MathJax

Abstract: With the atomically sharp interface and stable switching channel, van der Waals (vdW) heterostructure memristors have attracted extensive interests for the application of high-density memory and neuromorphic computing. Here, we demonstrate a new type of vdW heterostructure memristor device by sandwiching a single-crystalline h-BN layer between two thin graphites. In such a device, a stable bipolar resistive switching (RS) behavior has been observed for the first time. We also characterize their switching performance, and observe an on/off ratio of >103 and a minimum RESET voltage variation coefficient of 3.81%. Our work underscores the potential of 2D materials and vdW heterostructures for emerging memory and neuromorphic applications.

Key words: hexagonal boron nitridevan der Waals heterostructurememristor



[1]
Wang J, Ma F, Liang W, et al. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Mater Today Phys, 2017, 2, 6 doi: 10.1016/j.mtphys.2017.07.001
[2]
Ranjan A, Raghavan N, O'Shea S J, et al. Conductive atomic force microscope study of bipolar and threshold resistive switching in 2D hexagonal boron nitride films. Sci Rep, 2018, 8, 2854 doi: 10.1038/s41598-018-21138-x
[3]
Qian K, Tay R Y, Nguyen V C, et al. Hexagonal boron nitride thin film for flexible resistive memory applications. Adv Funct Mater, 2016, 26, 2176 doi: 10.1002/adfm.201504771
[4]
Roy S, Zhang X, Puthirath A B, et al. Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv Mater, 2021, 33, 2101589 doi: 10.1002/adma.202101589
[5]
Ahmed F, Heo S, Yang Z, et al. Dielectric dispersion and high field response of multilayer hexagonal boron nitride. Adv Funct Mater, 2018, 28, 1804235 doi: 10.1002/adfm.201804235
[6]
Gani Y S, Abergel D S L, and Rossi E. Electronic structure of graphene nanoribbons on hexagonal boron nitride. Phys Rev B, 2018, 98, 205415 doi: 10.1103/PhysRevB.98.205415
[7]
Lee G H, Yu Y J, Lee C, et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl Phys Lett, 2011, 99, 243114 doi: 10.1063/1.3662043
[8]
Pan C, Ji Y, Xiao N, et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv Funct Mater, 2017, 27, 1604811 doi: 10.1002/adfm.201604811
[9]
Yuan B, Liang X, Zhong L, et al. 150 nm × 200 nm cross-point hexagonal boron nitride-based memristors. Adv Electron Mater, 2020, 6, 1900115 doi: 10.1002/aelm.201900115
[10]
Zhao H, Dong Z, Tian H, et al. Atomically thin femtojoule memristive device. Adv Mater, 2017, 29, 1703232 doi: 10.1002/adma.201703232
[11]
Zhu K, Liang X, Yuan B, et al. Graphene-boron nitride-graphene cross-point memristors with three stable resistive states. ACS Appl Mater Interfaces, 2019, 11, 37999 doi: 10.1021/acsami.9b04412
[12]
Wu X, Ge R, Chen P A, et al. Thinnest nonvolatile memory based on monolayer h-BN. Adv Mater, 2019, 31, 1806790 doi: 10.1002/adma.201806790
[13]
Zhao Q, Xie Z, Peng Y P, et al. Current status and prospects of memristors based on novel 2D materials. Mater Horiz, 2020, 7, 1495 doi: 10.1039/C9MH02033K
[14]
Wang C Y, Wang C, Meng F, et al. 2D layered materials for memristive and neuromorphic applications. Adv Electron Mater, 2019, 6, 1901107 doi: 10.1002/aelm.201901107
[15]
Shi T, Wang R, Wu Z, et al. A review of resistive switching devices: Performance improvement, characterization, and applications. Small Struct, 2021, 2, 2000109 doi: 10.1002/sstr.202000109
[16]
Huh W, Lee D, and Lee C H. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv Mater, 2020, 32, 2002092 doi: 10.1002/adma.202002092
[17]
Tao Q, Wu R, Li Q, et al. Reconfigurable electronics by disassembling and reassembling van der waals heterostructures. Nat Commun, 2021, 12, 1825 doi: 10.1038/s41467-021-22118-y
[18]
Li S, Pam M E, Li Y, et al. Wafer-scale 2D hafnium diselenide based memristor crossbar array for energy-efficient neural network hardware. Adv Mater, 2021, 33, 2103376 doi: 10.1002/adma.202103376
[19]
Sun L, Zhang Y, Han G, et al. Self-selective van der waals heterostructures for large scale memory array. Nat Commun, 2019, 10, 3161 doi: 10.1038/s41467-019-11187-9
[20]
Wang S, Wang C Y, Wang P, et al. Networking retinomorphic sensor with memristive crossbar for brain-inspired visual perception. Nat Sci Rev, 2021, 8, 172 doi: 10.1093/nsr/nwaa172
[21]
Jain N, Yang F, Jacobs-Gedrim R B, et al. Extenuated interlayer scattering in double-layered graphene/hexagonal boron nitride heterostructure. Carbon, 2018, 126, 17 doi: 10.1016/j.carbon.2017.09.074
[22]
Wang H, Yu T, Zhao J, et al. Low-power memristors based on layered 2D SnSe/graphene materials. Sci China Mater, 2021, 64, 198 doi: 10.1007/s40843-020-1358-5
[23]
He H K, Yang F F, and Yang R. Flexible full two-dimensional memristive synapses of graphene/WSe2 – xO y/graphene. Phys Chem Chem Phys, 2020, 22, 20658 doi: 10.1039/D0CP03822A
[24]
Wang M, Cai S, Pan C, et al. Robust memristors based on layered two-dimensional materials. Nat Electron, 2018, 1, 130 doi: 10.1038/s41928-018-0021-4
[25]
Liu C, Chen H, Wang S, et al. Two-dimensional materials for next-generation computing technologies. Nat Nanotechnol, 2020, 15, 545 doi: 10.1038/s41565-020-0724-3
[26]
Hao Y, Wu H, Yang Y, et al. Preface to the special issue on beyond moore: Resistive switching devices for emerging memory and neuromorphic computing. J Semicond, 2021, 42, 010101 doi: 10.1088/1674-4926/42/1/010101
[27]
Shen Y, Zheng W, Zhu K, et al. Variability and yield in h-BN-based memristive circuits: The role of each type of defect. Adv Mater, 2021, 33, 2103656 doi: 10.1002/adma.202103656
[28]
Zhou Z, Zhao J, Chen A P, et al. Designing carbon conductive filament memristor devices for memory and electronic synapse applications. Mater Horiz, 2020, 7, 1106 doi: 10.1039/C9MH01684H
[29]
Standley B, Bao W Z, Zhang H, et al. Graphene-based atomic-scale switches. Nano Lett, 2008, 8, 3345 doi: 10.1021/nl801774a
[30]
Hattori Y, Taniguchi T, Watanabe K, et al. Layer-by-layer dielectric breakdown of hexagonal boron nitride. ACS Nano, 2015, 9, 916 doi: 10.1021/nn506645q
[31]
Ranjan A, Raghavan N, Puglisi F M, et al. Boron vacancies causing breakdown in 2D layered hexagonal boron nitride dielectrics. IEEE Electron Device Lett, 2019, 40, 1321 doi: 10.1109/LED.2019.2923420
[32]
Jin C, Lin F, Suenaga K, et al. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys Rev Lett, 2009, 102, 195505 doi: 10.1103/PhysRevLett.102.195505
[33]
Weston L, Wickramaratne D, Mackoit M, et al. Native point defects and impurities in hexagonal boron nitride. Phys Rev B, 2018, 97, 214104 doi: 10.1103/PhysRevB.97.214104
[34]
Zobelli A, Ewels C P, Gloter A, et al. Vacancy migration in hexagonal boron nitride. Phys Rev B, 2007, 75, 094104 doi: 10.1103/PhysRevB.75.094104
Fig. 1.  (Color online) The characterization of Gra/h-BN/Gra heterostructure. (a, b) The AFM characterization of the h-BN and graphite layer with the thickness and appearance displayed. (c, d) The Raman spectra of h-BN and the graphite layer.

Fig. 2.  (Color online) The image and switching curves of the Gra/h-BN/Gra device. (a, b) The schematic diagram and optical microscope image of the memristive device. The scale bar is 10 μm. (c) Typical I–V curves of the Gra/h-BN/Gra device during the DC voltage sweep. The process of the DC voltage sweep is 0 → 4 → 0 → –4 → 0 V.

Fig. 3.  (Color online) The switching performances of a Gra/h-BN/Gra device. (a) The stable RS behavior. (b) The cumulative distribution plot of the high and low resistance measured over 40 cycles.

Fig. 4.  (Color online) The distributions of cycle-to-cycle (a) Vset and (b) Vreset.

[1]
Wang J, Ma F, Liang W, et al. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Mater Today Phys, 2017, 2, 6 doi: 10.1016/j.mtphys.2017.07.001
[2]
Ranjan A, Raghavan N, O'Shea S J, et al. Conductive atomic force microscope study of bipolar and threshold resistive switching in 2D hexagonal boron nitride films. Sci Rep, 2018, 8, 2854 doi: 10.1038/s41598-018-21138-x
[3]
Qian K, Tay R Y, Nguyen V C, et al. Hexagonal boron nitride thin film for flexible resistive memory applications. Adv Funct Mater, 2016, 26, 2176 doi: 10.1002/adfm.201504771
[4]
Roy S, Zhang X, Puthirath A B, et al. Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv Mater, 2021, 33, 2101589 doi: 10.1002/adma.202101589
[5]
Ahmed F, Heo S, Yang Z, et al. Dielectric dispersion and high field response of multilayer hexagonal boron nitride. Adv Funct Mater, 2018, 28, 1804235 doi: 10.1002/adfm.201804235
[6]
Gani Y S, Abergel D S L, and Rossi E. Electronic structure of graphene nanoribbons on hexagonal boron nitride. Phys Rev B, 2018, 98, 205415 doi: 10.1103/PhysRevB.98.205415
[7]
Lee G H, Yu Y J, Lee C, et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl Phys Lett, 2011, 99, 243114 doi: 10.1063/1.3662043
[8]
Pan C, Ji Y, Xiao N, et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv Funct Mater, 2017, 27, 1604811 doi: 10.1002/adfm.201604811
[9]
Yuan B, Liang X, Zhong L, et al. 150 nm × 200 nm cross-point hexagonal boron nitride-based memristors. Adv Electron Mater, 2020, 6, 1900115 doi: 10.1002/aelm.201900115
[10]
Zhao H, Dong Z, Tian H, et al. Atomically thin femtojoule memristive device. Adv Mater, 2017, 29, 1703232 doi: 10.1002/adma.201703232
[11]
Zhu K, Liang X, Yuan B, et al. Graphene-boron nitride-graphene cross-point memristors with three stable resistive states. ACS Appl Mater Interfaces, 2019, 11, 37999 doi: 10.1021/acsami.9b04412
[12]
Wu X, Ge R, Chen P A, et al. Thinnest nonvolatile memory based on monolayer h-BN. Adv Mater, 2019, 31, 1806790 doi: 10.1002/adma.201806790
[13]
Zhao Q, Xie Z, Peng Y P, et al. Current status and prospects of memristors based on novel 2D materials. Mater Horiz, 2020, 7, 1495 doi: 10.1039/C9MH02033K
[14]
Wang C Y, Wang C, Meng F, et al. 2D layered materials for memristive and neuromorphic applications. Adv Electron Mater, 2019, 6, 1901107 doi: 10.1002/aelm.201901107
[15]
Shi T, Wang R, Wu Z, et al. A review of resistive switching devices: Performance improvement, characterization, and applications. Small Struct, 2021, 2, 2000109 doi: 10.1002/sstr.202000109
[16]
Huh W, Lee D, and Lee C H. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv Mater, 2020, 32, 2002092 doi: 10.1002/adma.202002092
[17]
Tao Q, Wu R, Li Q, et al. Reconfigurable electronics by disassembling and reassembling van der waals heterostructures. Nat Commun, 2021, 12, 1825 doi: 10.1038/s41467-021-22118-y
[18]
Li S, Pam M E, Li Y, et al. Wafer-scale 2D hafnium diselenide based memristor crossbar array for energy-efficient neural network hardware. Adv Mater, 2021, 33, 2103376 doi: 10.1002/adma.202103376
[19]
Sun L, Zhang Y, Han G, et al. Self-selective van der waals heterostructures for large scale memory array. Nat Commun, 2019, 10, 3161 doi: 10.1038/s41467-019-11187-9
[20]
Wang S, Wang C Y, Wang P, et al. Networking retinomorphic sensor with memristive crossbar for brain-inspired visual perception. Nat Sci Rev, 2021, 8, 172 doi: 10.1093/nsr/nwaa172
[21]
Jain N, Yang F, Jacobs-Gedrim R B, et al. Extenuated interlayer scattering in double-layered graphene/hexagonal boron nitride heterostructure. Carbon, 2018, 126, 17 doi: 10.1016/j.carbon.2017.09.074
[22]
Wang H, Yu T, Zhao J, et al. Low-power memristors based on layered 2D SnSe/graphene materials. Sci China Mater, 2021, 64, 198 doi: 10.1007/s40843-020-1358-5
[23]
He H K, Yang F F, and Yang R. Flexible full two-dimensional memristive synapses of graphene/WSe2 – xO y/graphene. Phys Chem Chem Phys, 2020, 22, 20658 doi: 10.1039/D0CP03822A
[24]
Wang M, Cai S, Pan C, et al. Robust memristors based on layered two-dimensional materials. Nat Electron, 2018, 1, 130 doi: 10.1038/s41928-018-0021-4
[25]
Liu C, Chen H, Wang S, et al. Two-dimensional materials for next-generation computing technologies. Nat Nanotechnol, 2020, 15, 545 doi: 10.1038/s41565-020-0724-3
[26]
Hao Y, Wu H, Yang Y, et al. Preface to the special issue on beyond moore: Resistive switching devices for emerging memory and neuromorphic computing. J Semicond, 2021, 42, 010101 doi: 10.1088/1674-4926/42/1/010101
[27]
Shen Y, Zheng W, Zhu K, et al. Variability and yield in h-BN-based memristive circuits: The role of each type of defect. Adv Mater, 2021, 33, 2103656 doi: 10.1002/adma.202103656
[28]
Zhou Z, Zhao J, Chen A P, et al. Designing carbon conductive filament memristor devices for memory and electronic synapse applications. Mater Horiz, 2020, 7, 1106 doi: 10.1039/C9MH01684H
[29]
Standley B, Bao W Z, Zhang H, et al. Graphene-based atomic-scale switches. Nano Lett, 2008, 8, 3345 doi: 10.1021/nl801774a
[30]
Hattori Y, Taniguchi T, Watanabe K, et al. Layer-by-layer dielectric breakdown of hexagonal boron nitride. ACS Nano, 2015, 9, 916 doi: 10.1021/nn506645q
[31]
Ranjan A, Raghavan N, Puglisi F M, et al. Boron vacancies causing breakdown in 2D layered hexagonal boron nitride dielectrics. IEEE Electron Device Lett, 2019, 40, 1321 doi: 10.1109/LED.2019.2923420
[32]
Jin C, Lin F, Suenaga K, et al. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys Rev Lett, 2009, 102, 195505 doi: 10.1103/PhysRevLett.102.195505
[33]
Weston L, Wickramaratne D, Mackoit M, et al. Native point defects and impurities in hexagonal boron nitride. Phys Rev B, 2018, 97, 214104 doi: 10.1103/PhysRevB.97.214104
[34]
Zobelli A, Ewels C P, Gloter A, et al. Vacancy migration in hexagonal boron nitride. Phys Rev B, 2007, 75, 094104 doi: 10.1103/PhysRevB.75.094104
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1454 Times PDF downloads: 132 Times Cited by: 0 Times

    History

    Received: 19 October 2021 Revised: 30 October 2021 Online: Accepted Manuscript: 23 December 2021Uncorrected proof: 30 December 2021Published: 01 May 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yafeng Deng, Yixiang Li, Pengfei Wang, Shuang Wang, Xuan Pan, Dong Wang. Observation of resistive switching in a graphite/hexagonal boron nitride/graphite heterostructure memristor[J]. Journal of Semiconductors, 2022, 43(5): 052003. doi: 10.1088/1674-4926/43/5/052003 Y F Deng, Y X Li, P F Wang, S Wang, X Pan, D Wang. Observation of resistive switching in a graphite/hexagonal boron nitride/graphite heterostructure memristor[J]. J. Semicond, 2022, 43(5): 052003. doi: 10.1088/1674-4926/43/5/052003Export: BibTex EndNote
      Citation:
      Yafeng Deng, Yixiang Li, Pengfei Wang, Shuang Wang, Xuan Pan, Dong Wang. Observation of resistive switching in a graphite/hexagonal boron nitride/graphite heterostructure memristor[J]. Journal of Semiconductors, 2022, 43(5): 052003. doi: 10.1088/1674-4926/43/5/052003

      Y F Deng, Y X Li, P F Wang, S Wang, X Pan, D Wang. Observation of resistive switching in a graphite/hexagonal boron nitride/graphite heterostructure memristor[J]. J. Semicond, 2022, 43(5): 052003. doi: 10.1088/1674-4926/43/5/052003
      Export: BibTex EndNote

      Observation of resistive switching in a graphite/hexagonal boron nitride/graphite heterostructure memristor

      doi: 10.1088/1674-4926/43/5/052003
      More Information
      • Author Bio:

        Yafeng Deng got his BS degree from Henan Agricultural University in 2019. Now he is a MS student at Mechanical & Electrical Engineering College of Henan Agricultural University. His recent research interests focus on memristive devices based on two-dimensional materials

        Yixiang Li got his PhD degree in 2019 at University of Science and Technology of China. Then he joined Feng Miao Group at Nanjing University as a postdoctor. His research focuses on two-dimensional materials memristors and information devices

        Dong Wang received his BS degree from Shenyang University in 1995, and received his MS degree from Southeast University in 2005. Then he joined Henan Agricultural University as a Professor. His research interests focus on electrical properties and applications of two-dimensional materials

      • Corresponding author: liyx@nju.edu.cnxjrshwd@henau.edu.cn
      • Received Date: 2021-10-19
      • Accepted Date: 2021-12-23
      • Revised Date: 2021-10-30
      • Available Online: 2022-03-30

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return