ARTICLES

Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique

Tongchuan Ma, Xuanhu Chen, Fangfang Ren, Shunming Zhu, Shulin Gu, Rong Zhang, Youdou Zheng and Jiandong Ye

+ Author Affiliations

 Corresponding author: Jiandong Ye, Email: yejd@nju.edu.cn

PDF

Turn off MathJax

Abstract: The 8 μm thick single-crystalline α-Ga2O3 epilayers have been heteroepitaxially grown on sapphire (0001) substrates via mist chemical vapor deposition technique. High resolution X-ray diffraction measurements show that the full-widths-at-half-maximum (FWHM) of rocking curves for the (0006) and (10-14) planes are 0.024° and 0.24°, and the corresponding densities of screw and edge dislocations are 2.24 × 106 and 1.63 × 109 cm−2, respectively, indicative of high single crystallinity. The out-of-plane and in-plane epitaxial relationships are [0001] α-Ga2O3//[0001] α-Al2O3 and [11-20] α-Ga2O3//[11-20] α-Al2O3, respectively. The lateral domain size is in micron scale and the indirect bandgap is determined as 5.03 eV by transmittance spectra. Raman measurement indicates that the lattice-mismatch induced compressive residual strain cannot be ruled out despite the large thickness of the α-Ga2O3 epilayer. The achieved high quality α-Ga2O3 may provide an alternative material platform for developing high performance power devices and solar-blind photodetectors.

Key words: ultra-wide bandgap semiconductorchemical vapor depositionepitaxygallium oxide



[1]
Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97(14), 142106 doi: 10.1063/1.3499306
[2]
Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100 (1), 013504 doi: 10.1063/1.3674287
[3]
Playford H Y, Hannon A C, Barney E R, et al.Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction. Chemistry, 2013, 19 (8), 2803 doi: 10.1002/chem.201203359
[4]
Roy R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the System Ga2O3-H2O. J Am Chem Soc, 1952, 74 (3), 719 doi: 10.1021/ja01123a039
[5]
Aida H, Nishiguchi K, Takeda H, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn J Appl Phys, 2008, 47 (11), 8506 doi: 10.1143/JJAP.47.8506
[6]
Mahmoud W E. Solar blind avalanche photodetector based on the cation exchange growth of β-Ga2O3/SnO2 bilayer heterostructure thin film. Sol Energy Mater Sol Cells, 2016, 152, 65 doi: 10.1016/j.solmat.2016.03.015
[7]
Guo D Y, Shi H Z, Qian Y P, et al. Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection. Semicond Sci Technol, 2017, 32 (3), 03LT01. doi: 10.1088/1361-6641/aa59b0
[8]
Zhao X, Wu Z, Guo D, et al. Growth and characterization of α-phase Ga2−xSnxO3 thin films for solar-blind ultraviolet applications. Semicond Sci Technol, 2016, 31 (6), 065010. doi: 10.1088/0268-1242/31/6/065010
[9]
Chen X, Xu Y, Zhou D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase alpha-Ga2O3/ZnO isotype heterostructures. ACS Appl Mater Interfaces, 2017, 9 (42), 36997 doi: 10.1021/acsami.7b09812
[10]
Li J, Chen X, Ma T, et al. Identification and modulation of electronic band structures of single-phase β-(AlxGa1−x)2O3 alloys grown by laser molecular beam epitaxy. Appl Phys Lett, 2018, 113 (4), 041901. doi: 10.1063/1.5027763
[11]
Zhao B, Wang F, Chen H, et al. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire. Nano Lett, 2015, 15 (6), 3988 doi: 10.1021/acs.nanolett.5b00906
[12]
Sasaki K, Higashiwaki M, Kuramata A, et al. Ga2O3 Schottky barrier diodes fabricated by using single-crystal β–Ga2O3 (010) substrates. IEEE Electron Device Lett, 2013, 34 (4), 493 doi: 10.1109/LED.2013.2244057
[13]
Akaiwa K, Fujita S. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. J Jpn J Appl Phys, 2012, 51, 070203.
[14]
Ito H, Kaneko K, Fujita S. Growth and band gap control of corundum-structured α-Ga2O3 thin films on sapphire by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 2012, 51, 100207.
[15]
Kaneko K, Nomura T, Kakeya I, et al. Fabrication of highly crystalline corundum-structured α-(Ga1−xFex)2O3 alloy thin films on sapphire substrates. Appl Phys Express 2009, 2, 075501.
[16]
Sun H, Li K H, Castanedo C G T, et al. HCl flow-induced phase change of α-, β-, and ε-Ga2O3 films grown by MOCVD. Cryst Growth Des. 2018, 18 (4), 2370 doi: 10.1021/acs.cgd.7b01791
[17]
Yao Y, Okur S, Lyle L A M, et al. Growth and characterization of α-, β-, and ϵ-phases of Ga2O3 using MOCVD and HVPE techniques. Mater Res Lett, 2018, 6 (5), 268 doi: 10.1080/21663831.2018.1443978
[18]
Kumaran R, Tiedje T, Webster S E, et al. Epitaxial Nd-doped alpha-(Al(1−x)Ga(x))2O3 films on sapphire for solid-state waveguide lasers. Opt Lett, 2010, 35 (22), 3793 doi: 10.1364/OL.35.003793
[19]
Fujita S, Oda M, Kaneko K, et al. Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices. Jpn J Appl Phys, 2016, 55 (12), 1202A3. doi: 10.7567/JJAP.55.1202A3
[20]
Oda M, Kaneko K, Fujita S, et al. Crack-free thick (~5 μm) α-Ga2O3 films on sapphire substrates with α-(Al,Ga)2O3 buffer layers. Jpn J Appl Phys, 2016, 55 (12), 1202B4. doi: 10.7567/JJAP.55.1202B4
[21]
Shinohara D, Fujita S. Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn J Appl Phys, 2008, 47 (9), 7311 doi: 10.1143/JJAP.47.7311
[22]
Kawaharamura T. Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow. Jpn J Appl Phys, 2014, 53 (5), 05FF08.
[23]
Moram M A, Vickers M E. X-ray diffraction of III-nitrides. Rep Prog Phys, 2009, 72 (3), 036502. doi: 10.1088/0034-4885/72/3/036502
[24]
Zheng X H, Chen H, Yan Z B, et al. Determination of twist angle of in-plane mosaic spread of GaN films by high-resolution X-ray diffraction. J Cryst Growth, 2003, 255 (1/2), 63
[25]
Kaneko K, Kawanowa H, Ito H, et al. Evaluation of misfit relaxation in α-Ga2O3 epitaxial growth on α-Al2O3 substrate. Jpn J Appl Phys, 2012, 51, 020201.
[26]
Davis E A, Mott N F et al. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag A, 1970, 22 (179), 0903 doi: 10.1080/14786437008221061
[27]
Cusco R, Domenech-Amador N, Hatakeyama T, et al. Lattice dynamics of a mist-chemical vapor deposition-grown corundum-like Ga2O3 single crystal. J Appl Phys, 2015, 117 (18), 185706. doi: 10.1063/1.4921060
Fig. 1.  Schematic illustration the mist-CVD system used for α-Ga2O3 epitaxy.

Fig. 2.  (Color online) X-ray diffraction (XRD) 2θ/ω scan spectrum of the thick α-Ga2O3 epilayer. The inset displays the ω-scan rocking curves of (0006) and (10-14) planes under symmetric and skew-symmetric scan configuration, respectively.

Fig. 4.  (Color online) (a) Optical microscopic image. (b) Large-scale atomic force microscopic image of the α-Ga2O3 epilayer. (c) Cross-sectional profile of grain. (d) AFM image of side facet of grain.

Fig. 3.  (Color online) XRD Φ-scan measurement for the (10-14) plane of the α-Ga2O3 epilayer and α-Al2O3 substrate.

Fig. 5.  (Color online) (a) The derived (αhv)1/2 curve as a function of photon energy and the inset displays the optical transmittance spectrum. (b) Raman scattering spectra of the α-Ga2O3 epilayer and α-Al2O3 substrate.

[1]
Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97(14), 142106 doi: 10.1063/1.3499306
[2]
Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100 (1), 013504 doi: 10.1063/1.3674287
[3]
Playford H Y, Hannon A C, Barney E R, et al.Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction. Chemistry, 2013, 19 (8), 2803 doi: 10.1002/chem.201203359
[4]
Roy R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the System Ga2O3-H2O. J Am Chem Soc, 1952, 74 (3), 719 doi: 10.1021/ja01123a039
[5]
Aida H, Nishiguchi K, Takeda H, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn J Appl Phys, 2008, 47 (11), 8506 doi: 10.1143/JJAP.47.8506
[6]
Mahmoud W E. Solar blind avalanche photodetector based on the cation exchange growth of β-Ga2O3/SnO2 bilayer heterostructure thin film. Sol Energy Mater Sol Cells, 2016, 152, 65 doi: 10.1016/j.solmat.2016.03.015
[7]
Guo D Y, Shi H Z, Qian Y P, et al. Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection. Semicond Sci Technol, 2017, 32 (3), 03LT01. doi: 10.1088/1361-6641/aa59b0
[8]
Zhao X, Wu Z, Guo D, et al. Growth and characterization of α-phase Ga2−xSnxO3 thin films for solar-blind ultraviolet applications. Semicond Sci Technol, 2016, 31 (6), 065010. doi: 10.1088/0268-1242/31/6/065010
[9]
Chen X, Xu Y, Zhou D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase alpha-Ga2O3/ZnO isotype heterostructures. ACS Appl Mater Interfaces, 2017, 9 (42), 36997 doi: 10.1021/acsami.7b09812
[10]
Li J, Chen X, Ma T, et al. Identification and modulation of electronic band structures of single-phase β-(AlxGa1−x)2O3 alloys grown by laser molecular beam epitaxy. Appl Phys Lett, 2018, 113 (4), 041901. doi: 10.1063/1.5027763
[11]
Zhao B, Wang F, Chen H, et al. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire. Nano Lett, 2015, 15 (6), 3988 doi: 10.1021/acs.nanolett.5b00906
[12]
Sasaki K, Higashiwaki M, Kuramata A, et al. Ga2O3 Schottky barrier diodes fabricated by using single-crystal β–Ga2O3 (010) substrates. IEEE Electron Device Lett, 2013, 34 (4), 493 doi: 10.1109/LED.2013.2244057
[13]
Akaiwa K, Fujita S. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. J Jpn J Appl Phys, 2012, 51, 070203.
[14]
Ito H, Kaneko K, Fujita S. Growth and band gap control of corundum-structured α-Ga2O3 thin films on sapphire by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 2012, 51, 100207.
[15]
Kaneko K, Nomura T, Kakeya I, et al. Fabrication of highly crystalline corundum-structured α-(Ga1−xFex)2O3 alloy thin films on sapphire substrates. Appl Phys Express 2009, 2, 075501.
[16]
Sun H, Li K H, Castanedo C G T, et al. HCl flow-induced phase change of α-, β-, and ε-Ga2O3 films grown by MOCVD. Cryst Growth Des. 2018, 18 (4), 2370 doi: 10.1021/acs.cgd.7b01791
[17]
Yao Y, Okur S, Lyle L A M, et al. Growth and characterization of α-, β-, and ϵ-phases of Ga2O3 using MOCVD and HVPE techniques. Mater Res Lett, 2018, 6 (5), 268 doi: 10.1080/21663831.2018.1443978
[18]
Kumaran R, Tiedje T, Webster S E, et al. Epitaxial Nd-doped alpha-(Al(1−x)Ga(x))2O3 films on sapphire for solid-state waveguide lasers. Opt Lett, 2010, 35 (22), 3793 doi: 10.1364/OL.35.003793
[19]
Fujita S, Oda M, Kaneko K, et al. Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices. Jpn J Appl Phys, 2016, 55 (12), 1202A3. doi: 10.7567/JJAP.55.1202A3
[20]
Oda M, Kaneko K, Fujita S, et al. Crack-free thick (~5 μm) α-Ga2O3 films on sapphire substrates with α-(Al,Ga)2O3 buffer layers. Jpn J Appl Phys, 2016, 55 (12), 1202B4. doi: 10.7567/JJAP.55.1202B4
[21]
Shinohara D, Fujita S. Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn J Appl Phys, 2008, 47 (9), 7311 doi: 10.1143/JJAP.47.7311
[22]
Kawaharamura T. Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow. Jpn J Appl Phys, 2014, 53 (5), 05FF08.
[23]
Moram M A, Vickers M E. X-ray diffraction of III-nitrides. Rep Prog Phys, 2009, 72 (3), 036502. doi: 10.1088/0034-4885/72/3/036502
[24]
Zheng X H, Chen H, Yan Z B, et al. Determination of twist angle of in-plane mosaic spread of GaN films by high-resolution X-ray diffraction. J Cryst Growth, 2003, 255 (1/2), 63
[25]
Kaneko K, Kawanowa H, Ito H, et al. Evaluation of misfit relaxation in α-Ga2O3 epitaxial growth on α-Al2O3 substrate. Jpn J Appl Phys, 2012, 51, 020201.
[26]
Davis E A, Mott N F et al. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag A, 1970, 22 (179), 0903 doi: 10.1080/14786437008221061
[27]
Cusco R, Domenech-Amador N, Hatakeyama T, et al. Lattice dynamics of a mist-chemical vapor deposition-grown corundum-like Ga2O3 single crystal. J Appl Phys, 2015, 117 (18), 185706. doi: 10.1063/1.4921060
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5630 Times PDF downloads: 308 Times Cited by: 0 Times

    History

    Received: 01 August 2018 Revised: 13 September 2018 Online: Accepted Manuscript: 06 December 2018Uncorrected proof: 10 December 2018Published: 07 January 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Tongchuan Ma, Xuanhu Chen, Fangfang Ren, Shunming Zhu, Shulin Gu, Rong Zhang, Youdou Zheng, Jiandong Ye. Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique[J]. Journal of Semiconductors, 2019, 40(1): 012804. doi: 10.1088/1674-4926/40/1/012804 T C Ma, X H Chen, F F Ren, S M Zhu, S L Gu, R Zhang, Y D Zheng, J D Ye, Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique[J]. J. Semicond., 2019, 40(1): 012804. doi: 10.1088/1674-4926/40/1/012804.Export: BibTex EndNote
      Citation:
      Tongchuan Ma, Xuanhu Chen, Fangfang Ren, Shunming Zhu, Shulin Gu, Rong Zhang, Youdou Zheng, Jiandong Ye. Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique[J]. Journal of Semiconductors, 2019, 40(1): 012804. doi: 10.1088/1674-4926/40/1/012804

      T C Ma, X H Chen, F F Ren, S M Zhu, S L Gu, R Zhang, Y D Zheng, J D Ye, Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique[J]. J. Semicond., 2019, 40(1): 012804. doi: 10.1088/1674-4926/40/1/012804.
      Export: BibTex EndNote

      Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique

      doi: 10.1088/1674-4926/40/1/012804
      More Information
      • Corresponding author: Email: yejd@nju.edu.cn
      • Received Date: 2018-08-01
      • Revised Date: 2018-09-13
      • Published Date: 2019-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return