J. Semicond. > Volume 37 > Issue 10 > Article Number: 104001

Compact model for ballistic single wall CNTFET under quantum capacitance limit

Amandeep Singh , Mamta Khosla and Balwinder Raj

+ Author Affilications + Find other works by these authors

PDF

Abstract: This paper proposes a compact model for carbon nanotube field effect transistor (CNTFET) based on surface potential and conduction band minima. The proposed model relates the IV characteristics to chirality under quantum capacitance limit. CV characteristics have been efficiently modelled for different capacitance models which are used to find the relationship between CNT surface potential and gate voltage. The role of different capacitances is discussed and it has been found that the proposed circuit compact model strictly follows quantum capacitance limit. The proposed model is efficiently designed for circuit simulations as it denies self-consistent numerical simulation. Furthermore, this compact model is compared with experimental results. The model has been used to simulate an inverter using HSPICE.

Key words: carbon nanotube(CNT)device modellingballistic CNTFETquantum capacitance

Abstract: This paper proposes a compact model for carbon nanotube field effect transistor (CNTFET) based on surface potential and conduction band minima. The proposed model relates the IV characteristics to chirality under quantum capacitance limit. CV characteristics have been efficiently modelled for different capacitance models which are used to find the relationship between CNT surface potential and gate voltage. The role of different capacitances is discussed and it has been found that the proposed circuit compact model strictly follows quantum capacitance limit. The proposed model is efficiently designed for circuit simulations as it denies self-consistent numerical simulation. Furthermore, this compact model is compared with experimental results. The model has been used to simulate an inverter using HSPICE.

Key words: carbon nanotube(CNT)device modellingballistic CNTFETquantum capacitance



References:

[1]

Iwai H. Roadmap for 22 nm and beyond[J]. Microelectron Eng, 2009, 86(7): 1520.

[2]

Dresselhaus M S, Dresselhaus G, Saito R. Physics of carbon nanotubes[J]. Carbon, 1995, 33(7): 883. doi: 10.1016/0008-6223(95)00017-8

[3]

Hong Li. Circuit modelling and performance analysis of multiwalled carbon nanotube interconnects[J]. IEEE Trans Electron Devices, 2008, 55(6): 1328. doi: 10.1109/TED.2008.922855

[4]

Lin Y M, Appenzeller L, Knoch L. High-performance carbon nanotube field-effect transistor with tunable polarities[J]. IEEE Trans Nanotechnol, 2005, 4(5): 481. doi: 10.1109/TNANO.2005.851427

[5]

Javey A, Guo J, Wang Q. Ballistic carbon nanotube fieldeffect transistors[J]. Nature, 2003, 424(6949): 654. doi: 10.1038/nature01797

[6]

Fregonese S, d'Honincthun H C, Goguet J. Computationally efficient physics-based compact CNTFET model for circuit design[J]. IEEE Trans Electron Devices, 2008, 55(6): 1317. doi: 10.1109/TED.2008.922494

[7]

Appenzeller J. Comparing carbon nanotube transistors–the ideal choice: a novel tunneling device design[J]. IEEE Trans Electron Devices, 2005, 52(12): 2568. doi: 10.1109/TED.2005.859654

[8]

Javey A, Kim H, Brink M. High-k dielectrics for advanced carbon nanotube transistors and logic[J]. Nature Materials, 2002, 1(4): 241. doi: 10.1038/nmat769

[9]

Rahman A, Guo J, Datta S. Lundstrom:theory of ballistic nanotransistors[J]. IEEE Trans Electron Devices, 2003, 50(9): 1853. doi: 10.1109/TED.2003.815366

[10]

Guo J, Lundstrom M, Datta S. Performance projections for ballistic carbon nanotube field-effect transistors[J]. Appl Phys Lett, 2002, 80(17): 3192. doi: 10.1063/1.1474604

[11]

Raychowdhury A, Mukhopadhyay S, Roy K. A circuitcompatible model of ballistic carbon nanotube field-effect transistors[J]. IEEE Trans Comput-Aided Des Integr Circuits Syst, 2004, 23(10): 1411. doi: 10.1109/TCAD.2004.835135

[12]

Dwyer C, Cheung M, Sorin D J. Semi-empirical SPICE models for carbon nanotube FET logic. Proc 4th IEEE Conf Nanotechnol, 2004: 386

[13]

Natori K, Kimura Y, Shimizu T. Characteristics of a carbon nanotube field-effect transistor analyzed as a ballistic nanowire fieldeffect transistor[J]. J Appl Phys, 2005, 97(3): 034306. doi: 10.1063/1.1840096

[14]

Seidel R V, Graham A P, Kretz J. Sub-20 nm short channel carbon nanotube transistors[J]. Nano Lett, 2005, 5(1): 147. doi: 10.1021/nl048312d

[15]

Wang Wei, Zhang Lu, Wang Xueying. The combined effects of halo and linear doping effects on the high-frequency and switching performance in ballistic CNTFETs[J]. Journal of Semiconductors, 2014, 35(11): 114004. doi: 10.1088/1674-4926/35/11/114004

[16]

Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56. doi: 10.1038/354056a0

[17]

Singh K, Raj B. Temperature-dependent modelling and performance evaluation of multi-walled CNT and single-walled CNT as global interconnects[J]. Journal of Electronic Materials, 2015, 44(12): 4825. doi: 10.1007/s11664-015-4040-x

[18]

Guo J, Datta S, Lundstrom M. Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors. Proc Electron Devices Meeting, 2002: 711

[19]

Wind S J, Appenzeller J, Avouris P. Lateral scaling in carbon nanotube field-effect transistors[J]. Phys Rev Lett, 2003, 91(5): 058301. doi: 10.1103/PhysRevLett.91.058301

[20]

Yao Z, Kane C L, Dekker C. High-field electrical transport in single-wall carbon nanotubes[J]. Phys Rev Lett, 2000, 84(13): 2941. doi: 10.1103/PhysRevLett.84.2941

[21]

Mintmire J W, White C T. Universal density of states for carbon nanotubes[J]. Phys Rev Lett, 1998, 81(12): 2506. doi: 10.1103/PhysRevLett.81.2506

[22]

Streetman B, Banerjee S. Solid state electronics devices. 6th ed. Prentice Hall, 2000, 4: 89

[23]

Prado J M M. Current transport modelling of carbon nanotube field effect transistors for analysis and design of integrated circuits. PhD dissertation, Louisiana State University, Baton Rouge, USA, 2008

[24]

Kazmierski T J, Zhou D F, Al-Hashimi B M. Numerically efficient modelling of CNT transistors with ballistic and nonballistic effects for circuit simulation[J]. IEEE Trans Nanotechnol, 2010, 9(1): 99. doi: 10.1109/TNANO.2009.2017019

[25]

Guo J, Lundstrom M, Datta S. Performance projections for ballistic carbon nanotube field-effect transistors[J]. Appl Phys Lett, 2002, 80(17): 3192. doi: 10.1063/1.1474604

[26]

NANOHUB Online simulations and moreNanoTCAD ViDES [Online]. Available: https://nanohub.org/tools/vides.

[27]

Raychowdhury A, Mukhopadhyay S, Roy K. A circuitcompatible model of ballistic carbon nanotube field-effect transistors[J]. IEEE Trans Comput-Aided Des of Integrd Circuits Syst, 2004, 23(10): 1411. doi: 10.1109/TCAD.2004.835135

[28]

Sinha S K, Chaudhury S. Comparative study of leakage power in CNTFET over MOSFET device[J]. Journal of Semiconductors, 2014, 35(11): 114002. doi: 10.1088/1674-4926/35/11/114002

[29]

Yang X B, Mohanram K. Modelling and performance investigation of the double-gate carbon nanotube transistor[J]. IEEE Electron Device Lett, 2011, 32(3): 231. doi: 10.1109/LED.2010.2095826

[30]

Frégonèse S, Maneux C, Zimmer T. A compact model for dualgate one-dimensional FET: application to carbon-nanotube FETs[J]. IEEE Trans Electron Devices, 2011, 58(1): 206. doi: 10.1109/TED.2010.2082548

[1]

Iwai H. Roadmap for 22 nm and beyond[J]. Microelectron Eng, 2009, 86(7): 1520.

[2]

Dresselhaus M S, Dresselhaus G, Saito R. Physics of carbon nanotubes[J]. Carbon, 1995, 33(7): 883. doi: 10.1016/0008-6223(95)00017-8

[3]

Hong Li. Circuit modelling and performance analysis of multiwalled carbon nanotube interconnects[J]. IEEE Trans Electron Devices, 2008, 55(6): 1328. doi: 10.1109/TED.2008.922855

[4]

Lin Y M, Appenzeller L, Knoch L. High-performance carbon nanotube field-effect transistor with tunable polarities[J]. IEEE Trans Nanotechnol, 2005, 4(5): 481. doi: 10.1109/TNANO.2005.851427

[5]

Javey A, Guo J, Wang Q. Ballistic carbon nanotube fieldeffect transistors[J]. Nature, 2003, 424(6949): 654. doi: 10.1038/nature01797

[6]

Fregonese S, d'Honincthun H C, Goguet J. Computationally efficient physics-based compact CNTFET model for circuit design[J]. IEEE Trans Electron Devices, 2008, 55(6): 1317. doi: 10.1109/TED.2008.922494

[7]

Appenzeller J. Comparing carbon nanotube transistors–the ideal choice: a novel tunneling device design[J]. IEEE Trans Electron Devices, 2005, 52(12): 2568. doi: 10.1109/TED.2005.859654

[8]

Javey A, Kim H, Brink M. High-k dielectrics for advanced carbon nanotube transistors and logic[J]. Nature Materials, 2002, 1(4): 241. doi: 10.1038/nmat769

[9]

Rahman A, Guo J, Datta S. Lundstrom:theory of ballistic nanotransistors[J]. IEEE Trans Electron Devices, 2003, 50(9): 1853. doi: 10.1109/TED.2003.815366

[10]

Guo J, Lundstrom M, Datta S. Performance projections for ballistic carbon nanotube field-effect transistors[J]. Appl Phys Lett, 2002, 80(17): 3192. doi: 10.1063/1.1474604

[11]

Raychowdhury A, Mukhopadhyay S, Roy K. A circuitcompatible model of ballistic carbon nanotube field-effect transistors[J]. IEEE Trans Comput-Aided Des Integr Circuits Syst, 2004, 23(10): 1411. doi: 10.1109/TCAD.2004.835135

[12]

Dwyer C, Cheung M, Sorin D J. Semi-empirical SPICE models for carbon nanotube FET logic. Proc 4th IEEE Conf Nanotechnol, 2004: 386

[13]

Natori K, Kimura Y, Shimizu T. Characteristics of a carbon nanotube field-effect transistor analyzed as a ballistic nanowire fieldeffect transistor[J]. J Appl Phys, 2005, 97(3): 034306. doi: 10.1063/1.1840096

[14]

Seidel R V, Graham A P, Kretz J. Sub-20 nm short channel carbon nanotube transistors[J]. Nano Lett, 2005, 5(1): 147. doi: 10.1021/nl048312d

[15]

Wang Wei, Zhang Lu, Wang Xueying. The combined effects of halo and linear doping effects on the high-frequency and switching performance in ballistic CNTFETs[J]. Journal of Semiconductors, 2014, 35(11): 114004. doi: 10.1088/1674-4926/35/11/114004

[16]

Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56. doi: 10.1038/354056a0

[17]

Singh K, Raj B. Temperature-dependent modelling and performance evaluation of multi-walled CNT and single-walled CNT as global interconnects[J]. Journal of Electronic Materials, 2015, 44(12): 4825. doi: 10.1007/s11664-015-4040-x

[18]

Guo J, Datta S, Lundstrom M. Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors. Proc Electron Devices Meeting, 2002: 711

[19]

Wind S J, Appenzeller J, Avouris P. Lateral scaling in carbon nanotube field-effect transistors[J]. Phys Rev Lett, 2003, 91(5): 058301. doi: 10.1103/PhysRevLett.91.058301

[20]

Yao Z, Kane C L, Dekker C. High-field electrical transport in single-wall carbon nanotubes[J]. Phys Rev Lett, 2000, 84(13): 2941. doi: 10.1103/PhysRevLett.84.2941

[21]

Mintmire J W, White C T. Universal density of states for carbon nanotubes[J]. Phys Rev Lett, 1998, 81(12): 2506. doi: 10.1103/PhysRevLett.81.2506

[22]

Streetman B, Banerjee S. Solid state electronics devices. 6th ed. Prentice Hall, 2000, 4: 89

[23]

Prado J M M. Current transport modelling of carbon nanotube field effect transistors for analysis and design of integrated circuits. PhD dissertation, Louisiana State University, Baton Rouge, USA, 2008

[24]

Kazmierski T J, Zhou D F, Al-Hashimi B M. Numerically efficient modelling of CNT transistors with ballistic and nonballistic effects for circuit simulation[J]. IEEE Trans Nanotechnol, 2010, 9(1): 99. doi: 10.1109/TNANO.2009.2017019

[25]

Guo J, Lundstrom M, Datta S. Performance projections for ballistic carbon nanotube field-effect transistors[J]. Appl Phys Lett, 2002, 80(17): 3192. doi: 10.1063/1.1474604

[26]

NANOHUB Online simulations and moreNanoTCAD ViDES [Online]. Available: https://nanohub.org/tools/vides.

[27]

Raychowdhury A, Mukhopadhyay S, Roy K. A circuitcompatible model of ballistic carbon nanotube field-effect transistors[J]. IEEE Trans Comput-Aided Des of Integrd Circuits Syst, 2004, 23(10): 1411. doi: 10.1109/TCAD.2004.835135

[28]

Sinha S K, Chaudhury S. Comparative study of leakage power in CNTFET over MOSFET device[J]. Journal of Semiconductors, 2014, 35(11): 114002. doi: 10.1088/1674-4926/35/11/114002

[29]

Yang X B, Mohanram K. Modelling and performance investigation of the double-gate carbon nanotube transistor[J]. IEEE Electron Device Lett, 2011, 32(3): 231. doi: 10.1109/LED.2010.2095826

[30]

Frégonèse S, Maneux C, Zimmer T. A compact model for dualgate one-dimensional FET: application to carbon-nanotube FETs[J]. IEEE Trans Electron Devices, 2011, 58(1): 206. doi: 10.1109/TED.2010.2082548

[1]

Kanjalochan Jena, Raghunandan Swain, T. R. Lenka. Impact of barrier thickness on gate capacitance——modeling and comparative analysis of GaN based MOSHEMTs. J. Semicond., 2015, 36(3): 034003. doi: 10.1088/1674-4926/36/3/034003

[2]

Zhou Hailiang, Hao Yue, Zhang Minxuan. Numerical study of the sub-threshold slope in T-CNFETs. J. Semicond., 2010, 31(9): 094005. doi: 10.1088/1674-4926/31/9/094005

[3]

Liu Xiaowei, Zhao Zhengang, Li Tuo, Wang Xin. Novel capacitance-type humidity sensor based on multi-wall carbon nanotube/SiO2 composite films. J. Semicond., 2011, 32(3): 034006. doi: 10.1088/1674-4926/32/3/034006

[4]

Sanjeet Kumar Sinha, Saurabh Chaudhury. Comparative study of leakage power in CNTFET over MOSFET device. J. Semicond., 2014, 35(11): 114002. doi: 10.1088/1674-4926/35/11/114002

[5]

Chen Shaofeng, Xia Shanhong, Song Qinglin, Hu Ping' an, Liu Yunqi, Zhu Daoben. Properties of Carbon Nanotube Field Emission. J. Semicond., 2003, 24(S1): 166.

[6]

Feng Tao, Li Qiong, Zhang Jihua, Yu Weidong, Liu Xianghuai, Wang Xi, Xu Jingfang, Zou Shichang. Development of Three-Color Carbon Nanotube Field Emission Light. J. Semicond., 2003, 24(S1): 161.

[7]

Amandeep Singh, Dinesh Kumar Saini, Dinesh Agarwal, Sajal Aggarwal, Mamta Khosla, Balwinder Raj. Modeling and simulation of carbon nanotube field effect transistor and its circuit application. J. Semicond., 2016, 37(7): 074001. doi: 10.1088/1674-4926/37/7/074001

[8]

Liu Hongxia, Zhang Heming, Song Jiuxu, Zhang Zhiyong. Electronic structures of an (8, 0) boron nitride/carbon nanotube heterojunction. J. Semicond., 2010, 31(1): 013001. doi: 10.1088/1674-4926/31/1/013001

[9]

Song Jiuxu, Yang Yintang, Liu Hongxia, Guo Lixin. Negative differential resistance in an (8, 0) carbon/boron nitride nanotube heterojunction. J. Semicond., 2011, 32(4): 042003. doi: 10.1088/1674-4926/32/4/042003

[10]

Xiao Xiaojing, Ye Yun, Zheng Longwu, Guo Tailiang. Improved field emission properties of carbon nanotube cathodes by nickel electroplating and corrosion. J. Semicond., 2012, 33(5): 053004. doi: 10.1088/1674-4926/33/5/053004

[11]

Zheng Longwu, Hu Liqin, Yang Fan, Guo Tailiang. Improvement of the field emission properties of carbon nanotubes by CNT/Fe3O4 composite electrophoretic deposition. J. Semicond., 2011, 32(12): 126001. doi: 10.1088/1674-4926/32/12/126001

[12]

Cheng Peihong, Huang Shihua. A Simulation of the Capacitance-Voltage Characteristics of a Ge/Si Quantum-Well Structure. J. Semicond., 2008, 29(1): 110.

[13]

Peng Lianmao, Chen Ging, Liang Xuelei, Che Renchao, Xia Yang, Xue Zengguan, Wu Quande. Fabrication and characteristics of metal particle modulated carbon Nanotube Field-effect and single Electron transistors. J. Semicond., 2003, 24(S1): 170.

[14]

Li Xin, He Yongning, Liu Weihua, Zhu Changchun. Improving Carbon Nanotube Field Emission Display Luminescence Uniformity by Introducing a Reactive Current Limiting Layer. J. Semicond., 2008, 29(3): 574.

[15]

Guili Liu, Yan Jiang, Yuanyuan Song, Shuang Zhou, Tianshuang Wang. Influence of tension-twisting deformations and defects on optical and electrical properties of B, N doped carbon nanotube superlattices. J. Semicond., 2016, 37(6): 063004. doi: 10.1088/1674-4926/37/6/063004

[16]

Liu Hongxia, Zhang Heming, Zhang Zhiyong. Electronic transport properties of an (8, 0) carbon/silicon-carbide nanotube heterojunction. J. Semicond., 2009, 30(5): 052002. doi: 10.1088/1674-4926/30/5/052002

[17]

Qin Yuxiang, Hu Ming, Li Haiyan, Zhang Zhisheng, Zou Qiang. Preparation by a Low Temperature Method and the Field Emission Properties of Carbon Nanotube Cold Cathodes. J. Semicond., 2006, 27(8): 1417.

[18]

Zhou Hailiang, Hao Yue, Zhang Minxuan. Performance optimization of MOS-like carbon nanotube-FETs with realistic source/drain contacts based on electrostatic doping. J. Semicond., 2010, 31(12): 124005. doi: 10.1088/1674-4926/31/12/124005

[19]

Tanu Goyal, Manoj Kumar Majumder, Brajesh Kumar Kaushik. Propagation delay and power dissipation for different aspect ratio of single-walled carbon nanotube bundled TSV. J. Semicond., 2015, 36(6): 065001. doi: 10.1088/1674-4926/36/6/065001

[20]

Gang Li, Pengjun Wang, Yaopeng Kang, Yuejun Zhang. A low standby-power fast carbon nanotube ternary SRAM cell with improved stability. J. Semicond., 2018, 39(8): 085002. doi: 10.1088/1674-4926/39/8/085002

Search

Advanced Search >>

GET CITATION

A m and E Singh, M Khosla, B Raj. Compact model for ballistic single wall CNTFET under quantum capacitance limit[J]. J. Semicond., 2016, 37(10): 104001. doi: 10.1088/1674-4926/37/10/104001.

Export: BibTex EndNote

Article Metrics

Article views: 523 Times PDF downloads: 9 Times Cited by: 0 Times

History

Manuscript received: 09 February 2016 Manuscript revised: 02 May 2016 Online: Published: 01 October 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误