SEMICONDUCTOR DEVICES

Investigation of the on-state behaviors of the variation of lateral width LDMOS device by simulation

Panpan Tang1, Ying Wang2, , Xiongfei Meng3 and Sufen Cui3

+ Author Affiliations

 Corresponding author: Ying Wang, Email: wangying7711@yahoo.com

PDF

Turn off MathJax

Abstract: The main content revolves round the on-state characteristics of the variation of a lateral width (VLW) LDMOS device. A three-dimensional numerical analysis is performed to investigate the specific on-resistance of the VLW LDMOS device, the simulation results are in good agreement with the analytical calculation results combined with device dimensions. This provides a theoretical basis for the design of devices in the future. Then the self-heating effect of the VLW structure with a silicon-on-oxide (SOI) substrate is compared with that of a silicon carbide (SiC) substrate by 3D thermoelectric simulation. The electrical characteristic and temperature distribution indicate that taking into account the SiC as the substrate can mitigate the self- heating penalty effectively, alleviating the self heating effect and improving reliability.

Key words: SOIself-heating effectspecific on-resistanceLDMOS transistor



[1]
Shimamoto S, Yanagida Y, Shirakawa S, et al. High-performance p-channel LDMOS transistors and wide-range voltage platform technology using novel p-channel structure. IEEE Trans Electron Devices, 2013, 60(1): 360 doi: 10.1109/TED.2012.2228202
[2]
Hardikar S, Souza M M D, Xu Y Z, et al. A novel double RESURF LDMOS for HVIC's. Microelectron J, 2004, 35(3): 305 doi: 10.1016/S0026-2692(03)00190-3
[3]
Hu X R, Zhang B, Luo X R, et al. Analytical models for the electric field distributions and breakdown voltage of triple RESURF SOI LDMOS. Solid State Electron, 2012, 69: 89 doi: 10.1016/j.sse.2011.12.010
[4]
Guo Y F, Yao J F, Zhang B, et al. Variation of lateral width technique in SOI high-voltage lateral double-diffused metal–oxide–semiconductor transistors using high-k dielectric. IEEE Electron Device Lett, 2015, 36(3): 262 doi: 10.1109/LED.2015.2393913
[5]
Li J H, Li P, Huo W R, et al. Analysis and fabrication of an LDMOS with high-permittivity dielectric. IEEE Electron Device Lett, 2011, 32(9): 1266 doi: 10.1109/LED.2011.2158383
[6]
Wang Y, Meng X F, Cui S F. Preliminary study and design for variation of lateral width SOI LDMOS device. Solid State Electron, 2016, 116: 65 doi: 10.1016/j.sse.2015.11.039
[7]
Guo Y, Wang Z, Sheu G, et al. A high performance silicon-on-insulator LDMOSTT using linearly increasing thickness techniques. Chin Phys Lett, 2010, 27(6): 179
[8]
Zhang S, Sin J K O, Lai T M L, et al. Numerical modeling of linear doping profiles for high-voltage thin-film SOI devices. IEEE Trans Electron Devices, 1999, 46(5): 1036 doi: 10.1109/16.760414
[9]
Yao J F, Guo Y F, Xia T, et al. 3D analytical model for the SOI LDMOS with alternating silicon and high-k dielectric pillars. Superlattices Microstruct, 2016, 96: 95 doi: 10.1016/j.spmi.2016.05.018
[10]
Zhang B, Zhang W, Li Z, et al. a novel vertical field plate lateral device with ultralow specific on-resistance. IEEE Trans Electron Devices, 2014, 61(2): 525 doi: 10.1109/TED.2013.2295091
[11]
Su L T, Chung J E, Antoniadis D A, et al. Measurement and modeling of self-heating effects in SOI nMOSFETs. International Electron Devices Meeting, 1992: 357
[12]
He P, Liu L, Tian L, et al. Measurement of thermal conductivity of buried oxides of silicon-on-insulator wafers fabricated by separation by implantation of oxygen technology. Appl Phys Lett, 2002, 81(10): 1896 doi: 10.1063/1.1506784
[13]
Nasri F, Echouchene F, Aissa M F B, et al. Investigation of self-heating effects in a 10-nm SOI-MOSFET with an insulator region using electrothermal modeling. IEEE Trans Electron Devices, 2015, 62(8): 2410 doi: 10.1109/TED.2015.2447212
[14]
Wang L, Brown A R, Nedjalkov M, et al. impact of self-heating on the statistical variability in bulk and SOI FinFETs. IEEE Trans Electron Devices, 2015, 62(7): 2106 doi: 10.1109/TED.2015.2436351
[15]
Makovejev S, Raskin J P, Arshad M K M, et al. Impact of self-heating and substrate effects on small-signal output conductance in UTBB SOI MOSFETs. Solid State Electron, 2012, 71(5): 93
[16]
Leung Y K, Suzuki Y, Goodson K E, et al. Self-heating effect in lateral DMOS on SOI. Proceedings of the 7th International Symposium on Power Semiconductor Devices and ICs, 1995: 136
[17]
Lun Z, Du G, Qin J, et al. Investigation of self-heating effect in SOI-LDMOS by device simulation. IEEE 11th International Conference on ICSICT, 2012: 1
[18]
Lim H T, Udrea F, Garner D M, et al. Modelling of self-heating effect in thin SOI and partial SOI LDMOS power devices. Solid State Electron, 1999, 43(7): 1267 doi: 10.1016/S0038-1101(99)00119-7
[19]
Park J M, Grasser T, Kosina H, et al. A numerical study of partial-SOI LDMOSFETs. Solid State Electron, 2003, 47(2): 275 doi: 10.1016/S0038-1101(02)00207-1
[20]
Roig J, Flores D, Rebollo J, et al. A 200 V silicon-on-sapphire LDMOS structure with a step oxide extended field plate. Solid State Electron, 2004, 48(2): 245 doi: 10.1016/S0038-1101(03)00314-9
[21]
Roig J, Flores D, Cortes I, et al. thin film soi and sos ldmos structures with linear doping profile and enlarged field plate. International Conference on Microelectronics, 2004, 1: 141
[22]
Nassif-Khalil S G, Salama C A T. Super-junction LDMOST on a silicon-on-sapphire substrate. IEEE Trans Electron Devices, 2003, 50(5): 1385 doi: 10.1109/TED.2003.813460
[23]
Pérez-Tomás A, Jennings M R, Davis M, et al. Characterization and modeling of n–n Si/SiC heterojunction diodes. J Appl Phys, 2007, 102(1): 014505 doi: 10.1063/1.2752148
[24]
Luo X R, Cai J Y, Fan Y, et al. Novel low-resistance current path UMOS with high-k dielectric pillars. IEEE Trans Electron Devices, 2013, 60(9): 2840 doi: 10.1109/TED.2013.2272086
[25]
Luo X R, Jiang Y H, Zhou K, et al. Ultralow specific on-resistance superjunction vertical DMOS with high-k dielectric pillar. IEEE Trans Electron Devices, 2012, 33(7): 1042 doi: 10.1109/LED.2012.2196969
[26]
Chen X, Huang M. A vertical power MOSFET with an interdigitated drift region using high-k insulator. IEEE Trans Electron Devices, 2012, 59(9): 2430 doi: 10.1109/TED.2012.2204890
[27]
Chen X. Super-junction voltage sustaining layer with alternating semiconductor and high-k dielectric regions. USA Patent, US7230 310, 2007
[28]
Baliga B J. Fundamentals of power semiconductor devices. New York: Springer, 2008
[29]
Xie K, Zhao J H, Flemish J R, et al. A high-current and high-temperature 6H-SiC thyristor. IEEE Electron Device Lett, 1996, 17(3): 142 doi: 10.1109/55.485194
[30]
Kurumi T, Araki R, Kinoshita H, et al. TEM observation of directly bonded interface between Si and SiC. 2012 IEEE International Meeting for Future of Electron Devices, 2012: 1
[31]
McDaid L J, Hall S, Mellor P H, et al. Physical origin of negative differential resistance in SOI transistors. Electron Lett, 1989, 25(13): 827 doi: 10.1049/el:19890557
Fig. 1.  (Color online) Schematic of a half-cell of the VLW SOI LDMOS device.

Fig. 2.  (Color online) Schematic of resistance of the VLW structure.

Fig. 4.  (Color online) The contour of electron current density of the device (Ld = 40 μm), and the electron current density distribution curve located below is obtained by the cutline at y = −0.05 μm along the x axis.

Fig. 3.  The Ron, sp and the optimal Nd via different drift region length Ld.

Fig. 5.  The Ron, sp and the VB via different wsc, and the calculated Nd based on the formula and optimal Nd for each wsc by simulation is marked out.

Fig. 6.  The dependencies of Ron, sp and Nd on εdi.

Fig. 7.  (Color online) Device structures of simulated Si/SiC YLW LDMOS device.

Fig. 8.  (Color online) The effect of self heating on output characteristics of (a) SOI and (b) Si/SiC YLW LDMOS.

Fig. 9.  (Color online) (a) The maximum junction temperature compared between the SOI and Si/SiC YLW LDMOS. (b) The temperature difference ΔTc versus VGS, VDS = 30 V.

Fig. 10.  (Color online) Temperature contour of (a) SOI and (b) Si/SiC YLW LDMOS with VDS = 15 V, VGS = 10 V.

[1]
Shimamoto S, Yanagida Y, Shirakawa S, et al. High-performance p-channel LDMOS transistors and wide-range voltage platform technology using novel p-channel structure. IEEE Trans Electron Devices, 2013, 60(1): 360 doi: 10.1109/TED.2012.2228202
[2]
Hardikar S, Souza M M D, Xu Y Z, et al. A novel double RESURF LDMOS for HVIC's. Microelectron J, 2004, 35(3): 305 doi: 10.1016/S0026-2692(03)00190-3
[3]
Hu X R, Zhang B, Luo X R, et al. Analytical models for the electric field distributions and breakdown voltage of triple RESURF SOI LDMOS. Solid State Electron, 2012, 69: 89 doi: 10.1016/j.sse.2011.12.010
[4]
Guo Y F, Yao J F, Zhang B, et al. Variation of lateral width technique in SOI high-voltage lateral double-diffused metal–oxide–semiconductor transistors using high-k dielectric. IEEE Electron Device Lett, 2015, 36(3): 262 doi: 10.1109/LED.2015.2393913
[5]
Li J H, Li P, Huo W R, et al. Analysis and fabrication of an LDMOS with high-permittivity dielectric. IEEE Electron Device Lett, 2011, 32(9): 1266 doi: 10.1109/LED.2011.2158383
[6]
Wang Y, Meng X F, Cui S F. Preliminary study and design for variation of lateral width SOI LDMOS device. Solid State Electron, 2016, 116: 65 doi: 10.1016/j.sse.2015.11.039
[7]
Guo Y, Wang Z, Sheu G, et al. A high performance silicon-on-insulator LDMOSTT using linearly increasing thickness techniques. Chin Phys Lett, 2010, 27(6): 179
[8]
Zhang S, Sin J K O, Lai T M L, et al. Numerical modeling of linear doping profiles for high-voltage thin-film SOI devices. IEEE Trans Electron Devices, 1999, 46(5): 1036 doi: 10.1109/16.760414
[9]
Yao J F, Guo Y F, Xia T, et al. 3D analytical model for the SOI LDMOS with alternating silicon and high-k dielectric pillars. Superlattices Microstruct, 2016, 96: 95 doi: 10.1016/j.spmi.2016.05.018
[10]
Zhang B, Zhang W, Li Z, et al. a novel vertical field plate lateral device with ultralow specific on-resistance. IEEE Trans Electron Devices, 2014, 61(2): 525 doi: 10.1109/TED.2013.2295091
[11]
Su L T, Chung J E, Antoniadis D A, et al. Measurement and modeling of self-heating effects in SOI nMOSFETs. International Electron Devices Meeting, 1992: 357
[12]
He P, Liu L, Tian L, et al. Measurement of thermal conductivity of buried oxides of silicon-on-insulator wafers fabricated by separation by implantation of oxygen technology. Appl Phys Lett, 2002, 81(10): 1896 doi: 10.1063/1.1506784
[13]
Nasri F, Echouchene F, Aissa M F B, et al. Investigation of self-heating effects in a 10-nm SOI-MOSFET with an insulator region using electrothermal modeling. IEEE Trans Electron Devices, 2015, 62(8): 2410 doi: 10.1109/TED.2015.2447212
[14]
Wang L, Brown A R, Nedjalkov M, et al. impact of self-heating on the statistical variability in bulk and SOI FinFETs. IEEE Trans Electron Devices, 2015, 62(7): 2106 doi: 10.1109/TED.2015.2436351
[15]
Makovejev S, Raskin J P, Arshad M K M, et al. Impact of self-heating and substrate effects on small-signal output conductance in UTBB SOI MOSFETs. Solid State Electron, 2012, 71(5): 93
[16]
Leung Y K, Suzuki Y, Goodson K E, et al. Self-heating effect in lateral DMOS on SOI. Proceedings of the 7th International Symposium on Power Semiconductor Devices and ICs, 1995: 136
[17]
Lun Z, Du G, Qin J, et al. Investigation of self-heating effect in SOI-LDMOS by device simulation. IEEE 11th International Conference on ICSICT, 2012: 1
[18]
Lim H T, Udrea F, Garner D M, et al. Modelling of self-heating effect in thin SOI and partial SOI LDMOS power devices. Solid State Electron, 1999, 43(7): 1267 doi: 10.1016/S0038-1101(99)00119-7
[19]
Park J M, Grasser T, Kosina H, et al. A numerical study of partial-SOI LDMOSFETs. Solid State Electron, 2003, 47(2): 275 doi: 10.1016/S0038-1101(02)00207-1
[20]
Roig J, Flores D, Rebollo J, et al. A 200 V silicon-on-sapphire LDMOS structure with a step oxide extended field plate. Solid State Electron, 2004, 48(2): 245 doi: 10.1016/S0038-1101(03)00314-9
[21]
Roig J, Flores D, Cortes I, et al. thin film soi and sos ldmos structures with linear doping profile and enlarged field plate. International Conference on Microelectronics, 2004, 1: 141
[22]
Nassif-Khalil S G, Salama C A T. Super-junction LDMOST on a silicon-on-sapphire substrate. IEEE Trans Electron Devices, 2003, 50(5): 1385 doi: 10.1109/TED.2003.813460
[23]
Pérez-Tomás A, Jennings M R, Davis M, et al. Characterization and modeling of n–n Si/SiC heterojunction diodes. J Appl Phys, 2007, 102(1): 014505 doi: 10.1063/1.2752148
[24]
Luo X R, Cai J Y, Fan Y, et al. Novel low-resistance current path UMOS with high-k dielectric pillars. IEEE Trans Electron Devices, 2013, 60(9): 2840 doi: 10.1109/TED.2013.2272086
[25]
Luo X R, Jiang Y H, Zhou K, et al. Ultralow specific on-resistance superjunction vertical DMOS with high-k dielectric pillar. IEEE Trans Electron Devices, 2012, 33(7): 1042 doi: 10.1109/LED.2012.2196969
[26]
Chen X, Huang M. A vertical power MOSFET with an interdigitated drift region using high-k insulator. IEEE Trans Electron Devices, 2012, 59(9): 2430 doi: 10.1109/TED.2012.2204890
[27]
Chen X. Super-junction voltage sustaining layer with alternating semiconductor and high-k dielectric regions. USA Patent, US7230 310, 2007
[28]
Baliga B J. Fundamentals of power semiconductor devices. New York: Springer, 2008
[29]
Xie K, Zhao J H, Flemish J R, et al. A high-current and high-temperature 6H-SiC thyristor. IEEE Electron Device Lett, 1996, 17(3): 142 doi: 10.1109/55.485194
[30]
Kurumi T, Araki R, Kinoshita H, et al. TEM observation of directly bonded interface between Si and SiC. 2012 IEEE International Meeting for Future of Electron Devices, 2012: 1
[31]
McDaid L J, Hall S, Mellor P H, et al. Physical origin of negative differential resistance in SOI transistors. Electron Lett, 1989, 25(13): 827 doi: 10.1049/el:19890557
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3396 Times PDF downloads: 58 Times Cited by: 0 Times

    History

    Received: 06 March 2018 Revised: 08 April 2018 Online: Uncorrected proof: 28 June 2018Published: 01 November 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Panpan Tang, Ying Wang, Xiongfei Meng, Sufen Cui. Investigation of the on-state behaviors of the variation of lateral width LDMOS device by simulation[J]. Journal of Semiconductors, 2018, 39(11): 114007. doi: 10.1088/1674-4926/39/11/114007 P P Tang, Y Wang, X F Meng, S F Cui, Investigation of the on-state behaviors of the variation of lateral width LDMOS device by simulation[J]. J. Semicond., 2018, 39(11): 114007. doi: 10.1088/1674-4926/39/11/114007.Export: BibTex EndNote
      Citation:
      Panpan Tang, Ying Wang, Xiongfei Meng, Sufen Cui. Investigation of the on-state behaviors of the variation of lateral width LDMOS device by simulation[J]. Journal of Semiconductors, 2018, 39(11): 114007. doi: 10.1088/1674-4926/39/11/114007

      P P Tang, Y Wang, X F Meng, S F Cui, Investigation of the on-state behaviors of the variation of lateral width LDMOS device by simulation[J]. J. Semicond., 2018, 39(11): 114007. doi: 10.1088/1674-4926/39/11/114007.
      Export: BibTex EndNote

      Investigation of the on-state behaviors of the variation of lateral width LDMOS device by simulation

      doi: 10.1088/1674-4926/39/11/114007
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 61774052) and the Excellent Youth Foundation of Zhe-jiang Province of China (No. LR17F040001).

      More Information
      • Corresponding author: Email: wangying7711@yahoo.com
      • Received Date: 2018-03-06
      • Revised Date: 2018-04-08
      • Published Date: 2018-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return