J. Semicond. > Volume 39 > Issue 7 > Article Number: 071005

A review: crystalline silicon membranes over sealed cavities for pressure sensors by using silicon migration technology

Jiale Su 1, 2, , Xinwei Zhang 2, , Guoping Zhou 2, , Changfeng Xia 2, , Wuqing Zhou 2, and Qing'an Huang 1, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: A silicon pressure sensor is one of the very first MEMS components appearing in the microsystem area. The market for the MEMS pressure sensor is rapidly growing due to consumer electronic applications in recent years. Requirements of the pressure sensors with low cost, low power consumption and high accuracy drive one to develop a novel technology. This paper first overviews the historical development of the absolute pressure sensor briefly. It then reviews the state of the art technology for fabricating crystalline silicon membranes over sealed cavities by using the silicon migration technology in detail. By using only one lithographic step, the membranes defined in lateral and vertical dimensions can be realized by the technology. Finally, applications of MEMS through using the silicon migration technology are summarized.

Key words: silicon migrationsilicon on nothingpressure sensorsdeep reactive ion etching

Abstract: A silicon pressure sensor is one of the very first MEMS components appearing in the microsystem area. The market for the MEMS pressure sensor is rapidly growing due to consumer electronic applications in recent years. Requirements of the pressure sensors with low cost, low power consumption and high accuracy drive one to develop a novel technology. This paper first overviews the historical development of the absolute pressure sensor briefly. It then reviews the state of the art technology for fabricating crystalline silicon membranes over sealed cavities by using the silicon migration technology in detail. By using only one lithographic step, the membranes defined in lateral and vertical dimensions can be realized by the technology. Finally, applications of MEMS through using the silicon migration technology are summarized.

Key words: silicon migrationsilicon on nothingpressure sensorsdeep reactive ion etching



References:

[1]

Tufte O N, Chapman P W, Lond D. Silicon diffused element piezoresistive diaphragm. J Appl Phys. 1962, 33(11): 3322

[2]

Ding W B. Market & Technology report–MEMS pressure sensor. Yole Développement, 2013

[3]

Wang Z H, Hei Y, Zhu Z M. Preface to the special topic on devices and circuits for wearable and IoT systems. J Semicond, 2017, 38(10): 101001

[4]

Barlian A A, Park W T, Mallon J R, et al. Review: semiconductor piezoresistance for microsystems. Proc IEEE, 2009, 97(3): 513

[5]

Petersen K E. Silicon as a mechanical material. Proc IEEE, 1982, 70(5): 420

[6]

Eaton W P, Smith J H. Micromachined pressure sensors: review and recent developments. Smart Mater Struct, 1997, 6(5): 530

[7]

Esashi M, Sugiyama S, Ikeda K, et al. Vacuum-sealed silicon micromachined pressure sensors. Proc IEEE, 1998, 86(8): 1627

[8]

Schmidt M A. Wafer-to-wafer bonding for microstructure formation. Proc IEEE, 1998, 86(8): 1575

[9]

Renard S. Industrial MEMS on SOI. J Micromechan Microeng, 2000, 10(2): 245

[10]

Zhao X F, Li D D, Yu Y, et al. Temperature characteristics research of SOI pressure sensor based on asymmetric base region transistor. J Semicond, 2017, 38(7): 074008

[11]

Armbruster S, Schafer F, Lammel G, et al. A novel micromachining process for the fabrication of monocrystalline Si-membranes using porous silicon. 12th International Conference on Solid-State Sensors, Actuators and Microsystems, 2003: 246

[12]

Knese K, Armbruster S, Weber H, et al. Novel technology for capacitive pressure sensors with monocrystalline silicon membranes. 22nd IEEE International Conference on MEMS, 2009: 697

[13]

Xu G B, Xi Y, Chen X, et al. Application research on the sensitivity of porous silicon. J Semicond, 2017, 38(9): 094003

[14]

Wang J C and Li X. Single-side fabricated pressure sensors for IC-foundry-compatible, high-yield, and low-cost volume production. IEEE Electron Device Lett, 2011, 32(7): 979

[15]

Jurczak M, Skotnicki T, and Paoli M, et al. SON (silicon on nothing) – an innovative process for advanced CMOS. IEEE Trans Electron Devices, 2000, 47(11): 2179

[16]

Sato T, Mitsutake K, Mizushima I, et al. Microstructure transformation of silicon: A newly developed transformation technology for patterning silicon surface using the surface migration of silicon atoms by hydrogen annealing. Jpn J Appl Phys, 2000, 39(9A): 5033

[17]

Mizushima I, Sato T, Taniguchi S, et al. Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure. Appl Phys Lett, 2000, 77(20): 3290

[18]

De Sagazan O, Denoual M, Guil P, et al. Horizontal buried channels in monocristalline silicon, 17th IEEE International Conference on MEMS, 2004: 661

[19]

Ghannam M Y, Alomar A S, Poortmans J, et al. Interpretation of macropore shape transformation in crystalline silicon upon high temperature processing, J Appl Phys, 2010, 108(7): 074902

[20]

Sudoh K, Iwasaki H, Kuribayashi H, et al. Numerical study on shape transformation of silicon trenches by high-temperature hydrogen annealing. Jpn J Appl Phys, 2004, 43(9A): 5937

[21]

Sudoh K, Iwasaki H, Hiruta R, et al. Void shape evolution and formation of silicon-on-nothing structures during hydrogen annealing of hole arrays on Si(001). J Appl Phys, 2009, 105(8): 083536

[22]

Sudoh K, Hiruta R, Kuribayashi H. Shape evolution of high aspect ratio holes on Si(001) during hydrogen annealing. J Appl Phys, 2013, 114(18): 183512

[23]

Sato T, Mizushima I, Taniguchi S, et al. Fabrication of silicon-on-nothing structure by substrate engineering using the empty-space-in-silicon formation technique. Jpn J Appl Phys, 2004, 43(1): 12

[24]

Depauw V, Gordon I, Beaucarne G. Large-area monocrystalline silicon thin films by annealing of macroporous arrays: understanding and tackling defects in the material. J Appl Phys, 2009, 106(3): 033516

[25]

Hao X C, Tanaka S, Masuda A, et al. Application of silicon on nothing structure for developing a novel capacitive absolute pressure sensor. IEEE Sens J, 2014, 14(3): 808

[26]

Zeng F, Wong M. A self-scanned active-matrix tactile sensor realized using silicon-migration technology. J Microelectromechan Syst, 2015, 24(3): 677

[27]

Hiruta R, Kuribayashi H, Shimizu R, et al. Flattening of micro-structured Si surfaces by hydrogen annealing. Appl Surf Sci, 2006, 252(15): 5279

[28]

Sudoh K, Nakamura J, Naito M, et al. Formation of silicon-on-nothing structures with extremely flat surfaces, Jpn J Appl Phys, 2013, 52(7): 075601

[29]

Bopp M, Coronel P, Bustos J, et al. Silicon nanostructuring for 3D bulk silicon versatile devices. Microelectron Eng, 2009, 86(4–6): 885

[30]

Wong Y P, Bregman J, Solgaard O. Monolithic silicon-on-nothing photonic crystal pressure sensor. 19th International Conference on Solid-State Sensors, Actuators and Microsystems, 2017: 1963

[31]

Kim J, Song J, Kim K, et al. Hollow microtube resonators via silicon self-assembly toward subattogram mass sensing applications. Nano Lett, 2016, 16(3): 1537

[32]

Park S, Lee Y H, Wi J S, et al. A semitransparent and flexible single crystal Si thin film: silicon on nothing (SON) revisited. ACS Appl Mater Interfaces, 2016, 8(29): 18962

[33]

Dross F, Baert K, Bearda T, et al. Crystalline thin-foil silicon solar cells: where crystalline quality meets thin-film processing. Progress in Photovoltaics, 2012, 20(6): 770

[1]

Tufte O N, Chapman P W, Lond D. Silicon diffused element piezoresistive diaphragm. J Appl Phys. 1962, 33(11): 3322

[2]

Ding W B. Market & Technology report–MEMS pressure sensor. Yole Développement, 2013

[3]

Wang Z H, Hei Y, Zhu Z M. Preface to the special topic on devices and circuits for wearable and IoT systems. J Semicond, 2017, 38(10): 101001

[4]

Barlian A A, Park W T, Mallon J R, et al. Review: semiconductor piezoresistance for microsystems. Proc IEEE, 2009, 97(3): 513

[5]

Petersen K E. Silicon as a mechanical material. Proc IEEE, 1982, 70(5): 420

[6]

Eaton W P, Smith J H. Micromachined pressure sensors: review and recent developments. Smart Mater Struct, 1997, 6(5): 530

[7]

Esashi M, Sugiyama S, Ikeda K, et al. Vacuum-sealed silicon micromachined pressure sensors. Proc IEEE, 1998, 86(8): 1627

[8]

Schmidt M A. Wafer-to-wafer bonding for microstructure formation. Proc IEEE, 1998, 86(8): 1575

[9]

Renard S. Industrial MEMS on SOI. J Micromechan Microeng, 2000, 10(2): 245

[10]

Zhao X F, Li D D, Yu Y, et al. Temperature characteristics research of SOI pressure sensor based on asymmetric base region transistor. J Semicond, 2017, 38(7): 074008

[11]

Armbruster S, Schafer F, Lammel G, et al. A novel micromachining process for the fabrication of monocrystalline Si-membranes using porous silicon. 12th International Conference on Solid-State Sensors, Actuators and Microsystems, 2003: 246

[12]

Knese K, Armbruster S, Weber H, et al. Novel technology for capacitive pressure sensors with monocrystalline silicon membranes. 22nd IEEE International Conference on MEMS, 2009: 697

[13]

Xu G B, Xi Y, Chen X, et al. Application research on the sensitivity of porous silicon. J Semicond, 2017, 38(9): 094003

[14]

Wang J C and Li X. Single-side fabricated pressure sensors for IC-foundry-compatible, high-yield, and low-cost volume production. IEEE Electron Device Lett, 2011, 32(7): 979

[15]

Jurczak M, Skotnicki T, and Paoli M, et al. SON (silicon on nothing) – an innovative process for advanced CMOS. IEEE Trans Electron Devices, 2000, 47(11): 2179

[16]

Sato T, Mitsutake K, Mizushima I, et al. Microstructure transformation of silicon: A newly developed transformation technology for patterning silicon surface using the surface migration of silicon atoms by hydrogen annealing. Jpn J Appl Phys, 2000, 39(9A): 5033

[17]

Mizushima I, Sato T, Taniguchi S, et al. Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure. Appl Phys Lett, 2000, 77(20): 3290

[18]

De Sagazan O, Denoual M, Guil P, et al. Horizontal buried channels in monocristalline silicon, 17th IEEE International Conference on MEMS, 2004: 661

[19]

Ghannam M Y, Alomar A S, Poortmans J, et al. Interpretation of macropore shape transformation in crystalline silicon upon high temperature processing, J Appl Phys, 2010, 108(7): 074902

[20]

Sudoh K, Iwasaki H, Kuribayashi H, et al. Numerical study on shape transformation of silicon trenches by high-temperature hydrogen annealing. Jpn J Appl Phys, 2004, 43(9A): 5937

[21]

Sudoh K, Iwasaki H, Hiruta R, et al. Void shape evolution and formation of silicon-on-nothing structures during hydrogen annealing of hole arrays on Si(001). J Appl Phys, 2009, 105(8): 083536

[22]

Sudoh K, Hiruta R, Kuribayashi H. Shape evolution of high aspect ratio holes on Si(001) during hydrogen annealing. J Appl Phys, 2013, 114(18): 183512

[23]

Sato T, Mizushima I, Taniguchi S, et al. Fabrication of silicon-on-nothing structure by substrate engineering using the empty-space-in-silicon formation technique. Jpn J Appl Phys, 2004, 43(1): 12

[24]

Depauw V, Gordon I, Beaucarne G. Large-area monocrystalline silicon thin films by annealing of macroporous arrays: understanding and tackling defects in the material. J Appl Phys, 2009, 106(3): 033516

[25]

Hao X C, Tanaka S, Masuda A, et al. Application of silicon on nothing structure for developing a novel capacitive absolute pressure sensor. IEEE Sens J, 2014, 14(3): 808

[26]

Zeng F, Wong M. A self-scanned active-matrix tactile sensor realized using silicon-migration technology. J Microelectromechan Syst, 2015, 24(3): 677

[27]

Hiruta R, Kuribayashi H, Shimizu R, et al. Flattening of micro-structured Si surfaces by hydrogen annealing. Appl Surf Sci, 2006, 252(15): 5279

[28]

Sudoh K, Nakamura J, Naito M, et al. Formation of silicon-on-nothing structures with extremely flat surfaces, Jpn J Appl Phys, 2013, 52(7): 075601

[29]

Bopp M, Coronel P, Bustos J, et al. Silicon nanostructuring for 3D bulk silicon versatile devices. Microelectron Eng, 2009, 86(4–6): 885

[30]

Wong Y P, Bregman J, Solgaard O. Monolithic silicon-on-nothing photonic crystal pressure sensor. 19th International Conference on Solid-State Sensors, Actuators and Microsystems, 2017: 1963

[31]

Kim J, Song J, Kim K, et al. Hollow microtube resonators via silicon self-assembly toward subattogram mass sensing applications. Nano Lett, 2016, 16(3): 1537

[32]

Park S, Lee Y H, Wi J S, et al. A semitransparent and flexible single crystal Si thin film: silicon on nothing (SON) revisited. ACS Appl Mater Interfaces, 2016, 8(29): 18962

[33]

Dross F, Baert K, Bearda T, et al. Crystalline thin-foil silicon solar cells: where crystalline quality meets thin-film processing. Progress in Photovoltaics, 2012, 20(6): 770

[1]

Peng Yinqiao, Zhou Jicheng, Long Sirui, Zhou Hongguang. NiCr Nanometer thin film for pressure sensors. J. Semicond., 2003, 24(S1): 91.

[2]

Lin Du, Shengrui Xu, Ying Wang, ling Lü, Jincheng Zhang, Yue Hao. Investigation of etching method for fabricating deep through holes on ultra-highresistivity silicon. J. Semicond., 2017, 38(5): 056002. doi: 10.1088/1674-4926/38/5/056002

[3]

Chen Shan, Pan Tianhong, Li Zhengming, Jang Shi-Shang. Statistical key variable analysis and model-based control for improvement performance in a deep reactive ion etching process. J. Semicond., 2012, 33(6): 066002. doi: 10.1088/1674-4926/33/6/066002

[4]

Wang Jing, Liang Renrong, Xu Yang, Liu Zhihong, Xu Jun, Qian Peixin. Fabrication of Strained Silicon Using Reduced Pressure Chemical Vapor Deposition Process. J. Semicond., 2006, 27(13): 179.

[5]

Ma Ziwen, Tang Zirong, Liao Guanglan, Shi Tielin, Nie Lei. Pressure-Free Localized Laser Bonding for Silicon and Glass. J. Semicond., 2007, 28(2): 217.

[6]

Huixin Zhang, Yingping Hong, Binger Ge, Ting Liang, Jijun Xiong. A readout system for passive pressure sensors. J. Semicond., 2013, 34(12): 125006. doi: 10.1088/1674-4926/34/12/125006

[7]

Jing Xiaocheng, Yao Ruohe, Lin Yushu. Magnetic Field Optimization of a Reactive Ion Etching Device with Magnetic Containment. J. Semicond., 2006, 27(13): 422.

[8]

Z. Mouffak, A. Bensaoula, L. Trombetta. A photoluminescence study of plasma reactive ion etching-induced damage in GaN. J. Semicond., 2014, 35(11): 113003. doi: 10.1088/1674-4926/35/11/113003

[9]

Lou Lifei, Yang Yintang, Li Yuejin, Zhang Ping. Structural Design and Testing of Silicon-Based PZT Thin Film Micro-Sensors. J. Semicond., 2007, 28(5): 778.

[10]

Luo Yimin, Chen Zhenhua, Chen Ding. Planar nucleation and crystallization in the annealing processof ion implanted silicon. J. Semicond., 2010, 31(8): 083001. doi: 10.1088/1674-4926/31/8/083001

[11]

Long Yongfu. Radial microstructure and optical properties of a porous silicon layer by pulse anodic etching. J. Semicond., 2011, 32(4): 043003. doi: 10.1088/1674-4926/32/4/043003

[12]

Zhao Liwei, Liu Caichi, Teng Xiaoyun, Hao Qiuyan, Zhu Junshan, Sun Shilong, Wang Haiyun, Xu Yuesheng, Feng Yuchun, Guo Baoping. Light-Assisted Wet Etching of Dislocations in GaN Grown on Silicon. J. Semicond., 2006, 27(6): 1046.

[13]

Xing Yan, Zhu Peng, Yi Hong, Tang Wencheng. Monte Carlo Simulation for the Surface Morphology of Anisotropic Etching of Crystalline Silicon. J. Semicond., 2008, 29(10): 2027.

[14]

Huo Mingxue, Tang Xiaochuan, Yin Liang, LiuXiaowei, Wang Xilian. Fabrication of Self-Testable Pressure Sensors Based on Phase Change. J. Semicond., 2006, 27(5): 937.

[15]

Jianjie Wu, Jinyang Li, Yanqing Yao, Zhimei Qi. Reactive ion etching of Ti-diffused LiNbO3 slab waveguides. J. Semicond., 2013, 34(8): 086001. doi: 10.1088/1674-4926/34/8/086001

[16]

Gong Yibin, Dai Pengfei, Gao Anran, Li Tie, Zhou Ping, Wang Yuelin. In situ nanoscale refinement by highly controllable etching of the (111) silicon crystal plane and its influence on the enhanced electrical property of a silicon nanowire. J. Semicond., 2011, 32(12): 123003. doi: 10.1088/1674-4926/32/12/123003

[17]

Wang Guozheng, Chen Li, Qin Xulei, Wang Ji, Wang Yang, Fu Shencheng, Duanmu Qingduo. Influence of etching current density on the morphology of macroporous silicon arrays by photo-electrochemical etching. J. Semicond., 2010, 31(7): 074011. doi: 10.1088/1674-4926/31/7/074011

[18]

Xiyuan Wang, Yongguang Huang, Dewei Liu, Xiaoning Zhu, Xiao Cui, Hongliang Zhu. Formation of single crystalline tellurium supersaturated silicon pn junctions by ion implantation followed by pulsed laser melting. J. Semicond., 2013, 34(6): 063001. doi: 10.1088/1674-4926/34/6/063001

[19]

Yehua Chen, Xia An, Weikang Wu, Yao Zhang, Jingjing Liu, Xing Zhang, Ru Huang. Heavy ion induced electrical property degradation in sub-100 nm bulk silicon MOS devices. J. Semicond., 2015, 36(11): 114002. doi: 10.1088/1674-4926/36/11/114002

[20]

Zhao Zhigang, Guo Jinchuan, Lei Yaohu, Niu Hanben. Photoelectrochemical etching of uniform macropore array on full 5-inch silicon wafers. J. Semicond., 2010, 31(7): 076001. doi: 10.1088/1674-4926/31/7/076001

Search

Advanced Search >>

GET CITATION

J L Su, X W Zhang, G P Zhou, C F Xia, W Q Zhou, Q A Huang, A review: crystalline silicon membranes over sealed cavities for pressure sensors by using silicon migration technology[J]. J. Semicond., 2018, 39(7): 071005. doi: 10.1088/1674-4926/39/7/071005.

Export: BibTex EndNote

Article Metrics

Article views: 2080 Times PDF downloads: 122 Times Cited by: 0 Times

History

Manuscript received: 15 October 2017 Manuscript revised: 12 December 2017 Online: Accepted Manuscript: 04 April 2018 Uncorrected proof: 12 April 2018 Published: 01 July 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误