ARTICLES

Transparent conductive stannic oxide coatings employing an ultrasonic spray pyrolysis technique: The relevance of the molarity content in the aerosol solution for improvement the electrical properties

L. Castañeda

+ Author Affiliations

 Corresponding author: L. Castañeda, lcastaneda@ipn.mx

PDF

Turn off MathJax

Abstract: Highly transparent conductive stoichiometric nanocrystalline stannic oxide coatings were deposited onto Corning® EAGLE XG® slim glass substrates. Including each coating, it was deposited for various concentrations in the aerosol solution with the substrate temperature maintained at 623.15 K by an ultrasonic spray pyrolysis (USP) technique. Nitrogen was employed both as the solution carrier in addition to aerosol directing gas, maintaining its flow rates at 3500.0 and 500.0 mL/min, respectively. The coatings were polycrystalline, with preferential growth along the stannic oxide (112) plane, irrespective of the molarity content in the spray solution. The coating prepared at 0.2 M, a concentration in the aerosol solution, showed an average transmission of 60% in the visible light region spectrum with a maximum conductivity of 24.86 S/cm. The coatings deposited exhibited in the general photoluminescence spectrum emission colors of green, greenish white, and bluish white calculated on the intensities of the excitonic and oxygen vacancy defect level emissions.

Key words: stannic oxidecoatingsultrasonic spray pyrolysis



[1]
Castañeda L. Present status of the development and application of transparent conductors oxide thin solid films. Mater Sci Appl, 2011, 2, 1233 doi: 10.4236/msa.2011.29167
[2]
Yuliarto. Study of porous nanoflake ZnO for dye-sensitized solar cell application. Am J Eng Appl Sci, 2009, 2, 236 doi: 10.3844/ajeassp.2009.236.240
[3]
Castañeda L, Avendaño-Alejo M. Physical characterization of nickel-doped zinc oxide thin solid films deposited by the ultrasonic chemically sprayed technique: Gas-sensing performance in a propane atmosphere. J Nanoelectron Optoelectron, 2014, 9, 419 doi: 10.1166/jno.2014.1610
[4]
Castañeda L, Maldonado A, Rodríguez-Baez J, et al. Chemical spray pyrolysis deposited fluorine-doped zinc oxide thin films: Effect of acetic acid content in the starting solution on the physical properties. Mater Sci Semicond Process, 2012, 15, 232 doi: 10.1016/j.mssp.2011.06.002
[5]
Castañeda L, Morales-Saavedra O G, Acosta D R, et al. Structural, morphological, optical, and nonlinear optical properties of fluorine-doped zinc oxide thin films deposited on glass substrates by the chemical spray technique. Phys Status Solidi A, 2006, 203, 1971 doi: 10.1002/pssa.200521386
[6]
Suchea M, Christoulakis S, Moschovis K, et al. ZnO transparent thin films for gas sensor applications. Thin Solid Films, 2006, 515, 551 doi: 10.1016/j.tsf.2005.12.295
[7]
Castañeda L. Evaluating propane sensing properties of ultrasonic spray deposited zinc oxide thin solid films. J Nanoelectron Optoelectron, 2018, 13, 819 doi: 10.1166/jno.2018.2315
[8]
Hussain S, Liu T M, Aslam N, et al. Polymer-assisted co-axial multi-layered circular ZnO nanodisks. Mater Lett, 2015, 152, 260 doi: 10.1016/j.matlet.2015.03.124
[9]
Hussain S, Liu T M, Kashif M, et al. A simple preparation of ZnO nanocones and exposure to formaldehyde. Mater Lett, 2014, 128, 35 doi: 10.1016/j.matlet.2014.04.115
[10]
Castañeda L. The effects of warmness plasma, and high frequency electrical field on beam-1 plasma interaction in plasma waveguide. J Comput Theor Nanosci, 2018, 15, 1830 doi: 10.1166/jctn.2018.7318
[11]
Girtan M, Rusu G G, Dabos-Seignon S, et al. Structural and electrical properties of zinc oxides thin films prepared by thermal oxidation. Appl Surf Sci, 2008, 254, 4179 doi: 10.1016/j.apsusc.2007.12.055
[12]
Lee J S, Islam M S, Kim S. Photoresponses of ZnO nanobridge devices fabricated using a single-step thermal evaporation method. Sens Actuators B, 2007, 126, 73 doi: 10.1016/j.snb.2006.10.042
[13]
Castañeda L, Avendaño-Alejo M, Gómez H, et al. Physical characterization of ruthenium-doped zinc oxide thin solid films deposited by the sol–gel technique: Gas-sensing performance in a propane atmosphere. Sen Lett, 2013, 11, 286 doi: 10.1166/sl.2013.2721
[14]
Castañeda L. Synthesis and characterization of ZnO micro- and nano-cages. Acta Mater, 2009, 57, 1385 doi: 10.1016/j.actamat.2008.11.022
[15]
Ku C H, Wu J J. Chemical bath deposition of ZnO nanowire–nanoparticle composite electrodes for use in dye-sensitized solar cells. Nanotechnology, 2007, 18, 505706 doi: 10.1088/0957-4484/18/50/505706
[16]
Castañeda L. Photoluminescence and morphological characterization of silver-doped zinc oxide novel nanostructures obtained by ultrasonic spray pyrolysis. J Nanoelectron Optoelectron, 2013, 8, 373 doi: 10.1166/jno.2013.1475
[17]
Warren B E. X-ray diffraction. New York: Dover Publications, 1990, 253
[18]
Castañeda L, Torres-Torres C, Trejo-Valdez M, et al. Optical and photoconductive properties exhibited by silver doped zinc oxide thin films. J Nanoelectron Optoelectron, 2013, 8, 267 doi: 10.1166/jno.2013.1465
[19]
Barret C. Massalki T B. Structure of metals. Oxford: Pergamon Press, 1980, 73
[20]
Park S. Enhancement of hydrogen sensing response of ZnO nanowires for the decoration of WO3 nanoparticles. Mater Lett, 2019, 234, 315 doi: 10.1016/j.matlet.2018.09.129
[21]
Aziz A, Tiwale N, Hodge S A, et al. Core-shell electrospun polycrystalline ZnO nanofibers for ultra-sensitive NO2 gas sensing. ACS Appl Mater Interfaces, 2018, 10, 43817 doi: 10.1021/acsami.8b17149
[22]
Jeem M, Zhang L H, Ishioka J, et al. Tuning optoelectrical properties of ZnO nanorods with excitonic defects via submerged illumination. Nano Lett, 2017, 17, 2088 doi: 10.1021/acs.nanolett.7b00324
[23]
Zhu R, Zhang W G, Li C, et al. Uniform zinc oxide nanowire arrays grown on nonepitaxial surface with general orientation control. Nano Lett, 2013, 13, 5171 doi: 10.1021/nl402476u
[24]
Zhai T Y, Li L, Ma Y, et al. One-dimensional inorganic nanostructures: Synthesis, field-emission and photodetection. Chem Soc Rev, 2011, 40, 2986 doi: 10.1039/c0cs00126k
[25]
Ding J N, Zhou Y R, Dong G Q, et al. Solution-processed ZnO as the efficient passivation and electron selective layer of silicon solar cells. Prog Photovolt: Res Appl, 2018, 26, 974 doi: 10.1002/pip.3044
[26]
Chen P L, Ma X Y, Yang D R. Ultraviolet electroluminescence from ZnO/p-Si heterojunctions. J Appl Phys, 2007, 101, 053103 doi: 10.1063/1.2464185
Fig. 1.  Crystal structure and coordination polyhedron of the stannic oxide (cassiterite).

Fig. 2.  (Color online) Illustration of the experimental method employed for the deposition process of the stannic oxide coatings by the USP.

Fig. 3.  (Color online) (a) XRD patterns and (b) Williamson–Hall plot of the as grown samples.

Fig. 4.  Scanning electron microscope images of the stannic oxide coatings for different molarities (a) 0.05 M, (b) 0.15 M, (c) 0.20 M and (d) 0.30 M.

Fig. 5.  (Color online) (a) Variation of thickness and roughness of coatings with doping and (b) variation of refractive index and extinction coefficient of films at 632.8 nm with doping concentration.

Fig. 6.  (Color online) (a) Transmission spectra and (b) Tauc plot of pristine SnO2 coatings.

Fig. 7.  (Color online) (a) Photoluminescence spectra and (b) Commission Internationale de l'éclairage (CIE) diagram of the SnO2 coatings for different molarities.

Fig. 8.  (Color online) (a) Variation of conductivity, and mobility with molarity of aerosol solution and (b) Arrhenius plot of SnO2 coating from 0.2 M in the aerosol solution.

Fig. 9.  Transient photoconductivity of as grown SnO2 coatings for different molarities (a) 0.05 M, (b) 0.15 M, (c) 0.20 M and (d) 0.30 M.

Table 1.   Crystallite size, dislocation density, and lattice strain of SnO2 coatings for different molarities.

Molarity (M)Crystallite size (nm)Dislocation density (1015
line/m2)
Lattice strain (a.u.)
From Eq. (1)From Fig. 3(b)
0.0516.0217.143.890.07
0.1516.1816.383.810.09
0.220.5320.102.37–0.48
0.320.8820.742.29–0.05
DownLoad: CSV

Table 2.   Texture coefficient (TC) of each (hkl) plane.

(hkl)TC of Sample 1 (0.05 M)TC of Sample 2 (0.15 M)TC of Sample 3 (0.20 M)TC of Sample 4 (0.30 M)
(112)1.711.661.411.66
(006)1.041.101.051.09
(122)0.490.4950.690.540
(118)0.750.7330.8260.698
DownLoad: CSV

Table 3.   Ellipsometry and profilometry analysis of SnO2 coatings for different molarities.

Molarity (M)Thickness (nm)Roughness (nm)Mean square errorRefractive indexExtinction coefficient
0.05703.565.141.73010.2741
0.151004.224.871.73670.1334
0.201336.123.991.74120.1567
0.301508.634.571.76190.1159
DownLoad: CSV

Table 5.   Electrical proprieties of the stannic oxide coatings.

Molarity (M)Carrier concentration (1019 cm–3)Resistivity
(10–2 Ω·cm)
Conductivity (S/cm)Mobility (cm2/(V·s))
0.051.0398.4411.806.7
0.152.0614.5122.207.1
0.202.9894.0324.865.2
0.303.0124.3423.034.7
DownLoad: CSV

Table 4.   CIE coordinates of samples from various molarity of the aerosol solution.

Molarity (M)CIE CoordinatesEmission colour
0.05x = 0.278, y = 0.369Green
0.15x = 0.286, y = 0.365Green
0.20X = 0.273, y = 0.327Bluish white
0.30X = 0.297, y = 0.359Greenish white
DownLoad: CSV
[1]
Castañeda L. Present status of the development and application of transparent conductors oxide thin solid films. Mater Sci Appl, 2011, 2, 1233 doi: 10.4236/msa.2011.29167
[2]
Yuliarto. Study of porous nanoflake ZnO for dye-sensitized solar cell application. Am J Eng Appl Sci, 2009, 2, 236 doi: 10.3844/ajeassp.2009.236.240
[3]
Castañeda L, Avendaño-Alejo M. Physical characterization of nickel-doped zinc oxide thin solid films deposited by the ultrasonic chemically sprayed technique: Gas-sensing performance in a propane atmosphere. J Nanoelectron Optoelectron, 2014, 9, 419 doi: 10.1166/jno.2014.1610
[4]
Castañeda L, Maldonado A, Rodríguez-Baez J, et al. Chemical spray pyrolysis deposited fluorine-doped zinc oxide thin films: Effect of acetic acid content in the starting solution on the physical properties. Mater Sci Semicond Process, 2012, 15, 232 doi: 10.1016/j.mssp.2011.06.002
[5]
Castañeda L, Morales-Saavedra O G, Acosta D R, et al. Structural, morphological, optical, and nonlinear optical properties of fluorine-doped zinc oxide thin films deposited on glass substrates by the chemical spray technique. Phys Status Solidi A, 2006, 203, 1971 doi: 10.1002/pssa.200521386
[6]
Suchea M, Christoulakis S, Moschovis K, et al. ZnO transparent thin films for gas sensor applications. Thin Solid Films, 2006, 515, 551 doi: 10.1016/j.tsf.2005.12.295
[7]
Castañeda L. Evaluating propane sensing properties of ultrasonic spray deposited zinc oxide thin solid films. J Nanoelectron Optoelectron, 2018, 13, 819 doi: 10.1166/jno.2018.2315
[8]
Hussain S, Liu T M, Aslam N, et al. Polymer-assisted co-axial multi-layered circular ZnO nanodisks. Mater Lett, 2015, 152, 260 doi: 10.1016/j.matlet.2015.03.124
[9]
Hussain S, Liu T M, Kashif M, et al. A simple preparation of ZnO nanocones and exposure to formaldehyde. Mater Lett, 2014, 128, 35 doi: 10.1016/j.matlet.2014.04.115
[10]
Castañeda L. The effects of warmness plasma, and high frequency electrical field on beam-1 plasma interaction in plasma waveguide. J Comput Theor Nanosci, 2018, 15, 1830 doi: 10.1166/jctn.2018.7318
[11]
Girtan M, Rusu G G, Dabos-Seignon S, et al. Structural and electrical properties of zinc oxides thin films prepared by thermal oxidation. Appl Surf Sci, 2008, 254, 4179 doi: 10.1016/j.apsusc.2007.12.055
[12]
Lee J S, Islam M S, Kim S. Photoresponses of ZnO nanobridge devices fabricated using a single-step thermal evaporation method. Sens Actuators B, 2007, 126, 73 doi: 10.1016/j.snb.2006.10.042
[13]
Castañeda L, Avendaño-Alejo M, Gómez H, et al. Physical characterization of ruthenium-doped zinc oxide thin solid films deposited by the sol–gel technique: Gas-sensing performance in a propane atmosphere. Sen Lett, 2013, 11, 286 doi: 10.1166/sl.2013.2721
[14]
Castañeda L. Synthesis and characterization of ZnO micro- and nano-cages. Acta Mater, 2009, 57, 1385 doi: 10.1016/j.actamat.2008.11.022
[15]
Ku C H, Wu J J. Chemical bath deposition of ZnO nanowire–nanoparticle composite electrodes for use in dye-sensitized solar cells. Nanotechnology, 2007, 18, 505706 doi: 10.1088/0957-4484/18/50/505706
[16]
Castañeda L. Photoluminescence and morphological characterization of silver-doped zinc oxide novel nanostructures obtained by ultrasonic spray pyrolysis. J Nanoelectron Optoelectron, 2013, 8, 373 doi: 10.1166/jno.2013.1475
[17]
Warren B E. X-ray diffraction. New York: Dover Publications, 1990, 253
[18]
Castañeda L, Torres-Torres C, Trejo-Valdez M, et al. Optical and photoconductive properties exhibited by silver doped zinc oxide thin films. J Nanoelectron Optoelectron, 2013, 8, 267 doi: 10.1166/jno.2013.1465
[19]
Barret C. Massalki T B. Structure of metals. Oxford: Pergamon Press, 1980, 73
[20]
Park S. Enhancement of hydrogen sensing response of ZnO nanowires for the decoration of WO3 nanoparticles. Mater Lett, 2019, 234, 315 doi: 10.1016/j.matlet.2018.09.129
[21]
Aziz A, Tiwale N, Hodge S A, et al. Core-shell electrospun polycrystalline ZnO nanofibers for ultra-sensitive NO2 gas sensing. ACS Appl Mater Interfaces, 2018, 10, 43817 doi: 10.1021/acsami.8b17149
[22]
Jeem M, Zhang L H, Ishioka J, et al. Tuning optoelectrical properties of ZnO nanorods with excitonic defects via submerged illumination. Nano Lett, 2017, 17, 2088 doi: 10.1021/acs.nanolett.7b00324
[23]
Zhu R, Zhang W G, Li C, et al. Uniform zinc oxide nanowire arrays grown on nonepitaxial surface with general orientation control. Nano Lett, 2013, 13, 5171 doi: 10.1021/nl402476u
[24]
Zhai T Y, Li L, Ma Y, et al. One-dimensional inorganic nanostructures: Synthesis, field-emission and photodetection. Chem Soc Rev, 2011, 40, 2986 doi: 10.1039/c0cs00126k
[25]
Ding J N, Zhou Y R, Dong G Q, et al. Solution-processed ZnO as the efficient passivation and electron selective layer of silicon solar cells. Prog Photovolt: Res Appl, 2018, 26, 974 doi: 10.1002/pip.3044
[26]
Chen P L, Ma X Y, Yang D R. Ultraviolet electroluminescence from ZnO/p-Si heterojunctions. J Appl Phys, 2007, 101, 053103 doi: 10.1063/1.2464185
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1266 Times PDF downloads: 30 Times Cited by: 0 Times

    History

    Received: 26 August 2021 Revised: 10 October 2021 Online: Accepted Manuscript: 20 December 2021Uncorrected proof: 28 December 2021Published: 01 February 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      L. Castañeda. Transparent conductive stannic oxide coatings employing an ultrasonic spray pyrolysis technique: The relevance of the molarity content in the aerosol solution for improvement the electrical properties[J]. Journal of Semiconductors, 2022, 43(2): 022802. doi: 10.1088/1674-4926/43/2/022802 L. Castañeda, Transparent conductive stannic oxide coatings employing an ultrasonic spray pyrolysis technique: The relevance of the molarity content in the aerosol solution for improvement the electrical properties[J]. J. Semicond., 2022, 43(2): 022802. doi: 10.1088/1674-4926/43/2/022802.Export: BibTex EndNote
      Citation:
      L. Castañeda. Transparent conductive stannic oxide coatings employing an ultrasonic spray pyrolysis technique: The relevance of the molarity content in the aerosol solution for improvement the electrical properties[J]. Journal of Semiconductors, 2022, 43(2): 022802. doi: 10.1088/1674-4926/43/2/022802

      L. Castañeda, Transparent conductive stannic oxide coatings employing an ultrasonic spray pyrolysis technique: The relevance of the molarity content in the aerosol solution for improvement the electrical properties[J]. J. Semicond., 2022, 43(2): 022802. doi: 10.1088/1674-4926/43/2/022802.
      Export: BibTex EndNote

      Transparent conductive stannic oxide coatings employing an ultrasonic spray pyrolysis technique: The relevance of the molarity content in the aerosol solution for improvement the electrical properties

      doi: 10.1088/1674-4926/43/2/022802
      More Information
      • Author Bio:

        L. Castañeda has worked in the field of preparation of semiconductor metal oxides in thin solid film, photoluminescence, optical properties of semiconductors and chemical sensing devices for different gases. He has published around one hundred papers in various international prestigious arbitration journals. He is editor-in-chief of six high-impact journals

      • Corresponding author: lcastaneda@ipn.mx
      • Received Date: 2021-08-26
      • Accepted Date: 2021-12-13
      • Revised Date: 2021-10-10
      • Published Date: 2022-02-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return