J. Semicond. > Volume 37 > Issue 5 > Article Number: 053002

Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction

Yamei Wu , Ruixia Yang , , Hanmin Tian and Shuai Chen

+ Author Affilications + Find other works by these authors

PDF

Abstract: Organic-inorganic hybrid perovskite CH3NH3PbI3 film is prepared on p-type silicon substrate using the one-step solution method to form a CH3NH3PbI3/p-Si heterojunction. The film morphology and structure are characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The photoelectric properties of the CH3NH3PbI3/p-Si heterojunction are studied by testing the current-voltage (I-V) with and without illumination and capacitance-voltage (C-V) characteristics. It turns out from the I-V curve without illumination that the CH3NH3PbI3/p-Si heterojunction has a rectifier feature with the rectification ratio over 70 at the bias of ± 5 V. Also, there appears a photoelectric conversion phenomenon on this heterojunction with a short circuit current (Im sc) of 0.16 μA and an open circuit voltage (Voc) of about 10 mV. The high frequency C-V characteristic of the Ag/CH3NH3PbI3/p-Si heterojunction turns out to be similar to that of the metal-insulator-semiconductor (MIS) structure, and a parallel translation of the C-V curve along the forward voltage axis is found. This parallel translation means the existence of defects at the CH3NH3PbI3/p-Si interface and positive fixed charges in the CH3NH3PbI3 layer. The defects at the interface of the CH3NH3PbI3/p-Si heterojunction result in the dramatic decline of the Voc. Besides, the C-V test of CH3NH3PbI3 film shows a non-linear dielectric property and the dielectric value is about 4.64 as calculated.

Key words: perovskite solar cellsheterojunctionCH3NH3PbI3/p-SiI-VC-V

Abstract: Organic-inorganic hybrid perovskite CH3NH3PbI3 film is prepared on p-type silicon substrate using the one-step solution method to form a CH3NH3PbI3/p-Si heterojunction. The film morphology and structure are characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The photoelectric properties of the CH3NH3PbI3/p-Si heterojunction are studied by testing the current-voltage (I-V) with and without illumination and capacitance-voltage (C-V) characteristics. It turns out from the I-V curve without illumination that the CH3NH3PbI3/p-Si heterojunction has a rectifier feature with the rectification ratio over 70 at the bias of ± 5 V. Also, there appears a photoelectric conversion phenomenon on this heterojunction with a short circuit current (Im sc) of 0.16 μA and an open circuit voltage (Voc) of about 10 mV. The high frequency C-V characteristic of the Ag/CH3NH3PbI3/p-Si heterojunction turns out to be similar to that of the metal-insulator-semiconductor (MIS) structure, and a parallel translation of the C-V curve along the forward voltage axis is found. This parallel translation means the existence of defects at the CH3NH3PbI3/p-Si interface and positive fixed charges in the CH3NH3PbI3 layer. The defects at the interface of the CH3NH3PbI3/p-Si heterojunction result in the dramatic decline of the Voc. Besides, the C-V test of CH3NH3PbI3 film shows a non-linear dielectric property and the dielectric value is about 4.64 as calculated.

Key words: perovskite solar cellsheterojunctionCH3NH3PbI3/p-SiI-VC-V



References:

[1]

Yang W S, Noh J H, Jeon N J. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234.

[2]

Guo X, Niu G, Wang L. Chemical stability issue and its research process of perovskite solar cells with high efficiency[J]. Acta Chimica Sinica, 2015, 73: 211.

[3]

Niu G, Li W, Meng F. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells[J]. J Mater Chem A, 2014, 2(3): 705.

[4]

Heo J H, Han H J, Kim D. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18[J]. Energy & Environmental Science, 2015, 8(5): 1602.

[5]

Habisreutinger S N, Leijtens T, Eperon G E. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells[J]. Nano Lett, 2014, 14(10): 5561.

[6]

Mei A, Li X, Liu L. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345(6194): 295.

[7]

Masuko K, Shigematsu M, Hashiguchi T. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell[J]. IEEE Journal of Photovoltaics, 2014, 4(6): 1433.

[8]

Stranks S D, Eperon G E, Grancini G. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341.

[9]

Xing G, Mathews N, Sun S. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344.

[10]

Zhou H, Chen Q, Li G. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542.

[11]

Kim H S, Lee C R, Im J H. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2(591): 1.

[12]

Wang Q, Shao Y, Xie H. Qualifying composition dependent p and n self-doping in CH3NH3PbI3[J]. Appl Phys Lett, 2014, 105(16): 163508.

[13]

Kim H S, Kim S K, Kim B J. Ferroelectric polarization in CH3NH3PbI3 perovskite[J]. The Journal of Phys Chem Lett, 2015, 6(9): 1729.

[14]

Tanaka K, Takahashi T, Ban T. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3[J]. Solid State Commun, 2003, 127(9/10): 619.

[1]

Yang W S, Noh J H, Jeon N J. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234.

[2]

Guo X, Niu G, Wang L. Chemical stability issue and its research process of perovskite solar cells with high efficiency[J]. Acta Chimica Sinica, 2015, 73: 211.

[3]

Niu G, Li W, Meng F. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells[J]. J Mater Chem A, 2014, 2(3): 705.

[4]

Heo J H, Han H J, Kim D. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18[J]. Energy & Environmental Science, 2015, 8(5): 1602.

[5]

Habisreutinger S N, Leijtens T, Eperon G E. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells[J]. Nano Lett, 2014, 14(10): 5561.

[6]

Mei A, Li X, Liu L. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345(6194): 295.

[7]

Masuko K, Shigematsu M, Hashiguchi T. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell[J]. IEEE Journal of Photovoltaics, 2014, 4(6): 1433.

[8]

Stranks S D, Eperon G E, Grancini G. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341.

[9]

Xing G, Mathews N, Sun S. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344.

[10]

Zhou H, Chen Q, Li G. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542.

[11]

Kim H S, Lee C R, Im J H. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2(591): 1.

[12]

Wang Q, Shao Y, Xie H. Qualifying composition dependent p and n self-doping in CH3NH3PbI3[J]. Appl Phys Lett, 2014, 105(16): 163508.

[13]

Kim H S, Kim S K, Kim B J. Ferroelectric polarization in CH3NH3PbI3 perovskite[J]. The Journal of Phys Chem Lett, 2015, 6(9): 1729.

[14]

Tanaka K, Takahashi T, Ban T. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3[J]. Solid State Commun, 2003, 127(9/10): 619.

[1]

Zhang Qunfang, Zhu Meifang, Liu Fengzhen, Zhou Yuqin. High-Efficiency n-nc-Si:H/p-c-Si Heterojunction Solar Cells. J. Semicond., 2007, 28(1): 96.

[2]

Xiaorang Tian, Peide Han, Guanchao Zhao, Rong Yang, Liwei Li, Yuan Meng, Ted Guo. Pyramid size control and morphology treatment for high-efficiency silicon heterojunction solar cells. J. Semicond., 2019, 40(3): 032703. doi: 10.1088/1674-4926/40/3/032703

[3]

Chao Xiong, Jin Xiao, Lei Chen, Wenhan Du, Weilong Xu, Dongdong Hou. Interfacial passivation of n-ZnO/p-Si heterojunction by CuI thin layer. J. Semicond., 2018, 39(12): 124013. doi: 10.1088/1674-4926/39/12/124013

[4]

Mingdong Yi, Ning Zhang, Linghai Xie, Wei Huang. Ambipolar organic heterojunction transistors based on F16CuPc/CuPc with a MoO3 buffer layer. J. Semicond., 2015, 36(10): 104001. doi: 10.1088/1674-4926/36/10/104001

[5]

Ying Wu, Jing Wang, Yunfang Huang, Yuelin Wei, Zhixian Sun, Xuanqing Zheng, Chengkun Zhang, Ningling Zhou, Leqing Fan, Jihuai Wu. Solvothermal synthesis of Bi2O3/BiVO4 heterojunction with enhanced visible-light photocatalytic performances. J. Semicond., 2016, 37(8): 083004. doi: 10.1088/1674-4926/37/8/083004

[6]

Fengjun Ye, Wenqiang Yang, Deying Luo, Rui Zhu, Qihuang Gong. Applications of cesium in the perovskite solar cells. J. Semicond., 2017, 38(1): 011003. doi: 10.1088/1674-4926/38/1/011003

[7]

Dan Han, Chenmin Dai, Shiyou Chen. Calculation studies on point defects in perovskite solar cells. J. Semicond., 2017, 38(1): 011006. doi: 10.1088/1674-4926/38/1/011006

[8]

Fengjuan Si, Fuling Tang, Hongtao Xue, Rongfei Qi. Effects of defect states on the performance of perovskite solar cells. J. Semicond., 2016, 37(7): 072003. doi: 10.1088/1674-4926/37/7/072003

[9]

Hu Yuehui, Zhang Xiangwen, Qu Minghao, Wang Lifu, Zeng Tao, Xie Yaojiang. Simulation analysis of the effects of a back surface field on a p-a-Si:H/n-c-Si/n+-a-Si:H heterojunction solar cell. J. Semicond., 2009, 30(6): 064006. doi: 10.1088/1674-4926/30/6/064006

[10]

Longhua Cai, Lusheng Liang, Jifeng Wu, Bin Ding, Lili Gao, Bin Fan. Large area perovskite solar cell module. J. Semicond., 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006

[11]

Guo Junfu, Xie Jiachun, Duan Li, He Guanghong, Lin Bixia, Fu Zhuxi. Study and Fabrication of a Au/n-ZnO/p-Si Structure UV-Enhanced Phototransistor. J. Semicond., 2006, 27(1): 5.

[12]

Dong Xin, Zhao Wang, Zhang Yuantao, Zhang Baolin, Li Xiangping, Du Guotong. MgZnO/ZnO p-n Heterojunctions Fabricated by MOCVD. J. Semicond., 2008, 29(7): 1338.

[13]

Liu Cihui, Yao Ran, Su Jianfeng, Ma Zeyu, Fu Zhuxi. Luminescence and Recombination Centers in ZnO/Si Films. J. Semicond., 2007, 28(2): 196.

[14]

Shaolan Li, Lichun Zhang. Improvement of the electroluminescence performance of ZnO nanorods/p-GaN light emitting diodes with a ZnO films interlayer. J. Semicond., 2013, 34(11): 114010. doi: 10.1088/1674-4926/34/11/114010

[15]

Zhu Yanyan, Xu Run, Chen Sheng, Fang Zebo, Xue Fei, Fan Yongliang, Jiang Zuimin. Epitaxial Growth of Er2O3 Films and Its Band Offsets on Si. J. Semicond., 2006, 27(S1): 411.

[16]

Hongbo Lu, Xinyi Li, Wei Zhang, Dayong Zhou, Mengqi Shi, Lijie Sun, Kaijian Chen. A 2.05 eV AlGaInP sub-cell used in next generation solar cells. J. Semicond., 2014, 35(9): 094010. doi: 10.1088/1674-4926/35/9/094010

[17]

Dong Wang, Yue Chang, Shuping Pang, Guanglei Cui. The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature. J. Semicond., 2017, 38(1): 014002. doi: 10.1088/1674-4926/38/1/014002

[18]

Suzhen Wu, Zanhong Deng, Weiwei Dong, Jingzhen Shao, Xiaodong Fang. Fabrication and electrical properties of p-CuAlO2/(n-, p-)Si heterojunctions. J. Semicond., 2014, 35(4): 043001. doi: 10.1088/1674-4926/35/4/043001

[19]

Nanjie Guo, Taiyang Zhang, Ge Li, Feng Xu, Xufang Qian, Yixin Zhao. A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2. J. Semicond., 2017, 38(1): 014004. doi: 10.1088/1674-4926/38/1/014004

[20]

S. Guitouni, M. Khammar, M. Messaoudi, N. Attaf, M.S. Aida. Electrical properties of Cu4ZnSnS2/ZnS heterojunction prepared by ultrasonic spray pyrolysis. J. Semicond., 2016, 37(12): 122001. doi: 10.1088/1674-4926/37/12/122001

Search

Advanced Search >>

GET CITATION

Y M Wu, R X Yang, H M Tian, S Chen. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction[J]. J. Semicond., 2016, 37(5): 053002. doi: 10.1088/1674-4926/37/5/053002.

Export: BibTex EndNote

Article Metrics

Article views: 616 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 25 July 2015 Manuscript revised: Online: Published: 01 May 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误