J. Semicond. > Volume 37 > Issue 5 > Article Number: 051001

Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides

Congxin Xia 1, and Jingbo Li 2, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Since two-dimensional (2D) graphene was fabricated successfully, many kinds of graphene-like 2D materials have attracted extensive attention. Among them, the studies of 2D metal chalcogenides have become the focus of intense research due to their unique physical properties and promising applications. Here, we review significant recent advances in optoelectronic properties and applications of 2D metal chalcogenides. This review highlights the recent progress of synthesis, characterization and isolation of single and few layer metal chalcogenides nanosheets. Moreover, we also focus on the recent important progress of electronic, optical properties and optoelectronic devices of 2D metal chalcogenides. Additionally, the theoretical model and understanding on the band structures, optical properties and related physical mechanism are also reviewed. Finally, we give some personal perspectives on potential research problems in the optoelectronic characteristics of 2D metal chalcogenides and related device applications.

Key words: 2D metal chalcogenidessemiconductoroptoelectronic applications

Abstract: Since two-dimensional (2D) graphene was fabricated successfully, many kinds of graphene-like 2D materials have attracted extensive attention. Among them, the studies of 2D metal chalcogenides have become the focus of intense research due to their unique physical properties and promising applications. Here, we review significant recent advances in optoelectronic properties and applications of 2D metal chalcogenides. This review highlights the recent progress of synthesis, characterization and isolation of single and few layer metal chalcogenides nanosheets. Moreover, we also focus on the recent important progress of electronic, optical properties and optoelectronic devices of 2D metal chalcogenides. Additionally, the theoretical model and understanding on the band structures, optical properties and related physical mechanism are also reviewed. Finally, we give some personal perspectives on potential research problems in the optoelectronic characteristics of 2D metal chalcogenides and related device applications.

Key words: 2D metal chalcogenidessemiconductoroptoelectronic applications



References:

[1]

Novoselov K S, Geim A K, Morozov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666.

[2]

Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6: 183.

[3]

Zhang Y, Tan Y W, Stormer H L. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438: 201.

[4]

Neto A H C, Guinea F, Peres N M R. The electronic properties of graphene[J]. Rev Mod Phys, 2009, 81: 109.

[5]

Freeman C L, Claeyssens F, Allan N L. Graphitic nanofilms as precursors to wurtzite films: theory[J]. Phys Rev Lett, 2006, 96: 066102.

[6]

Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7: 699.

[7]

Golberg D, Bando Y, Huang Y. Boron nitride nanotubes and nanosheets[J]. ACS Nano, 2010, 4: 2979.

[8]

Park K H, Jang K, Kim S. Phase-controlled one-dimensional shape evolution of InSe nanocrystals[J]. J Am Chem Soc, 2006, 128: 14780.

[9]

Shen G, Chen D, Chen P C. Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures[J]. ACS Nano, 2009, 3: 1115.

[10]

Hu P, Wang L, Yoon M. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates[J]. Nano Lett, 2013, 13: 1649.

[11]

Late D J, Liu B, Luo J. GaS and GaSe ultrathin layer transistors[J]. Adv Mater, 2012, 24: 3549.

[12]

Kuhn A, Chevy A, Chevalier R. Refinement of the 2H GaS β -type[J]. Acta Crystallogr Sect B, 1976, 32: 983.

[13]

Kuhn A, Chevy A, Chevalier R. Crystal structure and interatomic distances in GaSe[J]. Phys Status Solidi A, 1975, 31: 469.

[14]

Late J, Liu B, Luo J. Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates[J]. Adv Funct Mater, 2012, 22: 1894.

[15]

Hu P A, Wen Z Z, Wang L F. Synthesis of few-layer GaSe nanosheets for high performance photodetectors[J]. ACS Nano, 2012, 6: 5988.

[16]

Zhou Y, Nie Y, Liu Y. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets[J]. ACS Nano, 2014, 8: 1485.

[17]

Brent J R, Lewis D J, Lorenz T. Tin(II) sulfide (SnS) nanosheets by liquid-phase exfoliation of herzenbergite: IV-VI main group two-dimensional atomic crystals[J]. J Am Chem Soc, 2015, 137: 12689.

[18]

Duan X D, Wang C, Pan A L. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges[J]. Chem Soc Rev, 2015, 44: 8859.

[19]

Sun Y, Cheng H, Gao S. Freestanding tin disulfide single-layers realizing efficient visible-light water splitting[J]. Angew Chem Int Ed, 2012, 51: 8727.

[20]

Zhuang H L, Hennig R G. Theoretical perspective of photocatalytic properties of single-layer SnS2[J]. Phys Rev B, 2013, 88: 115314.

[21]

Zhou M, Lou X W, Xie Y. Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities[J]. Nanotoday, 2013, 8: 598.

[22]

Wei R, Hu J, Zhou T. Ultrathin SnS2 nanosheets with exposed {001} facets and enhanced photocatalytic properties[J]. Acta Mater, 2014, 66: 163.

[23]

Chen P, Su Y, Liu H. Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications[J]. ACS Appl Mater Interfaces, 2013, 5: 12073.

[24]

Su G X, Hadjiev V G, Loya P E. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application[J]. Nano Lett, 2015, 15: 506.

[25]

Buscema M, Groenendijk D J, Blanter S I. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors[J]. Nano Lett, 2014, 14: 3347.

[26]

Tsai D S, Liu K K, Lien D H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments[J]. ACS Nano, 2013, 7: 3905.

[27]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotechnol, 2013, 8: 497.

[28]

Jacobs-Gedrim R B, Shanmugam M, Jain N. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets[J]. ACS Nano, 2014, 8: 514.

[29]

Island J O, Barawi M, Biele R. TiS3 transistors with tailored morphology and electrical properties[J]. Adv Mater, 2015, 27: 2595.

[30]

Lipatov A, Wilson P M, Shekhirev M. Few-layered titanium trisulfide (TiS3) field-effect transistors[J]. Nanoscale, 2015, 7: 12291.

[31]

Pawbake A S, Island J O, Flores E. Temperature-dependent Raman spectroscopy of titanium trisulfide (TiS3) nanoribbons and nanosheets[J]. ACS Appl Mater Interfaces, 2015, 7(43): 24185.

[32]

Jin Y D, Li X X, Yang J L. Single layer of MX3 (M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics[J]. Phys Chem Chem Phys, 2015, 17(28): 18665.

[33]

Ferrer I J, Ares J R, Clamagirand J M. Optical properties of titanium trisulphide (TiS3) thin films[J]. Thin Solid Films, 2012, 535: 398.

[34]

Island J O, Buscema M, Barawi M. Ultra high photo response of few-layer TiS3 nanoribbon transistors[J]. Adv Optical Mater, 2014, 2: 641.

[35]

Yoon Y, Ganapathi K, Salahuddin S. How good can monolayer MoS2 transistors Be[J]. Nano Lett, 2011, 11(9): 3768.

[36]

Tang D M, Kvashnin D J, Najmaei S. Nanomechanical cleavage of molybdenum disulphide atomic layers[J]. Nat Commun, 2014, 5: 3631.

[37]

De D, Manongdo J, See S. High on/off ration field effect transistors based on exfoliated crystalline SnS2 nano-membranes[J]. Nanotechnology, 2014, 24: 025202.

[38]

Hernandez Y, Nicolosi V, Lotya M. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nat Nanotechnol, 2008, 3: 563.

[39]

Blake P, Brimicombe P D, Nair R R. Graphene-based liquid crystal device[J]. Nano Lett, 2008, 8: 1704.

[40]

Halim U, Zheng C R, Chen Y. A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction[J]. Nat Commun, 2013, 4: 2213.

[41]

Tang Q, Zhou Z. Graphene-analogous low-dimensional materials[J]. Prog Mater Sci, 2013, 58: 1244.

[42]

Dungey K E, Curtis M D, Penner-Hahn J E. Structural characterization and thermal stability of MoS2 intercalation compounds[J]. Chem Mater, 1998, 10: 2152.

[43]

Ramakrishna Matte H S S, Gomathi A, Manna A K. MoS2 and WS2 analogues of graphene[J]. Angew Chem, 2010, 122: 4153.

[44]

Nguyen E P, Carey B J, Daeneke T. Investigation of Two-solvent grinding-assisted liquid phase exfoliation of layered MoS2[J]. Chem Mater, 2015, 27: 53.

[45]

Harvey A, Backes C, Gholamvand Z. Preparation of gallium sulfide nanosheets by liquid exfoliation and their application As hydrogen evolution catalysts[J]. Chem Mater, 2015, 27: 3483.

[46]

Shen J F, He Y M, Wu J J. Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components[J]. Nano Lett, 2015, 15: 5449.

[47]

Han G Q, Liu Y R, Hu W H. WS2 nanosheets based on liquid exfoliation as effective electrocatalysts for hydrogen evolution reaction[J]. Materials Chemistry and Physics, 2015, 167: 271.

[48]

Lee Y H, Zhang X Q, Zhang W J. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Adv Mater, 2012, 24: 2320.

[49]

Liu K K, Zhang W J, Lee Y H. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates[J]. Nano Lett, 2012, 12: 1538.

[50]

Yu Y F, Li C, Liu Y. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films[J]. Sci Rep, 2013, 3: 1866.

[51]

Zhan Y J, Liu Z, Najmaei S. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate[J]. Small, 2012, 8: 966.

[52]

Wu S F, Huang C M, Aivazian G. Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization[J]. ACS Nano, 2013, 7: 2768.

[53]

Shaw J C, Zhou H L, Chen Y. Chemical vapor deposition growth of monolayer MoSe2 nanosheets[J]. Nano Res, 2014, 7: 511.

[54]

Zhang Y, Zhang Y F, Ji Q Q. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary[J]. ACS Nano, 2013, 7: 8963.

[55]

Li X F, Leonardo B, Bing H. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene[J]. Chem Soc Rev, 2015, 44: 8859.

[56]

Fan C, Li T, Wei Z M. Novel micro-rings of molybdenum disulfide (MoS2)[J]. Nanoscale, 2014, 6: 14652.

[57]

Tongay S, Wen F, Kang J. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers[J]. Nano Lett, 2014, 14: 3185.

[58]

Yun W S, Han S W, Hong S C. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te)[J]. Phys Rev B, 2012, 85: 033305.

[59]

Ding Y, Wang Y, Ni J. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M = Mo, Nb, W, Ta; X = S, Se, Te) monolayers[J]. Physica B, 2011, 406: 2254.

[60]

Kang J, Tongay S, Zhou J. Band offsets and heterostructures of two-dimensional semiconductors[J]. Appl Phys Lett, 2013, 102: 012111.

[61]

Zhang H, Xia C X, Zhao X. Tunable electronic structures in the two-dimension SnX2 (X = S and Se) nanosheets by stacking effects[J]. Appl Surf Sci, 2015, 356(30): 1200.

[62]

Podzorov V, Gershenson M E, Kloc C. High-mobility field-effect transistors based on transition metal dichalcogenides[J]. Appl Phys Lett, 2004, 84: 3301.

[63]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6: 147.

[64]

Newaz A K M, Puzyrev Y S, Wang B. Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment[J]. Nature Commun, 2012, 3: 734.

[65]

Chen F, Xia J, Ferry D K. Dielectric screening enhanced performance in graphene FET[J]. Nano Lett, 2009, 9: 2571.

[66]

Yu P, Yu X C, Lu W L. Fast photoresponse from 1T tin diselenide atomic layers[J]. Adv Fun Mater, 2016, 26(1): 137.

[67]

Fang H, Chuang S, Chang T C. High-performance single layered WSe2 p-FETs with chemically doped contacts[J]. Nano Lett, 2012, 12: 3788.

[68]

Lee G H, Cui X, Kim Y D. Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal Boron Nitride with gate-controllable contact, resistance, and threshold voltage[J]. ACS Nano, 2015, 9(7): 7019.

[69]

Hong X, Kim J, Shi S F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J]. Nature Nanotech, 2014, 9: 682.

[70]

Huo, Wei, Meng, J. Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS2 and WS2[J]. Chem, 2015.

[71]

Kang J, Sahin H, Ozaydin H D. TiS3 nanoribbons: width-independent band gap and strain-tunable electronic properties[J]. Phys Rev B, 2015, 92: 075413.

[72]

Shanmugam M, Durcan C A, Yu B. Layered semiconductor molybdenum disulfide nanomembrane based Schottky-barrier solar cells[J]. Nanoscale, 2012, 4: 7399.

[73]

Shanmugam M, Jacobs-Gedrim R, Song E S. Two-dimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications[J]. Nanoscale, 2014, 6: 12682.

[74]

Bernardi M, Palummo M, Grossman J C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides[J]. Nano Lett, 2013, 13: 3664.

[75]

Wu Y B, Yang W, Wang T B. Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure[J]. Sci Rep, 2016, 6: 20955.

[76]

Furchi M M, Pospischil A, Libisch F. Photovoltaic effect in an electrically tunable van der Waals heterojunction[J]. Nano Lett, 2014, 14: 4785.

[77]

Lopez-Sanchez O, Alarcon Llado E, Koman V. Light generation and harvesting in a van der Waals heterostructure[J]. ACS Nano, 2014, 8: 3042.

[78]

Tsai M L, Su S H, Chang J K. Monolayer MoS2 heterojunction solar cells[J]. ACS Nano, 2014, 8: 8317.

[79]

Pradhan S K, Xiao B, Pradhan A K. Enhanced photo-response in p-Si/MoS2 heterojunction-based solar cells[J]. Sol Energ Mat Sol Cell, 2016, 144: 117u.

[80]

Lin S S, Wang P, Li X Q. Gate tunable monolayer MoS2/InP heterostructure solar cells[J]. Appl Phys Lett, 2015, 107(15): 153904.

[81]

Flory N, Jain A, Bharadwaj P. A WSe2/MoSe2 heterostructure photovoltaic device[J]. Appl Phys Lett, 2015, 107(12): 123106.

[82]

Huo N, Kang J, Wei Z. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors[J]. Adv Funct Mater, 2014, 24: 7025.

[83]

Konstantatos G, Sargent E H. Nanostructured materials for photon detection[J]. Nat Nanotechnol, 2010, 5: 391.

[84]

Wang H N, Zhang J C, Chan W M. Ultrafast response of monolayer molybdenum disulfide photodetectors[J]. Nat Commun, 2015, 6: 8831.

[85]

Yu J, Xu C Y, Li Y. Ternary SnS2-xSex alloys nanosheets and nanosheet assemblies with tunable chemical compositions and band gaps for photodetector applications[J]. Sci Report, 2015, 5: 17109.

[86]

Wang F, Wang Z X, Xu K. Tunable GaTe-MoS2 van der Waals p-n junctions with novel optoelectronic performance[J]. Nano Lett, 2015, 15(11): 7558.

[87]

Xue Y Z, Zhang Y P, Liu Y. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors[J]. ACS Nano, 2016, 10(1): 573.

[88]

Wang L, Jie J S, Shao Z B. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors[J]. Adv Fun Mater, 2015, 25(19): 2910.

[1]

Novoselov K S, Geim A K, Morozov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666.

[2]

Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6: 183.

[3]

Zhang Y, Tan Y W, Stormer H L. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438: 201.

[4]

Neto A H C, Guinea F, Peres N M R. The electronic properties of graphene[J]. Rev Mod Phys, 2009, 81: 109.

[5]

Freeman C L, Claeyssens F, Allan N L. Graphitic nanofilms as precursors to wurtzite films: theory[J]. Phys Rev Lett, 2006, 96: 066102.

[6]

Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7: 699.

[7]

Golberg D, Bando Y, Huang Y. Boron nitride nanotubes and nanosheets[J]. ACS Nano, 2010, 4: 2979.

[8]

Park K H, Jang K, Kim S. Phase-controlled one-dimensional shape evolution of InSe nanocrystals[J]. J Am Chem Soc, 2006, 128: 14780.

[9]

Shen G, Chen D, Chen P C. Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures[J]. ACS Nano, 2009, 3: 1115.

[10]

Hu P, Wang L, Yoon M. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates[J]. Nano Lett, 2013, 13: 1649.

[11]

Late D J, Liu B, Luo J. GaS and GaSe ultrathin layer transistors[J]. Adv Mater, 2012, 24: 3549.

[12]

Kuhn A, Chevy A, Chevalier R. Refinement of the 2H GaS β -type[J]. Acta Crystallogr Sect B, 1976, 32: 983.

[13]

Kuhn A, Chevy A, Chevalier R. Crystal structure and interatomic distances in GaSe[J]. Phys Status Solidi A, 1975, 31: 469.

[14]

Late J, Liu B, Luo J. Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates[J]. Adv Funct Mater, 2012, 22: 1894.

[15]

Hu P A, Wen Z Z, Wang L F. Synthesis of few-layer GaSe nanosheets for high performance photodetectors[J]. ACS Nano, 2012, 6: 5988.

[16]

Zhou Y, Nie Y, Liu Y. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets[J]. ACS Nano, 2014, 8: 1485.

[17]

Brent J R, Lewis D J, Lorenz T. Tin(II) sulfide (SnS) nanosheets by liquid-phase exfoliation of herzenbergite: IV-VI main group two-dimensional atomic crystals[J]. J Am Chem Soc, 2015, 137: 12689.

[18]

Duan X D, Wang C, Pan A L. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges[J]. Chem Soc Rev, 2015, 44: 8859.

[19]

Sun Y, Cheng H, Gao S. Freestanding tin disulfide single-layers realizing efficient visible-light water splitting[J]. Angew Chem Int Ed, 2012, 51: 8727.

[20]

Zhuang H L, Hennig R G. Theoretical perspective of photocatalytic properties of single-layer SnS2[J]. Phys Rev B, 2013, 88: 115314.

[21]

Zhou M, Lou X W, Xie Y. Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities[J]. Nanotoday, 2013, 8: 598.

[22]

Wei R, Hu J, Zhou T. Ultrathin SnS2 nanosheets with exposed {001} facets and enhanced photocatalytic properties[J]. Acta Mater, 2014, 66: 163.

[23]

Chen P, Su Y, Liu H. Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications[J]. ACS Appl Mater Interfaces, 2013, 5: 12073.

[24]

Su G X, Hadjiev V G, Loya P E. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application[J]. Nano Lett, 2015, 15: 506.

[25]

Buscema M, Groenendijk D J, Blanter S I. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors[J]. Nano Lett, 2014, 14: 3347.

[26]

Tsai D S, Liu K K, Lien D H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments[J]. ACS Nano, 2013, 7: 3905.

[27]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotechnol, 2013, 8: 497.

[28]

Jacobs-Gedrim R B, Shanmugam M, Jain N. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets[J]. ACS Nano, 2014, 8: 514.

[29]

Island J O, Barawi M, Biele R. TiS3 transistors with tailored morphology and electrical properties[J]. Adv Mater, 2015, 27: 2595.

[30]

Lipatov A, Wilson P M, Shekhirev M. Few-layered titanium trisulfide (TiS3) field-effect transistors[J]. Nanoscale, 2015, 7: 12291.

[31]

Pawbake A S, Island J O, Flores E. Temperature-dependent Raman spectroscopy of titanium trisulfide (TiS3) nanoribbons and nanosheets[J]. ACS Appl Mater Interfaces, 2015, 7(43): 24185.

[32]

Jin Y D, Li X X, Yang J L. Single layer of MX3 (M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics[J]. Phys Chem Chem Phys, 2015, 17(28): 18665.

[33]

Ferrer I J, Ares J R, Clamagirand J M. Optical properties of titanium trisulphide (TiS3) thin films[J]. Thin Solid Films, 2012, 535: 398.

[34]

Island J O, Buscema M, Barawi M. Ultra high photo response of few-layer TiS3 nanoribbon transistors[J]. Adv Optical Mater, 2014, 2: 641.

[35]

Yoon Y, Ganapathi K, Salahuddin S. How good can monolayer MoS2 transistors Be[J]. Nano Lett, 2011, 11(9): 3768.

[36]

Tang D M, Kvashnin D J, Najmaei S. Nanomechanical cleavage of molybdenum disulphide atomic layers[J]. Nat Commun, 2014, 5: 3631.

[37]

De D, Manongdo J, See S. High on/off ration field effect transistors based on exfoliated crystalline SnS2 nano-membranes[J]. Nanotechnology, 2014, 24: 025202.

[38]

Hernandez Y, Nicolosi V, Lotya M. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nat Nanotechnol, 2008, 3: 563.

[39]

Blake P, Brimicombe P D, Nair R R. Graphene-based liquid crystal device[J]. Nano Lett, 2008, 8: 1704.

[40]

Halim U, Zheng C R, Chen Y. A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction[J]. Nat Commun, 2013, 4: 2213.

[41]

Tang Q, Zhou Z. Graphene-analogous low-dimensional materials[J]. Prog Mater Sci, 2013, 58: 1244.

[42]

Dungey K E, Curtis M D, Penner-Hahn J E. Structural characterization and thermal stability of MoS2 intercalation compounds[J]. Chem Mater, 1998, 10: 2152.

[43]

Ramakrishna Matte H S S, Gomathi A, Manna A K. MoS2 and WS2 analogues of graphene[J]. Angew Chem, 2010, 122: 4153.

[44]

Nguyen E P, Carey B J, Daeneke T. Investigation of Two-solvent grinding-assisted liquid phase exfoliation of layered MoS2[J]. Chem Mater, 2015, 27: 53.

[45]

Harvey A, Backes C, Gholamvand Z. Preparation of gallium sulfide nanosheets by liquid exfoliation and their application As hydrogen evolution catalysts[J]. Chem Mater, 2015, 27: 3483.

[46]

Shen J F, He Y M, Wu J J. Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components[J]. Nano Lett, 2015, 15: 5449.

[47]

Han G Q, Liu Y R, Hu W H. WS2 nanosheets based on liquid exfoliation as effective electrocatalysts for hydrogen evolution reaction[J]. Materials Chemistry and Physics, 2015, 167: 271.

[48]

Lee Y H, Zhang X Q, Zhang W J. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Adv Mater, 2012, 24: 2320.

[49]

Liu K K, Zhang W J, Lee Y H. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates[J]. Nano Lett, 2012, 12: 1538.

[50]

Yu Y F, Li C, Liu Y. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films[J]. Sci Rep, 2013, 3: 1866.

[51]

Zhan Y J, Liu Z, Najmaei S. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate[J]. Small, 2012, 8: 966.

[52]

Wu S F, Huang C M, Aivazian G. Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization[J]. ACS Nano, 2013, 7: 2768.

[53]

Shaw J C, Zhou H L, Chen Y. Chemical vapor deposition growth of monolayer MoSe2 nanosheets[J]. Nano Res, 2014, 7: 511.

[54]

Zhang Y, Zhang Y F, Ji Q Q. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary[J]. ACS Nano, 2013, 7: 8963.

[55]

Li X F, Leonardo B, Bing H. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene[J]. Chem Soc Rev, 2015, 44: 8859.

[56]

Fan C, Li T, Wei Z M. Novel micro-rings of molybdenum disulfide (MoS2)[J]. Nanoscale, 2014, 6: 14652.

[57]

Tongay S, Wen F, Kang J. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers[J]. Nano Lett, 2014, 14: 3185.

[58]

Yun W S, Han S W, Hong S C. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te)[J]. Phys Rev B, 2012, 85: 033305.

[59]

Ding Y, Wang Y, Ni J. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M = Mo, Nb, W, Ta; X = S, Se, Te) monolayers[J]. Physica B, 2011, 406: 2254.

[60]

Kang J, Tongay S, Zhou J. Band offsets and heterostructures of two-dimensional semiconductors[J]. Appl Phys Lett, 2013, 102: 012111.

[61]

Zhang H, Xia C X, Zhao X. Tunable electronic structures in the two-dimension SnX2 (X = S and Se) nanosheets by stacking effects[J]. Appl Surf Sci, 2015, 356(30): 1200.

[62]

Podzorov V, Gershenson M E, Kloc C. High-mobility field-effect transistors based on transition metal dichalcogenides[J]. Appl Phys Lett, 2004, 84: 3301.

[63]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6: 147.

[64]

Newaz A K M, Puzyrev Y S, Wang B. Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment[J]. Nature Commun, 2012, 3: 734.

[65]

Chen F, Xia J, Ferry D K. Dielectric screening enhanced performance in graphene FET[J]. Nano Lett, 2009, 9: 2571.

[66]

Yu P, Yu X C, Lu W L. Fast photoresponse from 1T tin diselenide atomic layers[J]. Adv Fun Mater, 2016, 26(1): 137.

[67]

Fang H, Chuang S, Chang T C. High-performance single layered WSe2 p-FETs with chemically doped contacts[J]. Nano Lett, 2012, 12: 3788.

[68]

Lee G H, Cui X, Kim Y D. Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal Boron Nitride with gate-controllable contact, resistance, and threshold voltage[J]. ACS Nano, 2015, 9(7): 7019.

[69]

Hong X, Kim J, Shi S F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures[J]. Nature Nanotech, 2014, 9: 682.

[70]

Huo, Wei, Meng, J. Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS2 and WS2[J]. Chem, 2015.

[71]

Kang J, Sahin H, Ozaydin H D. TiS3 nanoribbons: width-independent band gap and strain-tunable electronic properties[J]. Phys Rev B, 2015, 92: 075413.

[72]

Shanmugam M, Durcan C A, Yu B. Layered semiconductor molybdenum disulfide nanomembrane based Schottky-barrier solar cells[J]. Nanoscale, 2012, 4: 7399.

[73]

Shanmugam M, Jacobs-Gedrim R, Song E S. Two-dimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications[J]. Nanoscale, 2014, 6: 12682.

[74]

Bernardi M, Palummo M, Grossman J C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides[J]. Nano Lett, 2013, 13: 3664.

[75]

Wu Y B, Yang W, Wang T B. Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure[J]. Sci Rep, 2016, 6: 20955.

[76]

Furchi M M, Pospischil A, Libisch F. Photovoltaic effect in an electrically tunable van der Waals heterojunction[J]. Nano Lett, 2014, 14: 4785.

[77]

Lopez-Sanchez O, Alarcon Llado E, Koman V. Light generation and harvesting in a van der Waals heterostructure[J]. ACS Nano, 2014, 8: 3042.

[78]

Tsai M L, Su S H, Chang J K. Monolayer MoS2 heterojunction solar cells[J]. ACS Nano, 2014, 8: 8317.

[79]

Pradhan S K, Xiao B, Pradhan A K. Enhanced photo-response in p-Si/MoS2 heterojunction-based solar cells[J]. Sol Energ Mat Sol Cell, 2016, 144: 117u.

[80]

Lin S S, Wang P, Li X Q. Gate tunable monolayer MoS2/InP heterostructure solar cells[J]. Appl Phys Lett, 2015, 107(15): 153904.

[81]

Flory N, Jain A, Bharadwaj P. A WSe2/MoSe2 heterostructure photovoltaic device[J]. Appl Phys Lett, 2015, 107(12): 123106.

[82]

Huo N, Kang J, Wei Z. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors[J]. Adv Funct Mater, 2014, 24: 7025.

[83]

Konstantatos G, Sargent E H. Nanostructured materials for photon detection[J]. Nat Nanotechnol, 2010, 5: 391.

[84]

Wang H N, Zhang J C, Chan W M. Ultrafast response of monolayer molybdenum disulfide photodetectors[J]. Nat Commun, 2015, 6: 8831.

[85]

Yu J, Xu C Y, Li Y. Ternary SnS2-xSex alloys nanosheets and nanosheet assemblies with tunable chemical compositions and band gaps for photodetector applications[J]. Sci Report, 2015, 5: 17109.

[86]

Wang F, Wang Z X, Xu K. Tunable GaTe-MoS2 van der Waals p-n junctions with novel optoelectronic performance[J]. Nano Lett, 2015, 15(11): 7558.

[87]

Xue Y Z, Zhang Y P, Liu Y. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors[J]. ACS Nano, 2016, 10(1): 573.

[88]

Wang L, Jie J S, Shao Z B. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors[J]. Adv Fun Mater, 2015, 25(19): 2910.

[1]

Jinliang Yan, Chong Qu. Electronic structure and optical properties of F-doped β-Ga2O3 from first principles calculations. J. Semicond., 2016, 37(4): 042002. doi: 10.1088/1674-4926/37/4/042002

[2]

Sandong Guo . First-principles calculations of Mg2X (X = Si, Ge, Sn) semiconductors with the calcium fluorite structure. J. Semicond., 2015, 36(5): 053002. doi: 10.1088/1674-4926/36/5/053002

[3]

Li Jingbo, Wang Linwang, Wei Suhuai. Electronic Structure of Semiconductor Nanocrystals. J. Semicond., 2006, 27(2): 191.

[4]

Ken K. Chin. Local charge neutrality condition, Fermi level and majority carrier density of a semiconductor with multiple localized multi-level intrinsic/impurity defects. J. Semicond., 2011, 32(11): 112001. doi: 10.1088/1674-4926/32/11/112001

[5]

V.K. Dwivedi, P. Srivastava, G. Vijaya Prakash. Photoconductivity and surface chemical analysis of ZnO thin films deposited by solution-processing techniques for nano and microstructure fabrication. J. Semicond., 2013, 34(3): 033001. doi: 10.1088/1674-4926/34/3/033001

[6]

Serdar Yilmaz. The geometric resistivity correction factor for several geometrical samples. J. Semicond., 2015, 36(8): 082001. doi: 10.1088/1674-4926/36/8/082001

[7]

Hassiba Rahal, Rafiaa Kihal, Abed Mohamed Affoune, Mokhtar Ghers, Faycal Djazi. Electrodeposition and characterization of ZnO thin films using sodium thiosulfate as an additive for photovoltaic solar cells. J. Semicond., 2017, 38(5): 053002. doi: 10.1088/1674-4926/38/5/053002

[8]

Yi Pang, Xiang Li, Baiqin Zhao. Influence of the thickness change of the wave-guide layers on the threshold current of GaAs-based laser diode. J. Semicond., 2016, 37(8): 084007. doi: 10.1088/1674-4926/37/8/084007

[9]

Kh. S. Karimov, M. Mahroof-Tahir, M. Saleem, N. Ahmad, A. Rashid. Optical transmission in thin films of vanadium compounds. J. Semicond., 2014, 35(7): 072002. doi: 10.1088/1674-4926/35/7/072002

[10]

Chuanbo Li, Ming Li. 2D metamaterials coherently steer nonlinear valley photons of 2D semiconductor. J. Semicond., 2019, 40(6): 060201. doi: 10.1088/1674-4926/40/6/060201

[11]

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits. J. Semicond., 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

[12]

Haizhen Wang, Chen Fang, Hongmei Luo, Dehui Li. Recent progress of the optoelectronic properties of 2D Ruddlesden-Popper perovskites. J. Semicond., 2019, 40(4): 041901. doi: 10.1088/1674-4926/40/4/041901

[13]

H. Bendjedidi, A. Attaf, H. Saidi, M. S. Aida, S. Semmari, A. Bouhdjar, Y. Benkhetta. Properties of n-type SnO2 semiconductor prepared by spray ultrasonic technique for photovoltaic applications. J. Semicond., 2015, 36(12): 123002. doi: 10.1088/1674-4926/36/12/123002

[14]

Zhao Guozhong, Zhang Zhenwei, Cui Weili, Zhang Cunlin. THz Emission Spectra Based on Different Compound Semiconductors. J. Semicond., 2005, 26(S1): 9.

[15]

Liu Wenbao, Sun Xian, Wang Xiaolan, Zhang Shuang, Liu Zongshun, Zhao Degang, Yang Hui. Characteristics of Metal-Semiconductor-Metal Photodetectors Based on GaN. J. Semicond., 2007, 28(S1): 588.

[16]

Nengjie Huo, Yujue Yang, Jingbo Li. Optoelectronics based on 2D TMDs and heterostructures. J. Semicond., 2017, 38(3): 031002. doi: 10.1088/1674-4926/38/3/031002

[17]

Xinzhe Min, Pengchen Zhu, Shuai Gu, Jia Zhu. Research progress of low-dimensional perovskites: synthesis, properties and optoelectronic applications. J. Semicond., 2017, 38(1): 011004. doi: 10.1088/1674-4926/38/1/011004

[18]

Ping-Heng Tan, Lijun Zhang, Lun Dai, Shuyun Zhou. Preface to the Special Issue on 2D-Materials-Related Physical Properties and Optoelectronic Devices. J. Semicond., 2019, 40(6): 060101. doi: 10.1088/1674-4926/40/6/060101

[19]

Li Shuping, Wang Renzhi. Average-Bond-Energy and Fermi Level on Metal-Semiconductor Contacts. J. Semicond., 2006, 27(5): 834.

[20]

Achour Rahal, Said Benramache, Boubaker Benhaoua. Preparation of n-type semiconductor SnO2 thin films. J. Semicond., 2013, 34(8): 083002. doi: 10.1088/1674-4926/34/8/083002

Search

Advanced Search >>

GET CITATION

C X Xia, J B Li. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides[J]. J. Semicond., 2016, 37(5): 051001. doi: 10.1088/1674-4926/37/5/051001.

Export: BibTex EndNote

Article Metrics

Article views: 1704 Times PDF downloads: 62 Times Cited by: 0 Times

History

Manuscript received: 04 April 2016 Manuscript revised: Online: Published: 01 May 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误