REVIEWS

Advances in flexible and wearable pH sensors for wound healing monitoring

Mei Qin1, Hao Guo1, Zhang Dai1, Xu Yan1, 2, and Xin Ning1, 2

+ Author Affiliations

 Corresponding author: Xu Yan, Email: yanxu-925@163.com

PDF

Turn off MathJax

Abstract: Wound healing has been recognized as a complex and dynamic regeneration process and attracted increasing interests on its management. For effective wound healing management, a continuous monitoring on the wound healing based on sensors is essential. Since pH has been found to play an important role on wound healing process, a variety of pH sensors systems for wound healing monitoring have been greatly developed in recent years. Among these pH sensors, flexible and wearable pH sensors which can be incorporated with wound dressing have gained much attention. In this review, the recent advances in the development of flexible and wearable pH sensors for wound healing monitoring have been comprehensive summarized from the range of optical and electrochemical bases.

Key words: pH sensorwound healing monitoringflexible and wearable sensorsoptical and electrochemical mechanism



[1]
Yildirimer L, Thanh N T K, Seifalian A M. Skin regeneration scaffolds a multimodal bottom-up approach. Trends Biotechnol, 2012, 30, 638 doi: 10.1016/j.tibtech.2012.08.004
[2]
Dias J R, Granja P L, Bártolo P J. Advances in electrospun skin substitutes. Prog Mater Sci, 2016, 84, 314 doi: 10.1016/j.pmatsci.2016.09.006
[3]
Davidson J M, DiPietro L. The wound-healing process. 2nd ed. Totowa: Humana Press, 2006
[4]
Mehmood N, Hariz A, Fitridge R, et al. Applications of modern sensors and wireless technology in effective wound management. J Biomed Mater Res Part B, 2014, 102B, 885 doi: 10.1002/jbm.b.33063
[5]
Gurtner G C, Werner S, Barrandon Y, et al. Wound repair and regeneration. Nature, 2008, 453, 314 doi: 10.1038/nature07039
[6]
Tonnesen M G, Feng X, Clark R A. Angiogenesis in wound healing. J Invest Dermatol Symp Proc, 2000, 5, 40 doi: 10.1046/j.1087-0024.2000.00014.x
[7]
Menke N B, Ward K R, Witten T M, et al. Impaired wound healing. Clin Dermatol, 2007, 25, 19 doi: 10.1016/j.clindermatol.2006.12.005
[8]
Abdelrahman T, Newton H. Wound dressings: Principles and practice. Surgery (Oxford), 2011, 29, 491 doi: 10.1016/j.mpsur.2011.06.007
[9]
Mao N, Russell S J. Nonwoven wound dressings. Textil Progr, 2004, 36, 4, 1
[10]
Thomas S. Wound and wound healing, wound management and dressings. London: Pharmaceutical Press, 2004
[11]
Bandodkar A J, Wang J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol, 2014, 32, 363 doi: 10.1016/j.tibtech.2014.04.005
[12]
Wang S, Chinnasamy T, Lifson M A, et al. Flexible substrate-based devices for point-of-care diagnostics. Trends Biotechnol, 2016, 34, 909 doi: 10.1016/j.tibtech.2016.05.009
[13]
Gianino E, Miller C, Gilmore J. Smart wound dressings for diabetic chronic wounds. Bioengineering, 2018, 5(3), 51 doi: 10.3390/bioengineering5030051
[14]
Brown M S, Ashley B, Koh A. Wearable technology for chronic wound monitoring: current dressings, advancements, and future prospects. Front Bioeng Biotechnol, 2018, 6, 47 doi: 10.3389/fbioe.2018.00047
[15]
Ochoa M, Rahimi R, Ziaie B. Flexible sensors for chronic wound management. IEEE Rev Biomed Eng, 2014, 7, 73 doi: 10.1109/RBME.2013.2295817
[16]
Wang X, Liu Z, Zhang T. Flexible sensing electronics for wearable/attachable health monitoring. Small, 2017, 13, 1602790 doi: 10.1002/smll.201602790
[17]
Sun Q, Qian B, Uto K, et al. Functional biomaterials towards flexible electronics and sensors. Biosens Bioelectron, 2018, 119, 237 doi: 10.1016/j.bios.2018.08.018
[18]
Schneider L A, Grabbe A K S, Dissemond J. Influence of pH on wound-healing: a new perspective for wound-therapy. Arch Dermatol Res, 2007, 298, 413 doi: 10.1007/s00403-006-0713-x
[19]
Gethin G. The significance of surface pH in chronic wounds. Wounds UK, 2007, 3, 3
[20]
Shukla V K, Shukla D, Tiwary S K, et al. Evaluation of pH measurement as a method of wound assessment. J Wound Care, 2007, 16, 7 doi: 10.12968/jowc.2007.16.7.27062
[21]
Schreml S, Szeimies R M, Karrer S, et al. The impact of the pH value on skin integrity and cutaneous wound healing. J Eur Acad Dermatol, 2010, 24, 373 doi: 10.1111/j.1468-3083.2009.03413.x
[22]
Percival S, McCarty S, Hunt J, et al. The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen, 2014, 22(2), 174 doi: 10.1111/wrr.12125
[23]
Lei S, Sarah R, Ryan E, et al. pH in the bacteria-contaminated wound and its impact on clostridium histolyticum collagenase activity: implications for the use of collagenase wound debridement agents. J Wound Ostomy Cont, 2011, 38, 514 doi: 10.1097/WON.0b013e31822ad034
[24]
Khan M A, U Ansari U, Ali M N. Real-time wound management through integrated pH sensors: a review. Sens Rev, 2015, 35, 183 doi: 10.1108/SR-08-2014-689
[25]
Schaude C, Fröhlich E, Meindl C, et al. The development of indicator cotton swabs for the detection of pH in wounds. Sensors, 2017, 17, 1365 doi: 10.3390/s17061365
[26]
Al-Hillia S M, Willander M, Öst A, et al. ZnO nanorods as an intracellular sensor for pH measurements. J Appl Phys, 2007, 102, 084304 doi: 10.1063/1.2798582
[27]
Dargaville T R, Farrugia B L, Broadbent J A, et al. Sensors and imaging for wound healing: a review. Biosens Bioelectron, 2013, 41, 30 doi: 10.1016/j.bios.2012.09.029
[28]
Solomon E, Schmidt R, Adragna P. Human anatomy and physiology. 2nd ed. USA: Saunders, 1990
[29]
Alam A U, Qin Y, Nambiar S, et al. Polymers and organic materials-based pH sensors for healthcare applications. Prog Mater Sci, 2018, 96, 174 doi: 10.1016/j.pmatsci.2018.03.008
[30]
Wencel D, Abel T, McDonagh C. Optical chemical pH sensors. Anal Chem, 2014, 86, 15 doi: 10.1021/ac4035168
[31]
Miao Y, Chen J, Fang K. New technology for the detection of Ph. J Biochem Biophy. Methods, 2005, 63, 1 doi: 10.1016/j.jbbm.2005.02.001
[32]
Finlay D. Connected health approaches to wound monitoring. In: Smart Bandage Technologies. Academic Press, 2016, 229
[33]
Der Schueren L V, Clerck K D. Coloration and application of pH-sensitive dyes on textile materials. Color Technol, 2012, 128, 82 doi: 10.1111/j.1478-4408.2011.00361.x
[34]
Der Schueren L V, Clerck K D. The use of pH-indicator dyes for pH-sensitive textile. Text Res J, 2010, 80, 590 doi: 10.1177/0040517509346443
[35]
Trupp S, Alberti M, Carofiglio T, et al. Development of pH-sensitive indicator dyes for the preparation of micro-patterned optical sensor layers. Sens Actuators B, 2010, 150, 206 doi: 10.1016/j.snb.2010.07.015
[36]
Mohr G J, Müller H, Bussemer B, et al. Design of acidochromic dyes for facile preparation of pH sensor layers. Anal Bioanal Chem, 2008, 392, 1411 doi: 10.1007/s00216-008-2428-7
[37]
https://www.fraunhofer.de/en/press/research-news/2010/11/dressing-indicates-infections.html
[38]
Liu L, Li X, Nagao M, et al. A pH-Indicating colorimetric tough hydrogel patch towards applications in a substrate for smart wound dressings. Polymers, 2017, 9, 558 doi: 10.3390/polym9110558
[39]
der Schueren L V, T Mollet T, Ceylan Ö, et al. The development of polyamide 6.6 nanofibres with a pH-sensitive function by electrospinning. Eur Polym J, 2010, 46, 2229 doi: 10.1016/j.eurpolymj.2010.09.016
[40]
Zhang C, Li Y, Wang W, et al. A novel two-nozzle electrospinning process for preparing microfiber reinforced pH-sensitive nano-membrane with enhanced mechanical property. Eur Polym J, 2011, 47, 2228 doi: 10.1016/j.eurpolymj.2011.09.015
[41]
Diculescu V C, Beregoi M, Evanghelidis A, et al. Palladium/palladium oxide coated electrospun fibers for wearable sweat pH-sensors. Sci Rep, 2019, 9, 8902 doi: 10.1038/s41598-019-45399-2
[42]
da Silva C K, da S Mastrantonio D J, Costa J A V, et al. Innovative pH sensors developed from ultrafine fibers containing açaí (Euterpe oleracea) extract. Food Chem, 2019, 294, 397 doi: 10.1016/j.foodchem.2019.05.059
[43]
Gorji M, Sadeghianmaryan A, Rajabinejad H, et al. Development of highly pH-sensitive hybrid membranes by simultaneous electrospinning of amphiphilic nanofibers reinforced with graphene oxide. J Funct Biomater, 2019, 10(2), 23 doi: 10.3390/jfb10020023
[44]
Agarwal A, Raheja A, Natarajan T S, et al. Development of universal pH sensing electrospun nanofibers. Sens Actuators B, 2012, 161, 1097 doi: 10.1016/j.snb.2011.12.027
[45]
Devarayan K, Kim B S. Reversible and universal pH sensing cellulose nanofibers for health monitor. Sens Actuators B, 2015, 209, 281 doi: 10.1016/j.snb.2014.11.120
[46]
Schoolaert E, Hoogenboom R, Clerck K D. Colorimetric nanofibers as optical sensors. Adv Funct Mater, 2017, 27, 1702646 doi: 10.1002/adfm.201702646
[47]
Steyaert I, Rahier H, Clerck K D. Nanofibre-based sensors for visual and optical monitoring. In: Electrospinning for High Performance Sensors. NanoScience and Technology. Springer, 2015
[48]
Schoolaert E, Steyaert I, Vancoillie G, et al. Blend electrospinning of dye-functionalized chitosan and poly(ε-caprolactone): towards biocompatible pH-sensors. J Mater Chem B, 2016, 4, 4507 doi: 10.1039/C6TB00639F
[49]
Pan N, Qin J, Feng P, et al. Color-changing smart fibrous materials for naked eye real-time monitoring of wound pH. J Mater Chem B, 2019, 7, 2626 doi: 10.1039/C9TB00195F
[50]
Yan X, You M H, Lou T, et al. Colorful hydrophobic poly(vinyl butyral)/cationic dye fibrous membranes via a colored solution electrospinning process. Nanoscale Res Lett, 2016, 11, 540 doi: 10.1186/s11671-016-1763-4
[51]
You M, Yan X, Zhang J, et al. Colorimetric humidity sensors based on electrospun polyamide/CoCl2 nanofibrous membranes. Nanoscale Res Lett, 2017, 12, 360 doi: 10.1186/s11671-017-2139-0
[52]
Liu M N, Yan X, You M H, et al. Reversible photochromic nanofibrous membranes with excellent water/windproof and breathable performance. J Appl Polym Sci, 2018, 135(23), 46342 doi: 10.1002/app.46342
[53]
Li C, Lou T, Yan X, et al. Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal. Int J Biol Macromol, 2018, 106, 768 doi: 10.1016/j.ijbiomac.2017.08.072
[54]
Liu G S, Yan X, Yan F F, et al. In situ electrospinning iodine-based fibrous meshes for antibacterial wound dressing. Nanoscale Res Lett, 2018, 13, 309 doi: 10.1186/s11671-018-2733-9
[55]
Chen S, Liu G S, He H W, et al. Physical structure induced hydrophobicity analyzed from electrospinning and coating polyvinyl butyral films. Adv Cond Matter Phys, 2019, 2019, 6179456 doi: 10.1155/2019/6179456
[56]
Yan X, Yu M, Ramakrishna S, et al. Advances in portable electrospinning devices for in-situ delivery of personalized wound care. Nanoscale, 2019 doi: 10.1039/C9NR02802A
[57]
Priyadarsini K I. Photophysics, photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. J Photochem Photobiol C, 2009, 10, 81 doi: 10.1016/j.jphotochemrev.2009.05.001
[58]
Graham D J, Jaselskis B, Moore C E. Development of the glass electrode and the pH response. J Chem Educ, 2013, 90(3), 345 doi: 10.1021/ed300246x
[59]
Guinovart T, Ramírez G V, Windmiller J R, et al. Bandage-based wearable potentiometric sensor for monitoring wound pH. Electroanalysis, 2014, 26, 1345 doi: 10.1002/elan.201300558
[60]
Huang W S, Humphrey B D, MacDiarmid A G. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans, 1986, 82, 2385 doi: 10.1039/f19868202385
[61]
Quillard S, Berrada K, Louarn G, et al. In situ Raman spectroscopic studies of the electrochemical behavior of polyaniline. New J Chem, 1995, 19, 365 doi: 10.1016/j.synthmet.2005.10.013
[62]
Lindfors T, Ivaska A. pH sensitivity of polyaniline and its substituted derivatives. J Electroanal Chem, 2002, 531, 43 doi: 10.1016/S0022-0728(02)01005-7
[63]
Kaempgen M, Roth S. Transparent and flexible carbon nanotube/polyaniline pH sensors. J Electroanal Chem, 2006, 586, 72 doi: 10.1016/j.jelechem.2005.09.009
[64]
Lindfors T, Ervela S, Ivaska A. Polyaniline as pH-sensitive component in plasticized PVC membranes. J Electroanal Chem, 2003, 560, 69 doi: 10.1016/j.jelechem.2003.07.020
[65]
Zhang X, Ogorevc B, Wang J. Solid-state pH nanoelectrode based on polyaniline thin film electrodeposited onto ion-beam etched carbon fiber. Anal Chim Acta, 2002, 452, 1 doi: 10.1016/S0003-2670(01)01435-0
[66]
Rahimi R, Ochoa M, Parupudi T, et al. A low-cost flexible pH sensor array for wound assessment. Sens Actuators B, 2016, 229, 609 doi: 10.1016/j.snb.2015.12.082
[67]
Loh K J, Lynch J P, Kotov N A. Inductively coupled nanocomposite wireless strain and pH sensors. Smart Struct Syst, 2008, 4, 531 doi: 10.12989/sss.2008.4.5.531
[68]
Sridhar V, Takahata K. A hydrogel-based passive wireless sensor using a flex-circuit inductive transducer. Sens Actuators A, 2009, 155, 58 doi: 10.1016/j.sna.2009.08.010
[69]
Pal A, Goswami D, Cuellar H E, et al. Early detection and monitoring of chronic wounds using low-cost, omniphobic paper-based smart bandages. Biosens Bioelectron, 2018, 117, 696 doi: 10.1016/j.bios.2018.06.060
[70]
Rahimi R, Brener U, Chittiboyina S, et al. Laser-enabled fabrication of flexible and transparent pH sensor with near-field communication for in-situ monitoring of wound infection. Sens Actuators B, 2018, 267, 198 doi: 10.1016/j.snb.2018.04.004
[71]
Hizawa T, Sawada K, Takao H, et al. Fabrication of a two-dimensional pH image sensor using a charge transfer technique. Sens Actuators B, 2006, 117, 509 doi: 10.1016/j.snb.2006.01.056
[72]
Punjiya M, Rezaei H, Zeeshan M A, et al. A flexible pH sensing smart bandage with wireless cmos readout for chronic wound monitoring. 19th International Conference on Solid-State Sensors Actuators and Microsystems (TRANSDUCERS), 2017, 1700
[73]
Lyu B, Punjiya M, Matharu Z, et al. An improved pH mapping bandage with thread-based sensors for chronic wound monitoring. IEEE International Symposium on Circuits and Systems (ISCAS), 2018, 1
[74]
Christodouleas D C, Kaur B, Chorti P. From point-of-care testing to ehealth diagnostic devices (eDiagnostics). ACS Cent Sci, 2018, 4, 1600 doi: 10.1021/acscentsci.8b00625
Fig. 1.  (Color online) Wound healing phases: (a) inflammation, (b) proliferation, and (c) remodeling. Reprinted with permission from Ref. [5]. The time course of pH milieu in different wounds such as (d) acute and (e) chronic wounds[18].

Fig. 2.  (Color online) (a) Flexible array-type pH sensor. (b) Color change on the pH from acidic to basic[36]. (c) The flexible pH sensor can be fixed on the skin, and (d) change color when the pH varied[37]. (e) Photographic images of the hydrogel patch under pH values from 5 to 9. (f) and (g) Electrospun PCL-curcumin nanofibers under pH 6 and 9[49].

Fig. 3.  (Color online) (a) Fabrication process to create the pH-sensitive bandage. (b) A real-time pH changes in a simulated wound[59]. (c) Fabrication process of paper based pH sensor array. (d) Relationship between the potential and pH values for the paper based pH sensor array[66].

Fig. 4.  (Color online) (a) Design of a pH sensitive gel placed between two inductive coils. Relationship between the resonant frequency, the gap and the pH[68]. (b) Schematic diagram of the fabrication of OPSBs and the magnitude relation to pH[69]. (c) Fabrication process of pH sensor on ITO film and potential related to pH[70].

Fig. 5.  (Color online) (a) Optical image of pH sensing bandage (left) and SEM of the pH sensitive threads. (b) Open circuit voltage versus pH for the threads. (c) Data acquisition setup for pH sensing smart bandage. (d) Smart bandage pH map[72].

[1]
Yildirimer L, Thanh N T K, Seifalian A M. Skin regeneration scaffolds a multimodal bottom-up approach. Trends Biotechnol, 2012, 30, 638 doi: 10.1016/j.tibtech.2012.08.004
[2]
Dias J R, Granja P L, Bártolo P J. Advances in electrospun skin substitutes. Prog Mater Sci, 2016, 84, 314 doi: 10.1016/j.pmatsci.2016.09.006
[3]
Davidson J M, DiPietro L. The wound-healing process. 2nd ed. Totowa: Humana Press, 2006
[4]
Mehmood N, Hariz A, Fitridge R, et al. Applications of modern sensors and wireless technology in effective wound management. J Biomed Mater Res Part B, 2014, 102B, 885 doi: 10.1002/jbm.b.33063
[5]
Gurtner G C, Werner S, Barrandon Y, et al. Wound repair and regeneration. Nature, 2008, 453, 314 doi: 10.1038/nature07039
[6]
Tonnesen M G, Feng X, Clark R A. Angiogenesis in wound healing. J Invest Dermatol Symp Proc, 2000, 5, 40 doi: 10.1046/j.1087-0024.2000.00014.x
[7]
Menke N B, Ward K R, Witten T M, et al. Impaired wound healing. Clin Dermatol, 2007, 25, 19 doi: 10.1016/j.clindermatol.2006.12.005
[8]
Abdelrahman T, Newton H. Wound dressings: Principles and practice. Surgery (Oxford), 2011, 29, 491 doi: 10.1016/j.mpsur.2011.06.007
[9]
Mao N, Russell S J. Nonwoven wound dressings. Textil Progr, 2004, 36, 4, 1
[10]
Thomas S. Wound and wound healing, wound management and dressings. London: Pharmaceutical Press, 2004
[11]
Bandodkar A J, Wang J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol, 2014, 32, 363 doi: 10.1016/j.tibtech.2014.04.005
[12]
Wang S, Chinnasamy T, Lifson M A, et al. Flexible substrate-based devices for point-of-care diagnostics. Trends Biotechnol, 2016, 34, 909 doi: 10.1016/j.tibtech.2016.05.009
[13]
Gianino E, Miller C, Gilmore J. Smart wound dressings for diabetic chronic wounds. Bioengineering, 2018, 5(3), 51 doi: 10.3390/bioengineering5030051
[14]
Brown M S, Ashley B, Koh A. Wearable technology for chronic wound monitoring: current dressings, advancements, and future prospects. Front Bioeng Biotechnol, 2018, 6, 47 doi: 10.3389/fbioe.2018.00047
[15]
Ochoa M, Rahimi R, Ziaie B. Flexible sensors for chronic wound management. IEEE Rev Biomed Eng, 2014, 7, 73 doi: 10.1109/RBME.2013.2295817
[16]
Wang X, Liu Z, Zhang T. Flexible sensing electronics for wearable/attachable health monitoring. Small, 2017, 13, 1602790 doi: 10.1002/smll.201602790
[17]
Sun Q, Qian B, Uto K, et al. Functional biomaterials towards flexible electronics and sensors. Biosens Bioelectron, 2018, 119, 237 doi: 10.1016/j.bios.2018.08.018
[18]
Schneider L A, Grabbe A K S, Dissemond J. Influence of pH on wound-healing: a new perspective for wound-therapy. Arch Dermatol Res, 2007, 298, 413 doi: 10.1007/s00403-006-0713-x
[19]
Gethin G. The significance of surface pH in chronic wounds. Wounds UK, 2007, 3, 3
[20]
Shukla V K, Shukla D, Tiwary S K, et al. Evaluation of pH measurement as a method of wound assessment. J Wound Care, 2007, 16, 7 doi: 10.12968/jowc.2007.16.7.27062
[21]
Schreml S, Szeimies R M, Karrer S, et al. The impact of the pH value on skin integrity and cutaneous wound healing. J Eur Acad Dermatol, 2010, 24, 373 doi: 10.1111/j.1468-3083.2009.03413.x
[22]
Percival S, McCarty S, Hunt J, et al. The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen, 2014, 22(2), 174 doi: 10.1111/wrr.12125
[23]
Lei S, Sarah R, Ryan E, et al. pH in the bacteria-contaminated wound and its impact on clostridium histolyticum collagenase activity: implications for the use of collagenase wound debridement agents. J Wound Ostomy Cont, 2011, 38, 514 doi: 10.1097/WON.0b013e31822ad034
[24]
Khan M A, U Ansari U, Ali M N. Real-time wound management through integrated pH sensors: a review. Sens Rev, 2015, 35, 183 doi: 10.1108/SR-08-2014-689
[25]
Schaude C, Fröhlich E, Meindl C, et al. The development of indicator cotton swabs for the detection of pH in wounds. Sensors, 2017, 17, 1365 doi: 10.3390/s17061365
[26]
Al-Hillia S M, Willander M, Öst A, et al. ZnO nanorods as an intracellular sensor for pH measurements. J Appl Phys, 2007, 102, 084304 doi: 10.1063/1.2798582
[27]
Dargaville T R, Farrugia B L, Broadbent J A, et al. Sensors and imaging for wound healing: a review. Biosens Bioelectron, 2013, 41, 30 doi: 10.1016/j.bios.2012.09.029
[28]
Solomon E, Schmidt R, Adragna P. Human anatomy and physiology. 2nd ed. USA: Saunders, 1990
[29]
Alam A U, Qin Y, Nambiar S, et al. Polymers and organic materials-based pH sensors for healthcare applications. Prog Mater Sci, 2018, 96, 174 doi: 10.1016/j.pmatsci.2018.03.008
[30]
Wencel D, Abel T, McDonagh C. Optical chemical pH sensors. Anal Chem, 2014, 86, 15 doi: 10.1021/ac4035168
[31]
Miao Y, Chen J, Fang K. New technology for the detection of Ph. J Biochem Biophy. Methods, 2005, 63, 1 doi: 10.1016/j.jbbm.2005.02.001
[32]
Finlay D. Connected health approaches to wound monitoring. In: Smart Bandage Technologies. Academic Press, 2016, 229
[33]
Der Schueren L V, Clerck K D. Coloration and application of pH-sensitive dyes on textile materials. Color Technol, 2012, 128, 82 doi: 10.1111/j.1478-4408.2011.00361.x
[34]
Der Schueren L V, Clerck K D. The use of pH-indicator dyes for pH-sensitive textile. Text Res J, 2010, 80, 590 doi: 10.1177/0040517509346443
[35]
Trupp S, Alberti M, Carofiglio T, et al. Development of pH-sensitive indicator dyes for the preparation of micro-patterned optical sensor layers. Sens Actuators B, 2010, 150, 206 doi: 10.1016/j.snb.2010.07.015
[36]
Mohr G J, Müller H, Bussemer B, et al. Design of acidochromic dyes for facile preparation of pH sensor layers. Anal Bioanal Chem, 2008, 392, 1411 doi: 10.1007/s00216-008-2428-7
[37]
https://www.fraunhofer.de/en/press/research-news/2010/11/dressing-indicates-infections.html
[38]
Liu L, Li X, Nagao M, et al. A pH-Indicating colorimetric tough hydrogel patch towards applications in a substrate for smart wound dressings. Polymers, 2017, 9, 558 doi: 10.3390/polym9110558
[39]
der Schueren L V, T Mollet T, Ceylan Ö, et al. The development of polyamide 6.6 nanofibres with a pH-sensitive function by electrospinning. Eur Polym J, 2010, 46, 2229 doi: 10.1016/j.eurpolymj.2010.09.016
[40]
Zhang C, Li Y, Wang W, et al. A novel two-nozzle electrospinning process for preparing microfiber reinforced pH-sensitive nano-membrane with enhanced mechanical property. Eur Polym J, 2011, 47, 2228 doi: 10.1016/j.eurpolymj.2011.09.015
[41]
Diculescu V C, Beregoi M, Evanghelidis A, et al. Palladium/palladium oxide coated electrospun fibers for wearable sweat pH-sensors. Sci Rep, 2019, 9, 8902 doi: 10.1038/s41598-019-45399-2
[42]
da Silva C K, da S Mastrantonio D J, Costa J A V, et al. Innovative pH sensors developed from ultrafine fibers containing açaí (Euterpe oleracea) extract. Food Chem, 2019, 294, 397 doi: 10.1016/j.foodchem.2019.05.059
[43]
Gorji M, Sadeghianmaryan A, Rajabinejad H, et al. Development of highly pH-sensitive hybrid membranes by simultaneous electrospinning of amphiphilic nanofibers reinforced with graphene oxide. J Funct Biomater, 2019, 10(2), 23 doi: 10.3390/jfb10020023
[44]
Agarwal A, Raheja A, Natarajan T S, et al. Development of universal pH sensing electrospun nanofibers. Sens Actuators B, 2012, 161, 1097 doi: 10.1016/j.snb.2011.12.027
[45]
Devarayan K, Kim B S. Reversible and universal pH sensing cellulose nanofibers for health monitor. Sens Actuators B, 2015, 209, 281 doi: 10.1016/j.snb.2014.11.120
[46]
Schoolaert E, Hoogenboom R, Clerck K D. Colorimetric nanofibers as optical sensors. Adv Funct Mater, 2017, 27, 1702646 doi: 10.1002/adfm.201702646
[47]
Steyaert I, Rahier H, Clerck K D. Nanofibre-based sensors for visual and optical monitoring. In: Electrospinning for High Performance Sensors. NanoScience and Technology. Springer, 2015
[48]
Schoolaert E, Steyaert I, Vancoillie G, et al. Blend electrospinning of dye-functionalized chitosan and poly(ε-caprolactone): towards biocompatible pH-sensors. J Mater Chem B, 2016, 4, 4507 doi: 10.1039/C6TB00639F
[49]
Pan N, Qin J, Feng P, et al. Color-changing smart fibrous materials for naked eye real-time monitoring of wound pH. J Mater Chem B, 2019, 7, 2626 doi: 10.1039/C9TB00195F
[50]
Yan X, You M H, Lou T, et al. Colorful hydrophobic poly(vinyl butyral)/cationic dye fibrous membranes via a colored solution electrospinning process. Nanoscale Res Lett, 2016, 11, 540 doi: 10.1186/s11671-016-1763-4
[51]
You M, Yan X, Zhang J, et al. Colorimetric humidity sensors based on electrospun polyamide/CoCl2 nanofibrous membranes. Nanoscale Res Lett, 2017, 12, 360 doi: 10.1186/s11671-017-2139-0
[52]
Liu M N, Yan X, You M H, et al. Reversible photochromic nanofibrous membranes with excellent water/windproof and breathable performance. J Appl Polym Sci, 2018, 135(23), 46342 doi: 10.1002/app.46342
[53]
Li C, Lou T, Yan X, et al. Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal. Int J Biol Macromol, 2018, 106, 768 doi: 10.1016/j.ijbiomac.2017.08.072
[54]
Liu G S, Yan X, Yan F F, et al. In situ electrospinning iodine-based fibrous meshes for antibacterial wound dressing. Nanoscale Res Lett, 2018, 13, 309 doi: 10.1186/s11671-018-2733-9
[55]
Chen S, Liu G S, He H W, et al. Physical structure induced hydrophobicity analyzed from electrospinning and coating polyvinyl butyral films. Adv Cond Matter Phys, 2019, 2019, 6179456 doi: 10.1155/2019/6179456
[56]
Yan X, Yu M, Ramakrishna S, et al. Advances in portable electrospinning devices for in-situ delivery of personalized wound care. Nanoscale, 2019 doi: 10.1039/C9NR02802A
[57]
Priyadarsini K I. Photophysics, photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. J Photochem Photobiol C, 2009, 10, 81 doi: 10.1016/j.jphotochemrev.2009.05.001
[58]
Graham D J, Jaselskis B, Moore C E. Development of the glass electrode and the pH response. J Chem Educ, 2013, 90(3), 345 doi: 10.1021/ed300246x
[59]
Guinovart T, Ramírez G V, Windmiller J R, et al. Bandage-based wearable potentiometric sensor for monitoring wound pH. Electroanalysis, 2014, 26, 1345 doi: 10.1002/elan.201300558
[60]
Huang W S, Humphrey B D, MacDiarmid A G. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans, 1986, 82, 2385 doi: 10.1039/f19868202385
[61]
Quillard S, Berrada K, Louarn G, et al. In situ Raman spectroscopic studies of the electrochemical behavior of polyaniline. New J Chem, 1995, 19, 365 doi: 10.1016/j.synthmet.2005.10.013
[62]
Lindfors T, Ivaska A. pH sensitivity of polyaniline and its substituted derivatives. J Electroanal Chem, 2002, 531, 43 doi: 10.1016/S0022-0728(02)01005-7
[63]
Kaempgen M, Roth S. Transparent and flexible carbon nanotube/polyaniline pH sensors. J Electroanal Chem, 2006, 586, 72 doi: 10.1016/j.jelechem.2005.09.009
[64]
Lindfors T, Ervela S, Ivaska A. Polyaniline as pH-sensitive component in plasticized PVC membranes. J Electroanal Chem, 2003, 560, 69 doi: 10.1016/j.jelechem.2003.07.020
[65]
Zhang X, Ogorevc B, Wang J. Solid-state pH nanoelectrode based on polyaniline thin film electrodeposited onto ion-beam etched carbon fiber. Anal Chim Acta, 2002, 452, 1 doi: 10.1016/S0003-2670(01)01435-0
[66]
Rahimi R, Ochoa M, Parupudi T, et al. A low-cost flexible pH sensor array for wound assessment. Sens Actuators B, 2016, 229, 609 doi: 10.1016/j.snb.2015.12.082
[67]
Loh K J, Lynch J P, Kotov N A. Inductively coupled nanocomposite wireless strain and pH sensors. Smart Struct Syst, 2008, 4, 531 doi: 10.12989/sss.2008.4.5.531
[68]
Sridhar V, Takahata K. A hydrogel-based passive wireless sensor using a flex-circuit inductive transducer. Sens Actuators A, 2009, 155, 58 doi: 10.1016/j.sna.2009.08.010
[69]
Pal A, Goswami D, Cuellar H E, et al. Early detection and monitoring of chronic wounds using low-cost, omniphobic paper-based smart bandages. Biosens Bioelectron, 2018, 117, 696 doi: 10.1016/j.bios.2018.06.060
[70]
Rahimi R, Brener U, Chittiboyina S, et al. Laser-enabled fabrication of flexible and transparent pH sensor with near-field communication for in-situ monitoring of wound infection. Sens Actuators B, 2018, 267, 198 doi: 10.1016/j.snb.2018.04.004
[71]
Hizawa T, Sawada K, Takao H, et al. Fabrication of a two-dimensional pH image sensor using a charge transfer technique. Sens Actuators B, 2006, 117, 509 doi: 10.1016/j.snb.2006.01.056
[72]
Punjiya M, Rezaei H, Zeeshan M A, et al. A flexible pH sensing smart bandage with wireless cmos readout for chronic wound monitoring. 19th International Conference on Solid-State Sensors Actuators and Microsystems (TRANSDUCERS), 2017, 1700
[73]
Lyu B, Punjiya M, Matharu Z, et al. An improved pH mapping bandage with thread-based sensors for chronic wound monitoring. IEEE International Symposium on Circuits and Systems (ISCAS), 2018, 1
[74]
Christodouleas D C, Kaur B, Chorti P. From point-of-care testing to ehealth diagnostic devices (eDiagnostics). ACS Cent Sci, 2018, 4, 1600 doi: 10.1021/acscentsci.8b00625
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5013 Times PDF downloads: 163 Times Cited by: 0 Times

    History

    Received: 15 July 2019 Revised: 24 September 2019 Online: Accepted Manuscript: 09 October 2019Uncorrected proof: 12 October 2019Published: 08 November 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Mei Qin, Hao Guo, Zhang Dai, Xu Yan, Xin Ning. Advances in flexible and wearable pH sensors for wound healing monitoring[J]. Journal of Semiconductors, 2019, 40(11): 111607. doi: 10.1088/1674-4926/40/11/111607 M Qin, H Guo, Z Dai, X Yan, X Ning, Advances in flexible and wearable pH sensors for wound healing monitoring[J]. J. Semicond., 2019, 40(11): 111607. doi: 10.1088/1674-4926/40/11/111607.Export: BibTex EndNote
      Citation:
      Mei Qin, Hao Guo, Zhang Dai, Xu Yan, Xin Ning. Advances in flexible and wearable pH sensors for wound healing monitoring[J]. Journal of Semiconductors, 2019, 40(11): 111607. doi: 10.1088/1674-4926/40/11/111607

      M Qin, H Guo, Z Dai, X Yan, X Ning, Advances in flexible and wearable pH sensors for wound healing monitoring[J]. J. Semicond., 2019, 40(11): 111607. doi: 10.1088/1674-4926/40/11/111607.
      Export: BibTex EndNote

      Advances in flexible and wearable pH sensors for wound healing monitoring

      doi: 10.1088/1674-4926/40/11/111607
      More Information
      • Corresponding author: Email: yanxu-925@163.com
      • Received Date: 2019-07-15
      • Revised Date: 2019-09-24
      • Published Date: 2019-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return