J. Semicond. > Volume 39 > Issue 6 > Article Number: 061009

Silicon-graphene photonic devices

Yanlong Yin 1, , Jiang Li 1, , Yang Xu 2, , Hon Ki Tsang 3, and Daoxin Dai 1, ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Silicon photonics has attracted much attention because of the advantages of CMOS (complementary-metal-oxide-semiconductor) compatibility, ultra-high integrated density, etc. Great progress has been achieved in the past decades. However, it is still not easy to realize active silicon photonic devices and circuits by utilizing the material system of pure silicon due to the limitation of the intrinsic properties of silicon. Graphene has been regarded as a promising material for optoelectronics due to its unique properties and thus provides a potential option for realizing active photonic integrated devices on silicon. In this paper, we present a review on recent progress of some silicon-graphene photonic devices for photodetection, all-optical modulation, as well as thermal-tuning.

Key words: silicongraphenethermo-opticall-opticphotodetector

Abstract: Silicon photonics has attracted much attention because of the advantages of CMOS (complementary-metal-oxide-semiconductor) compatibility, ultra-high integrated density, etc. Great progress has been achieved in the past decades. However, it is still not easy to realize active silicon photonic devices and circuits by utilizing the material system of pure silicon due to the limitation of the intrinsic properties of silicon. Graphene has been regarded as a promising material for optoelectronics due to its unique properties and thus provides a potential option for realizing active photonic integrated devices on silicon. In this paper, we present a review on recent progress of some silicon-graphene photonic devices for photodetection, all-optical modulation, as well as thermal-tuning.

Key words: silicongraphenethermo-opticall-opticphotodetector



References:

[1]

Welch D F, Kish F A, Melle S, et al. Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks. IEEE J Sel Topics Quantum Electron, 2007, 13(1): 22

[2]

Nicholes S C, Măsanovic M L, Jevremovic B, et al. An 8 × 8 InP monolithic tunable optical router (motor) packet forwarding chip. IEEE J Lightwave Technol, 2010, 28(4): 641

[3]

Shi Y C, Dai D X. Design of a compact multimode interference coupler based on deeply-etched SiO2 ridge waveguides. Optics Commun, 2007, 271(2): 404

[4]

Yang L, Yang B, Sheng Z, et al. Compact 2 × 2 tapered multimode interference couplers based on SU-8 polymer rectangular waveguides. Appl Phys Lett, 2008, 93(20): 418

[5]

Dai D X, He S L. Ultrasmall integrated devices based on silicon nanowires for optical communications. J Nanophotonics, 2008, 2(1): 021780

[6]

Sheng Z, Dai D X, He S L. Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends. IEEE J Sel Top Quantum Electron, 2009, 15(5): 1406

[7]

Wang S P, Feng X L, Gao S M, et al. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/ mode-division-multiplexing systems. Opt Lett, 2017, 42(14): 2802

[8]

Chen S T, Wu H, Dai D X. High extinction-ratio compact polarization beam splitter on silicon. Electron Lett, 2016, 52(12): 1043

[9]

Yin Y L, Li Z Y, Dai D X. Ultra-broadband polarization splitter-rotator based on the mode evolution in a dual-core adiabatic taper. IEEE J Lightwave Technol, 2017, 35(11): 2227

[10]

Fu X, Dai D X. Ultra-small Si-nanowire-based 400 GHz-spacing 15 × 15 arrayed-waveguide grating router with microbends. Electron Lett, 2011, 47(4): 266

[11]

Chen P X, Chen S T, Guan X W, et al. High-order microring resonators with bent couplers for a box-like filter response. Opt Lett, 2014, 39(21): 6304

[12]

Wang X K, Guan X W, Huang Q S, et al. Suspended submicron-disk resonator on silicon for optical sensing. Opt Lett, 2013, 38(24): 5405

[13]

Cheng Z Z, Tsang H K. Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides. Opt Lett, 2014, 39(7): 2206

[14]

Dai D X, Mao M. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt Express, 2015, 23(22): 28376

[15]

Fama S, Colace L, Masini G, et al. High performance germanium-on-silicon detectors for optical communications. Appl Phys Lett, 2002, 81(4): 586

[16]

Kang Y M, Liu H D, Morse M, et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat Photon, 2009, 3(1): 59

[17]

Fu X, Cheng J X, Huan Q S, et al. 5 × 20 Gb/s heterogeneously integrated III–V on silicon electro-absorption modulator array with arrayed waveguide grating multiplexer. Opt Express, 2015, 23(14): 18686

[18]

Chen S T, Shi Y C, He S L, et al. Low-loss and broadband 2 × 2 silicon thermo-optic Mach–Zehnder switch with bent directional couplers. Opt Lett, 2016, 41(4): 836

[19]

Oulton R F, Sorger V J, Genov D A, et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics, 2008, 2(8): 496

[20]

Bolotin K, Sikes K, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146(9/10): 351

[21]

Wan X, Xu Y, Guo H W, et al. A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon. NPJ 2D Mater Appl, 2017, 1: 4

[22]

Liu F Z, Kar S. Quantum carrier reinvestment-induced ultrahigh and broadband photocurrent responses in graphene–silicon junctions. ACS Nano, 2014, 8(10): 10270

[23]

Chen Z F, Cheng Z Z, Wang J Q, et al. High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode. Adv Opt Mater, 2015, 3(9): 1207

[24]

Liu J J, Yin Y L, Yu L H, et al. Silicon-graphene conductive photodetector with ultra-high responsivity. Sci Rep, 2017, 7: 40904

[25]

Pospischil A, Humer M, Furchi M M, et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nat Photonics, 2013, 7(11): 892

[26]

Gan X T, Shiue R J, Gao Y D, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photonics, 2013, 7(11): 883

[27]

Wang X M, Cheng Z Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat Photonics, 2013, 7(11): 888

[28]

Yu L H, Zheng J J, Xu Y, et al. Local and nonlocal optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits. ACS Nano, 2014, 8(11): 11386

[29]

Hendry E, Hale P, Moger J, et al. Coherent nonlinear optical response of graphene. Phys Rev Lett, 2010, 105(9): 097401

[30]

Yu L H, He S L, Zheng J J, et al. Graphene-based transparent nano-heater for thermally-tuning silicon nanophotonic integrated devices. Piers Proceedings, 2014

[31]

Gan S, Cheng C T, Zhan Y H, et al. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 2015, 7(47): 20249

[32]

Yu L H, Yin Y L, Shi Y C, et al. Thermally tuning silicon photonic micro-disk resonator with graphene transparent nano-heaters. Optica, 2016, 3(2): 159

[33]

Yan Siqi, Zhu Xiaolong, Frandsen L H, et al. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal Waveguides. Nat Commun, 2016, 8: 14411

[34]

Yu L H L, Dai D X, He S L. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Appl Phys Lett, 2014, 105(25): 251104

[35]

Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nat Nanotechnol, 2008, 3(8): 491

[36]

Bao Q L, Kian P L. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677

[37]

Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nat Photonics, 2010, 4(9): 611

[38]

Lei S, Nihtianov S. Comparative study of silicon-based ultraviolet photodetectors. IEEE Sens J, 2012, 12(7): 2453

[39]

Yu T, Wang F, Xu Y, et al. Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors. Adv Mater, 2016, 28(24): 4912

[40]

Xu Y, Ali A, Shehzad K, et al. Solvent-based soft-patterning of graphene lateral heterostructures for broadband high-speed metal–semiconductor–metal photodetectors. Adv Mater Technol, 2017, 2(2): 1600241

[41]

Chen Z F, Li X M, Wang J Q, et al. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity. ACS Nano, 2017, 11(1): 430

[42]

George P, Strait J, Dawlaty J, et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett, 2008, 8(12): 4248

[43]

Bao Q L, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater, 2009, 19(19): 3077

[44]

Set S, Yaguchi H, Tanaka Y, et al. Ultrafast fiber pulsed lasers incorporating carbon nanotubes. IEEE J Sel Topics Quantum Electron, 2004, 10(1): 137

[45]

Scardaci V, Sun Zhipei, Wang F, et al. Carbon nanotube polycarbonate composites for ultrafast lasers. Adv Mater, 2008, 20(21): 4040

[46]

Wang F, Rozhin A G, Scardaci V, et al. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat Nanotechnol, 2008, 3(12): 738

[47]

Keller U, Weingarten K J, Kartner F X, et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J Sel Top Quantum Electron, 1996, 2(3): 435

[48]

Huang Q J, Jiang S Z, Chang J, et al. A high-quality, monolayer graphene absorber for a 1.06 μm Q-switched mode-locking Nd: YVO4 laser. Laser Phys, 2013, 23(4): 045807

[49]

Lagatsky A, Sun Z, Kulmala T, et al. 2 μm solid-state laser mode-locked by single-layer graphene. Appl Phys Lett, 2013, 102(1): 013113

[50]

Cafiso S, Ugolotti E, Schmidt A, et al. Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber. Opt Lett, 2013, 38(10): 1745

[51]

Wong C Y, Cheng Z Z, Shi Z R, et al. Mode-locked fiber laser using graphene on silicon waveguide. IEEE International Conference on Group IV Photonics, 2013: 35

[52]

Zhou L J, Lu L J, Li Z X, et al. Silicon large-scale optical switches using MZIs and dual-ring assisted MZIs. SPIE OPTO, 2016: 97520K

[53]

Song J F, Fang Q, Tao S H, et al. Fast and low power Michelson interferometer thermo-optical switch on SOI. Opt Express, 2008, 16(20): 15304

[54]

Sohma S, Mino S, Watanabe T, et al. Solid-state optical switches using planar lightwave circuit and IC-on-PLC technologies. Asia-Pacific Opt Commun, 2004: 767

[55]

Espinola R L, Tsai M C, Yardley J T, et al. Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photonics Technol Lett, 2003, 15(10): 1366

[56]

Chu T, Yamada H, Ishida S, et al. Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides. Opt Express, 2005, 13(25): 10109

[57]

Van Campenhout J, Green W M J, Vlasov Y A. Design of a digital, ultra-broadband electro-optic switch for reconfigurable optical networks-on-chip. Opt Express, 2009, 17(26): 23793

[58]

Shoji Y, Kintaka K, Suda S, et al. Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides. Opt Express, 2010, 18(9): 9071

[59]

Fang Q, Song J F, Liow T, et al. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photonics Technol Lett, 2011, 23(8): 525

[60]

Suzuki K, Cong G, Tanizawa K, et al. Ultra-high extinction-ratio 2 × 2 silicon optical switch with variable splitter. Opt Express, 2015, 23(7): 9086

[61]

Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene. Nano Lett, 2008, 8(3): 902

[62]

Dai D X. A novel optical modulators based on multimode optical waveguides. China Patent, 2017201856672

[1]

Welch D F, Kish F A, Melle S, et al. Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks. IEEE J Sel Topics Quantum Electron, 2007, 13(1): 22

[2]

Nicholes S C, Măsanovic M L, Jevremovic B, et al. An 8 × 8 InP monolithic tunable optical router (motor) packet forwarding chip. IEEE J Lightwave Technol, 2010, 28(4): 641

[3]

Shi Y C, Dai D X. Design of a compact multimode interference coupler based on deeply-etched SiO2 ridge waveguides. Optics Commun, 2007, 271(2): 404

[4]

Yang L, Yang B, Sheng Z, et al. Compact 2 × 2 tapered multimode interference couplers based on SU-8 polymer rectangular waveguides. Appl Phys Lett, 2008, 93(20): 418

[5]

Dai D X, He S L. Ultrasmall integrated devices based on silicon nanowires for optical communications. J Nanophotonics, 2008, 2(1): 021780

[6]

Sheng Z, Dai D X, He S L. Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends. IEEE J Sel Top Quantum Electron, 2009, 15(5): 1406

[7]

Wang S P, Feng X L, Gao S M, et al. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/ mode-division-multiplexing systems. Opt Lett, 2017, 42(14): 2802

[8]

Chen S T, Wu H, Dai D X. High extinction-ratio compact polarization beam splitter on silicon. Electron Lett, 2016, 52(12): 1043

[9]

Yin Y L, Li Z Y, Dai D X. Ultra-broadband polarization splitter-rotator based on the mode evolution in a dual-core adiabatic taper. IEEE J Lightwave Technol, 2017, 35(11): 2227

[10]

Fu X, Dai D X. Ultra-small Si-nanowire-based 400 GHz-spacing 15 × 15 arrayed-waveguide grating router with microbends. Electron Lett, 2011, 47(4): 266

[11]

Chen P X, Chen S T, Guan X W, et al. High-order microring resonators with bent couplers for a box-like filter response. Opt Lett, 2014, 39(21): 6304

[12]

Wang X K, Guan X W, Huang Q S, et al. Suspended submicron-disk resonator on silicon for optical sensing. Opt Lett, 2013, 38(24): 5405

[13]

Cheng Z Z, Tsang H K. Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides. Opt Lett, 2014, 39(7): 2206

[14]

Dai D X, Mao M. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt Express, 2015, 23(22): 28376

[15]

Fama S, Colace L, Masini G, et al. High performance germanium-on-silicon detectors for optical communications. Appl Phys Lett, 2002, 81(4): 586

[16]

Kang Y M, Liu H D, Morse M, et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat Photon, 2009, 3(1): 59

[17]

Fu X, Cheng J X, Huan Q S, et al. 5 × 20 Gb/s heterogeneously integrated III–V on silicon electro-absorption modulator array with arrayed waveguide grating multiplexer. Opt Express, 2015, 23(14): 18686

[18]

Chen S T, Shi Y C, He S L, et al. Low-loss and broadband 2 × 2 silicon thermo-optic Mach–Zehnder switch with bent directional couplers. Opt Lett, 2016, 41(4): 836

[19]

Oulton R F, Sorger V J, Genov D A, et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics, 2008, 2(8): 496

[20]

Bolotin K, Sikes K, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146(9/10): 351

[21]

Wan X, Xu Y, Guo H W, et al. A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon. NPJ 2D Mater Appl, 2017, 1: 4

[22]

Liu F Z, Kar S. Quantum carrier reinvestment-induced ultrahigh and broadband photocurrent responses in graphene–silicon junctions. ACS Nano, 2014, 8(10): 10270

[23]

Chen Z F, Cheng Z Z, Wang J Q, et al. High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode. Adv Opt Mater, 2015, 3(9): 1207

[24]

Liu J J, Yin Y L, Yu L H, et al. Silicon-graphene conductive photodetector with ultra-high responsivity. Sci Rep, 2017, 7: 40904

[25]

Pospischil A, Humer M, Furchi M M, et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nat Photonics, 2013, 7(11): 892

[26]

Gan X T, Shiue R J, Gao Y D, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photonics, 2013, 7(11): 883

[27]

Wang X M, Cheng Z Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat Photonics, 2013, 7(11): 888

[28]

Yu L H, Zheng J J, Xu Y, et al. Local and nonlocal optically induced transparency effects in graphene–silicon hybrid nanophotonic integrated circuits. ACS Nano, 2014, 8(11): 11386

[29]

Hendry E, Hale P, Moger J, et al. Coherent nonlinear optical response of graphene. Phys Rev Lett, 2010, 105(9): 097401

[30]

Yu L H, He S L, Zheng J J, et al. Graphene-based transparent nano-heater for thermally-tuning silicon nanophotonic integrated devices. Piers Proceedings, 2014

[31]

Gan S, Cheng C T, Zhan Y H, et al. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 2015, 7(47): 20249

[32]

Yu L H, Yin Y L, Shi Y C, et al. Thermally tuning silicon photonic micro-disk resonator with graphene transparent nano-heaters. Optica, 2016, 3(2): 159

[33]

Yan Siqi, Zhu Xiaolong, Frandsen L H, et al. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal Waveguides. Nat Commun, 2016, 8: 14411

[34]

Yu L H L, Dai D X, He S L. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Appl Phys Lett, 2014, 105(25): 251104

[35]

Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nat Nanotechnol, 2008, 3(8): 491

[36]

Bao Q L, Kian P L. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677

[37]

Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nat Photonics, 2010, 4(9): 611

[38]

Lei S, Nihtianov S. Comparative study of silicon-based ultraviolet photodetectors. IEEE Sens J, 2012, 12(7): 2453

[39]

Yu T, Wang F, Xu Y, et al. Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors. Adv Mater, 2016, 28(24): 4912

[40]

Xu Y, Ali A, Shehzad K, et al. Solvent-based soft-patterning of graphene lateral heterostructures for broadband high-speed metal–semiconductor–metal photodetectors. Adv Mater Technol, 2017, 2(2): 1600241

[41]

Chen Z F, Li X M, Wang J Q, et al. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity. ACS Nano, 2017, 11(1): 430

[42]

George P, Strait J, Dawlaty J, et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett, 2008, 8(12): 4248

[43]

Bao Q L, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater, 2009, 19(19): 3077

[44]

Set S, Yaguchi H, Tanaka Y, et al. Ultrafast fiber pulsed lasers incorporating carbon nanotubes. IEEE J Sel Topics Quantum Electron, 2004, 10(1): 137

[45]

Scardaci V, Sun Zhipei, Wang F, et al. Carbon nanotube polycarbonate composites for ultrafast lasers. Adv Mater, 2008, 20(21): 4040

[46]

Wang F, Rozhin A G, Scardaci V, et al. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat Nanotechnol, 2008, 3(12): 738

[47]

Keller U, Weingarten K J, Kartner F X, et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J Sel Top Quantum Electron, 1996, 2(3): 435

[48]

Huang Q J, Jiang S Z, Chang J, et al. A high-quality, monolayer graphene absorber for a 1.06 μm Q-switched mode-locking Nd: YVO4 laser. Laser Phys, 2013, 23(4): 045807

[49]

Lagatsky A, Sun Z, Kulmala T, et al. 2 μm solid-state laser mode-locked by single-layer graphene. Appl Phys Lett, 2013, 102(1): 013113

[50]

Cafiso S, Ugolotti E, Schmidt A, et al. Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber. Opt Lett, 2013, 38(10): 1745

[51]

Wong C Y, Cheng Z Z, Shi Z R, et al. Mode-locked fiber laser using graphene on silicon waveguide. IEEE International Conference on Group IV Photonics, 2013: 35

[52]

Zhou L J, Lu L J, Li Z X, et al. Silicon large-scale optical switches using MZIs and dual-ring assisted MZIs. SPIE OPTO, 2016: 97520K

[53]

Song J F, Fang Q, Tao S H, et al. Fast and low power Michelson interferometer thermo-optical switch on SOI. Opt Express, 2008, 16(20): 15304

[54]

Sohma S, Mino S, Watanabe T, et al. Solid-state optical switches using planar lightwave circuit and IC-on-PLC technologies. Asia-Pacific Opt Commun, 2004: 767

[55]

Espinola R L, Tsai M C, Yardley J T, et al. Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photonics Technol Lett, 2003, 15(10): 1366

[56]

Chu T, Yamada H, Ishida S, et al. Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides. Opt Express, 2005, 13(25): 10109

[57]

Van Campenhout J, Green W M J, Vlasov Y A. Design of a digital, ultra-broadband electro-optic switch for reconfigurable optical networks-on-chip. Opt Express, 2009, 17(26): 23793

[58]

Shoji Y, Kintaka K, Suda S, et al. Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides. Opt Express, 2010, 18(9): 9071

[59]

Fang Q, Song J F, Liow T, et al. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photonics Technol Lett, 2011, 23(8): 525

[60]

Suzuki K, Cong G, Tanizawa K, et al. Ultra-high extinction-ratio 2 × 2 silicon optical switch with variable splitter. Opt Express, 2015, 23(7): 9086

[61]

Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene. Nano Lett, 2008, 8(3): 902

[62]

Dai D X. A novel optical modulators based on multimode optical waveguides. China Patent, 2017201856672

[1]

Leifeng Chen, Hong He. Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition". J. Semicond., 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007

[2]

K. Fobelets, C. Panteli, O. Sydoruk, Chuanbo Li. Ammonia sensing using arrays of silicon nanowires and graphene. J. Semicond., 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001

[3]

N. Nouri, G. Rashedi. Band structure of monolayer of graphene, silicene and silicon-carbide including a lattice of empty or filled holes. J. Semicond., 2018, 39(8): 083001. doi: 10.1088/1674-4926/39/8/083001

[4]

Zheng Lou, Zhongzhu Liang, Guozhen Shen. Photodetectors based on two dimensional materials. J. Semicond., 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001

[5]

He Yuejiao, Fang Qing, Xin Hongli, Chen Peng, Li Fang, Liu Yuliang. A Low Power Consumption SOI-Based Thermo-Optic Variable Optical Attenuator. J. Semicond., 2005, 26(S1): 204.

[6]

Yong Zhao, Chao Xu, Xiaoqing Jiang, Huiliang Ge. Avalanche-enhanced photocurrents in pin silicon waveguides at 1550 nm wavelength. J. Semicond., 2013, 34(6): 064009. doi: 10.1088/1674-4926/34/6/064009

[7]

Yan Yao, Xiong Liu, Li Yuan, Zhaohua Zhang, Tianling Ren. A novel PIN photodetector with double linear arrays for rainfall prediction. J. Semicond., 2015, 36(9): 094011. doi: 10.1088/1674-4926/36/9/094011

[8]

Naili Yue, Joshua Myers, Liqin Su, Wentao Wang, Fude Liu, Raphael Tsu, Yan Zhuang, Yong Zhang. Growth of oxidation-resistive silicene-like thin flakes and Si nanostructures on graphene. J. Semicond., 2019, 40(6): 062001. doi: 10.1088/1674-4926/40/6/062001

[9]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[10]

Li Wuqun, Cao Juncheng. Anisotropic polarization due to electron–phonon interactions in graphene. J. Semicond., 2009, 30(11): 112002. doi: 10.1088/1674-4926/30/11/112002

[11]

Yang Zhang, Wei Dou, Wei Luo, Weier Lu, Jing Xie, Chaobo Li, Yang Xia. Large area graphene produced via the assistance of surface modification. J. Semicond., 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006

[12]

Xiaowei Jiang. Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure. J. Semicond., 2019, 40(6): 062006. doi: 10.1088/1674-4926/40/6/062006

[13]

Lü Jihe, Huang Hui, Ren Xiaomin, Miao Ang, Li Yiqun, Wang Rui, Huang Yongqing, Wang Qi. A Monolithic Integrated Long-Wavelength Tunable Photodetector Based on a Low Temperature Buffer Layer. J. Semicond., 2007, 28(11): 1807.

[14]

Pulkit Sharma, Pratap Singh, Kamlesh Patel. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line. J. Semicond., 2017, 38(9): 093003. doi: 10.1088/1674-4926/38/9/093003

[15]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[16]

Lara Valentic, Nima E. Gorji. Comment on Chen et al. "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition", Electrochimica Acta, 2014. J. Semicond., 2015, 36(9): 094012. doi: 10.1088/1674-4926/36/9/094012

[17]

Wei Feng. Hydrodynamic simulations of terahertz oscillation in double-layer graphene. J. Semicond., 2018, 39(12): 122005. doi: 10.1088/1674-4926/39/12/122005

[18]

Luqi Tao, Danyang Wang, Song Jiang, Ying Liu, Qianyi Xie, He Tian, Ningqin Deng, Xuefeng Wang, Yi Yang, Tianling Ren. Fabrication techniques and applications of flexible graphene-based electronic devices. J. Semicond., 2016, 37(4): 041001. doi: 10.1088/1674-4926/37/4/041001

[19]

Wenchao Min, Hao Sun, Qilian Zhang, Zhiying Chen, Yanhui Zhang, Guanghui Yu, Xiaowei Sun. A comparative study of Ge/Au/Ni/Au-based ohmic contact on graphene. J. Semicond., 2014, 35(5): 056001. doi: 10.1088/1674-4926/35/5/056001

[20]

Yubing Wang, Weihong Yin, Qin Han, Xiaohong Yang, Han Ye, Dongdong Yin. A method to transfer an individual graphene flake to a target position with a precision of sub-micrometer. J. Semicond., 2017, 38(4): 046001. doi: 10.1088/1674-4926/38/4/046001

Search

Advanced Search >>

GET CITATION

Y L Yin, J Li, Y Xu, H K Tsang, D X Dai. Silicon-graphene photonic devices[J]. J. Semicond., 2018, 39(6): 061009. doi: 10.1088/1674-4926/39/6/061009.

Export: BibTex EndNote

Article Metrics

Article views: 2827 Times PDF downloads: 258 Times Cited by: 0 Times

History

Manuscript received: 29 September 2017 Manuscript revised: 10 December 2017 Online: Accepted Manuscript: 01 February 2018 Published: 01 June 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误