J. Semicond. > Volume 37 > Issue 10 > Article Number: 103002

Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers

M. Mehrabian 1, , , Z. Esteki 2, , H. Shokrvash 2, and G. Kavei 3,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Un-doped and Cu-doped ZnS (ZnS:Cu) thin films were synthesized by Successive Ion Layer Absorption and Reaction (SILAR) method. The UV-visible absorption studies have been used to calculate the band gap values of the fabricated ZnS:Cu thin films. It was observed that by increasing the concentration of Cu2+ ions, the Fermi level moves toward the edge of the valence band of ZnS. Photoluminescence spectra of un-doped and Cu-doped ZnS thin films was recorded under 355 nm. The emission spectrum of samples has a blue emission band at 436 nm. The peak positions of the luminescence showed a red shift as the Cu2+ ion concentration was increased, which indicates that the acceptor level (of Cu2+) is getting close to the valence band of ZnS.

Key words: ZnSCu2+ doped ZnSUV-visible absorptionphotoluminescence

Abstract: Un-doped and Cu-doped ZnS (ZnS:Cu) thin films were synthesized by Successive Ion Layer Absorption and Reaction (SILAR) method. The UV-visible absorption studies have been used to calculate the band gap values of the fabricated ZnS:Cu thin films. It was observed that by increasing the concentration of Cu2+ ions, the Fermi level moves toward the edge of the valence band of ZnS. Photoluminescence spectra of un-doped and Cu-doped ZnS thin films was recorded under 355 nm. The emission spectrum of samples has a blue emission band at 436 nm. The peak positions of the luminescence showed a red shift as the Cu2+ ion concentration was increased, which indicates that the acceptor level (of Cu2+) is getting close to the valence band of ZnS.

Key words: ZnSCu2+ doped ZnSUV-visible absorptionphotoluminescence



References:

[1]

Jindal Z, Verma N K. Effect of UV radiation on the photoluminescent properties of Cu-doped ZnS nanoparticles[J]. Optoelectronics and Advanced Materials- Rapid Communications, 2008, 2(3): 166.

[2]

Wanjari L, Bisen D P, Brahme N. Thermoluminescence characteristics of ZnS:Cu nanoposphors[J]. J Optoelectron Biomed Mater, 2015, 7(3): 59.

[3]

Linares P G, Marti A, Antolın E. Voltage recovery in intermediate band solar cells[J]. Solar Energy Materials & Solar Cells, 2012, 98: 240.

[4]

Puksec J D. Recombination processes and holes and electrons lifetimes[J]. Automatika, 2002, 43: 1.

[5]

Chen Jinhuo, Li Wenjian. Significant improvement of ZnS film electrical and optical performance by indium incorporation[J]. Journal of Semiconductors, 2014, 35(9): 093003. doi: 10.1088/1674-4926/35/9/093003

[6]

Prabu H J, Johnson I, Greener C. Chemical synthesis and characterization of Mg doped ZnS nanoparticles and their engineering band gap performance[J]. J Engineering Research and Applications, 2015, 5(8): 99.

[7]

Srivastava R K, Pandey N, Mishra S. Effect of Cu concentration on the photoconductivity properties of ZnS nanoparticles synthesized by co-precipitation method[J]. Materials Science in Semiconductor Processing, 2013, 16: 1659. doi: 10.1016/j.mssp.2013.06.009

[8]

Joseph B, Manoj P K, Vaidyah V K. Studies on the structural, electrical and optical properties of Al-doped ZnO thin films prepared by chemical spray deposition[J]. J Ceramics International, 2006, 32(5): 487. doi: 10.1016/j.ceramint.2005.03.029

[9]

Hasanzadeh J, Taherkhani A, Ghorbani M. Luminescence and structural properties of ZnS:Cu nanocrystals prepared using a wet chemical technique[J]. Chinese Journal of Physics, 2013, 51(3): 540.

[10]

Long B, Cheng S, Zhou H. The optical and electrical characteristics of ZnS:In thin films prepared by chemical bath deposition method[J]. ECS Solid State Lett, 2014, 3(11): 140. doi: 10.1149/2.0041411ssl

[11]

Yamamoto T. Co-doping method for solutions of doping problems in wide-band-gap semiconductors[J]. Phys Stat Sol A, 2002, 193(3): 423. doi: 10.1002/(ISSN)1521-396X

[12]

Li Wenjian, Chen Jinhuo, Chen Shuying. Substrate temperature effects on the structural and photoelectric properties of ZnS:In films[J]. Journal of Semiconductors, 2014, 35(2): 023001. doi: 10.1088/1674-4926/35/2/023001

[13]

Bol A A, Ferwerda J, Bergwerf J A. Luminescence of nanocrystalline ZnS:Cu2+[J]. J Lumin, 2002, 99: 325. doi: 10.1016/S0022-2313(02)00350-2

[14]

Benyahia K, Benhaya A, Aida M S. ZnS thin films deposition by thermal evaporation for photovoltaic applications[J]. Journal of Semiconductors, 2015, 36(10): 103001. doi: 10.1088/1674-4926/36/10/103001

[1]

Jindal Z, Verma N K. Effect of UV radiation on the photoluminescent properties of Cu-doped ZnS nanoparticles[J]. Optoelectronics and Advanced Materials- Rapid Communications, 2008, 2(3): 166.

[2]

Wanjari L, Bisen D P, Brahme N. Thermoluminescence characteristics of ZnS:Cu nanoposphors[J]. J Optoelectron Biomed Mater, 2015, 7(3): 59.

[3]

Linares P G, Marti A, Antolın E. Voltage recovery in intermediate band solar cells[J]. Solar Energy Materials & Solar Cells, 2012, 98: 240.

[4]

Puksec J D. Recombination processes and holes and electrons lifetimes[J]. Automatika, 2002, 43: 1.

[5]

Chen Jinhuo, Li Wenjian. Significant improvement of ZnS film electrical and optical performance by indium incorporation[J]. Journal of Semiconductors, 2014, 35(9): 093003. doi: 10.1088/1674-4926/35/9/093003

[6]

Prabu H J, Johnson I, Greener C. Chemical synthesis and characterization of Mg doped ZnS nanoparticles and their engineering band gap performance[J]. J Engineering Research and Applications, 2015, 5(8): 99.

[7]

Srivastava R K, Pandey N, Mishra S. Effect of Cu concentration on the photoconductivity properties of ZnS nanoparticles synthesized by co-precipitation method[J]. Materials Science in Semiconductor Processing, 2013, 16: 1659. doi: 10.1016/j.mssp.2013.06.009

[8]

Joseph B, Manoj P K, Vaidyah V K. Studies on the structural, electrical and optical properties of Al-doped ZnO thin films prepared by chemical spray deposition[J]. J Ceramics International, 2006, 32(5): 487. doi: 10.1016/j.ceramint.2005.03.029

[9]

Hasanzadeh J, Taherkhani A, Ghorbani M. Luminescence and structural properties of ZnS:Cu nanocrystals prepared using a wet chemical technique[J]. Chinese Journal of Physics, 2013, 51(3): 540.

[10]

Long B, Cheng S, Zhou H. The optical and electrical characteristics of ZnS:In thin films prepared by chemical bath deposition method[J]. ECS Solid State Lett, 2014, 3(11): 140. doi: 10.1149/2.0041411ssl

[11]

Yamamoto T. Co-doping method for solutions of doping problems in wide-band-gap semiconductors[J]. Phys Stat Sol A, 2002, 193(3): 423. doi: 10.1002/(ISSN)1521-396X

[12]

Li Wenjian, Chen Jinhuo, Chen Shuying. Substrate temperature effects on the structural and photoelectric properties of ZnS:In films[J]. Journal of Semiconductors, 2014, 35(2): 023001. doi: 10.1088/1674-4926/35/2/023001

[13]

Bol A A, Ferwerda J, Bergwerf J A. Luminescence of nanocrystalline ZnS:Cu2+[J]. J Lumin, 2002, 99: 325. doi: 10.1016/S0022-2313(02)00350-2

[14]

Benyahia K, Benhaya A, Aida M S. ZnS thin films deposition by thermal evaporation for photovoltaic applications[J]. Journal of Semiconductors, 2015, 36(10): 103001. doi: 10.1088/1674-4926/36/10/103001

[1]

Jinhuo Chen, Wenjian Li. Significant improvement of ZnS film electrical and optical performance by indium incorporation. J. Semicond., 2014, 35(9): 093003. doi: 10.1088/1674-4926/35/9/093003

[2]

K. Benyahia, A. Benhaya, M. S. Aida. ZnS thin films deposition by thermal evaporation for photovoltaic applications. J. Semicond., 2015, 36(10): 103001. doi: 10.1088/1674-4926/36/10/103001

[3]

Wenjian Li, Jinhuo Chen, Shuying Cheng, Yongshun Wang. Substrate temperature effects on the structural and photoelectric properties of ZnS:In films. J. Semicond., 2014, 35(2): 023001. doi: 10.1088/1674-4926/35/2/023001

[4]

K. Mahmood, M. Asghar, N. Amin, Adnan Ali. Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing. J. Semicond., 2015, 36(3): 033001. doi: 10.1088/1674-4926/36/3/033001

[5]

Wang Bing, Xu Ping, Yang Guowei. Low-Temperature Growth and Photoluminescence of SnO2 Nanowires. J. Semicond., 2008, 29(8): 1469.

[6]

Guo Hengqun, Lin Shangxin, Wang Qiming. Photoluminescence and Application of Nonlinear Optical Property of nc-Si-SiO2 Films. J. Semicond., 2006, 27(2): 345.

[7]

Xia Yan, Wang Junzhuan, Shi Zhuoqiong, Shi Yi, Pu Lin, Zhang Rong, Zheng Youdou, Tao Zhensheng, Lu Fang. Photoluminescence Properties of Er-Doped HfO2 Films. J. Semicond., 2007, 28(9): 1388.

[8]

Zhang Linli, Guo Changxin. Synthesis and Photoluminescence Properties of Dy-Doped ZnO Nanocrystals. J. Semicond., 2007, 28(6): 887.

[9]

Ma Zhongyuan, Han Peigao, Li Wei, Chen San, Qian Bo, Xu Jun, Xu Ling, Huang Xinfan, Chen Kunji, Feng Duan. Photoluminescence During the Crystallization of a-Si∶H/SiO2 Multilayers. J. Semicond., 2006, 27(S1): 76.

[10]

Ding Wuchang, Zuo Yuhua, Zhang Yun, Guo Jianchuan, Cheng Buwen, Yu Jinzhong, Wang Qiming, Guo Hengqun, Lü Peng, Shen Jiwei. Photoluminescence spectroscopy of sputtering Er-doped silicon-rich silicon nitride films. J. Semicond., 2009, 30(10): 102001. doi: 10.1088/1674-4926/30/10/102001

[11]

Wang Caifeng, Li Qingshan, Hu Bo, Li Weibing. White light photoluminescence from ZnS films on porous Si substrates. J. Semicond., 2010, 31(3): 033002. doi: 10.1088/1674-4926/31/3/033002

[12]

Zheng Weimin, Li Sumei, Lü Yingbo, Wang Aifang, Wu Ailing. Photoluminescence of the Beryllium Acceptor at the Centre of Quantum Wells. J. Semicond., 2008, 29(11): 2115.

[13]

Jiang Ran, Xie Erqing, Jia Changwen, Lin Hongfeng, Pan Xiaojun, Li Hui. Photoluminescence Characterization of HfON∶Tb Films with Sputtering. J. Semicond., 2006, 27(S1): 169.

[14]

Yue Wei, Yan Jinliang, Wu Jiangyan, Zhang Liying. Structural and optical properties of Zn-doped β-Ga2O3 films. J. Semicond., 2012, 33(7): 073003. doi: 10.1088/1674-4926/33/7/073003

[15]

Yu Tongjun, Kang Xiangning, Qin Zhixin, Chen Zhizhong, Yang Zhijian, Hu Xiaodong, Zhang Guoyi. Strain Effect on Photoluminescence from InGaN/GaN and InGaN/AlGaN MQWs. J. Semicond., 2006, 27(S1): 20.

[16]

Z. Mouffak, A. Bensaoula, L. Trombetta. A photoluminescence study of plasma reactive ion etching-induced damage in GaN. J. Semicond., 2014, 35(11): 113003. doi: 10.1088/1674-4926/35/11/113003

[17]

Wei Li, Peng Jin, Weiying Wang, Defeng Mao, Guipeng Liu, Zhanguo Wang, Jiaming Wang, Fujun Xu, Bo Shen. Anomalous temperature-dependent photoluminescence peak energy in InAlN alloys. J. Semicond., 2014, 35(9): 093001. doi: 10.1088/1674-4926/35/9/093001

[18]

Xu Linhua, Li Xiangyin, Shi Linxing, Shen Hua. Effect of Annealing Temperature on ZnO Thin Film Grown on a TiO2 Buffer Layer. J. Semicond., 2008, 29(10): 1992.

[19]

Fang Liang, Hejun Xu, Zuoyuan Dong, Yafeng Xie, Chen Luo, Yin Xia, Jian Zhang, Jun Wang, Xing Wu. Substrates and interlayer coupling effects on Mo1−xWxSe2 alloys. J. Semicond., 2019, 40(6): 062005. doi: 10.1088/1674-4926/40/6/062005

[20]

Wu Jiangyan, Yan Jinliang, Yue Wei, Li Ting. Structural and optical properties of Zn3N2 films prepared by magnetron sputtering in NH3-Ar mixture gases. J. Semicond., 2012, 33(4): 043001. doi: 10.1088/1674-4926/33/4/043001

Search

Advanced Search >>

GET CITATION

M. Mehrabian, Z. Esteki, H. Shokrvash, G. Kavei. Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers[J]. J. Semicond., 2016, 37(10): 103002. doi: 10.1088/1674-4926/37/10/103002.

Export: BibTex EndNote

Article Metrics

Article views: 567 Times PDF downloads: 12 Times Cited by: 0 Times

History

Manuscript received: 15 March 2016 Manuscript revised: 09 May 2016 Online: Published: 01 October 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误