REVIEWS

Recent advances in flexible photodetectors based on 1D nanostructures

Senpo Yip1, 2, Lifan Shen1, 3 and Johnny C Ho1, 2,

+ Author Affiliations

 Corresponding author: Johnny C Ho, johnnyho@cityu.edu.hk

PDF

Turn off MathJax

Abstract: Semiconductor nanowires have demonstrated excellent electronic and optoelectronic properties. When integrated into photodetectors, excellent device performance can be easily attained. Apart from the exceptional performance, these nanowires can also enable robust and mechanically flexible photodetectors for various advanced utilizations that the rigid counterparts cannot perform. These unique applications include personal healthcare, next-generation robotics and many others. In this review, we would first discuss the nanowire fabrication techniques as well as the assembly methods of constructing large-scale nanowire arrays. Then, the recent development of flexible photodetectors based on these different nanowire material systems is evaluated in detail. At the same time, we also introduce some recent advancement that allows individual photodetectors to integrate into a more complex system for advanced deployment. Finally, a short conclusion and outlook of challenges faced in the future of the community is presented.

Key words: nanowiresflexiblephotodetectors



[1]
Cheong P, Chang K F, Lai Y H, et al. A ZigBee-based wireless sensor network node for ultraviolet detection of flame. IEEE Trans Ind Electron, 2011, 58(11), 5271 doi: 10.1109/TIE.2011.2119455
[2]
Yao S, Swetha P, Zhu Y. Nanomaterial-enabled wearable sensors for healthcare. Adv Healthc Mater, 2018, 7(1) doi: 10.1002/adhm.201700889
[3]
Elgala H, Mesleh R, Haas H. Indoor optical wireless communication: Potential and state-of-the-art. IEEE Commun Mag, 2011, 49(9), 56 doi: 10.1109/MCOM.2011.6011734
[4]
Zhang M, Yeow J T W. Flexible polymer-carbon nanotube composite with high-response stability for wearable thermal imaging. ACS Appl Mater Interfaces, 2018, 10(31), 26604 doi: 10.1021/acsami.8b06482
[5]
Peng L, Hu L, Fang X. Energy harvesting for nanostructured self-powered photodetectors. Adv Funct Mater, 2014, 24(18), 2591 doi: 10.1002/adfm.201303367
[6]
Xie C, Mak C, Tao X, et al. Photodetectors based on two-dimensional layered materials beyond graphene. Adv Funct Mater, 2017, 27(19), 1603886 doi: 10.1002/adfm.201603886
[7]
Buscema M, Island J O, Groenendijk D J, et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev, 2015, 44(11), 3691 doi: 10.1039/C5CS00106D
[8]
Sun Z, Chang H. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano, 2014, 8(5), 4133 doi: 10.1021/nn500508c
[9]
Dejarld M, Shin J C, Chern W, et al. Formation of high aspect ratio GaAs nanostructures with metal-assisted chemical etching. Nano Lett, 2011, 11, 5259 doi: 10.1021/nl202708d
[10]
Mohseni P K, Kim S H, Zhao X, et al. GaAs pillar array-based light emitting diodes fabricated by metal-assisted chemical etching. J Appl Phys, 2013, 114, 64909 doi: 10.1063/1.4817424
[11]
Lu W, Lieber C M. Semiconductor nanowires. J Phys D, 2006, 39, R387 doi: 10.1088/0022-3727/39/21/R01
[12]
Yan R, Gargas D, Yang P. Nanowire photonics. Nat Photonics, 2009, 3, 569 doi: 10.1038/nphoton.2009.184
[13]
Dick K A, Deppert K, Martensson T, et al. Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett, 2005, 5, 761 doi: 10.1021/nl050301c
[14]
Persson A, Larsson M, Stenstrom S, et al. Solid-phase diffusion mechanism for GaAs nanowire growth. Nat Mater, 2004, 3, 677 doi: 10.1038/nmat1220
[15]
Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998, 279, 208 doi: 10.1126/science.279.5348.208
[16]
Colombo C, Spirkoska D, Frimmer M, et al. Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys Rev B, 2008, 77, 155326 doi: 10.1103/PhysRevB.77.155326
[17]
Han N, Wang F, Hui A T, et al. Facile synthesis and growth mechanism of Ni-catalyzed GaAs nanowires on non-crystalline substrates. Nanotechnology, 2011, 22, 285607 doi: 10.1088/0957-4484/22/28/285607
[18]
Hui A T, Wang F, Han N, et al. High-performance indium phosphide nanowires synthesized on amorphous substrates: from formation mechanism to optical and electrical transport measurements. J Mater Chem, 2012, 22, 10704 doi: 10.1039/c2jm31232h
[19]
Yang Z X, Wang F, Han N, et al. Crystalline GaSb nanowires synthesized on amorphous substrates: From the formation mechanism to p-channel transistor applications. ACS Appl Mater Interfaces, 2013, 5, 10946 doi: 10.1021/am403161t
[20]
Zhou Q, Park J G, Nie R, et al. Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications. ACS Nano, 2018, 12, 8406 doi: 10.1021/acsnano.8b03826
[21]
Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 2015, 14, 636 doi: 10.1038/nmat4271
[22]
Gholipour B, Adamo G, Cortecchia D, et al. Organometallic perovskite metasurfaces. Adv Mater, 2017, 29, 1604268 doi: 10.1002/adma.201604268
[23]
Maceiczyk R M, Dumbgen K, Lignos I, et al. Microfluidic reactors provide preparative and mechanistic insights into the synthesis of formamidinium lead halide perovskite nanocrystals. Chem Mater, 2017, 29, 8433 doi: 10.1021/acs.chemmater.7b02998
[24]
Lignos I, Maceiczyk R M, Demello A J. Microfluidic technology: uncovering the mechanisms of nanocrystal nucleation and growth. Acc Chem Res, 2017, 50, 1248 doi: 10.1021/acs.accounts.7b00088
[25]
Zhang H, Dai X, Guan N, et al. Flexible photodiodes based on nitride core/shell p–n junction nanowires. ACS Appl Mater Interfaces, 2016, 8, 26198 doi: 10.1021/acsami.6b06414
[26]
Takahashi T, Takei K, Adabi E, et al. Parallel array InAs nanowire transistors for mechanically bendable, ultrahigh frequency electronics. ACS Nano, 2010, 4, 5855 doi: 10.1021/nn1018329
[27]
Fan Z, Ho J C, Takahashi T, et al. Toward the development of printable nanowire electronics and sensors. Adv Mater, 2009, 21, 3730 doi: 10.1002/adma.200900860
[28]
Fan Z, Ho J C, Jacobson Z A, et al. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett, 2008, 8, 20 doi: 10.1021/nl071626r
[29]
Hou J J, Han N, Wang F, et al. Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices. ACS Nano, 2012, 6, 3624 doi: 10.1021/nn300966j
[30]
Li D, Lan C, Manikandan A, et al. Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nat Commun, 2019, 10, 1664 doi: 10.1038/s41467-019-09606-y
[31]
Assad O, Leshansky A, Wang B, et al. Spray-coating route for highly aligned and large-scale arrays of nanowires. ACS Nano, 2012, 6, 4702 doi: 10.1021/nn204513y
[32]
Lee J, Shin D, Park J. Fabrication of silver nanowire-based stretchable electrodes using spray coating. Thin Solid Films, 2016, 608, 34 doi: 10.1016/j.tsf.2016.04.008
[33]
Binda M, Natali D, Iacchetti A, et al. Integration of an organic photodetector onto a plastic optical fiber by means of spray coating technique. Adv Mater, 2013, 25(31), 4335 doi: 10.1002/adma.201301285
[34]
Park S, Kim S J, Nam J H, et al. Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor. Adv Mater, 2015, 27, 759 doi: 10.1002/adma.201404544
[35]
Konstantatos G, Clifford J, Levina L, et al. Sensitive solution-processed visible-wavelength photodetectors. Nat Photonics, 2007, 1(9), 531 doi: 10.1038/nphoton.2007.147
[36]
Konstantatos G, Howard I, Fischer A, et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature, 2006, 442(7099), 180 doi: 10.1038/nature04855
[37]
Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications. Nat Photonics, 2010, 4(5), 297 doi: 10.1038/nphoton.2010.40
[38]
Xia F, Mueller T, Lin Y M, et al. Ultrafast graphene photodetector. Nat Nanotechnol, 2009, 4, 839 doi: 10.1038/nnano.2009.292
[39]
Liu Y, Wang F, Wang X, et al. Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetectors. Nat Commun, 2015, 6, 8589 doi: 10.1038/ncomms9589
[40]
Xie J, Liu W, Macewan M R, et al. Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS Nano, 2014, 8, 1878 doi: 10.1021/nn406363j
[41]
Hu X, Zhang X, Liang L, et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv Funct Mater, 2014, 24(46), 7373 doi: 10.1002/adfm.201402020
[42]
Wu H, Sun Y, Lin D, et al. GaN Nanofibers based on electrospinning: facile synthesis, controlled assembly, precise doping, and application as high performance UV photodetector. Adv Mater, 2009, 21, 227 doi: 10.1002/adma.200800529
[43]
Zheng Z, Gan L, Zhai T. Electrospun nanowire arrays for electronics and optoelectronics. Sci Chin Mater, 2016, 59, 200 doi: 10.1007/s40843-016-5026-4
[44]
Liu X, Gu L, Zhang Q, et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat Commun, 2014, 5, 4007 doi: 10.1038/ncomms5007
[45]
Li D, Wang Y, Xia Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater, 2004, 16, 361 doi: 10.1002/adma.200306226
[46]
Dai X, Messanvi A, Zhang H, et al. Flexible light-emitting diodes based on vertical nitride nanowires. Nano Lett, 2015, 15, 6958 doi: 10.1021/acs.nanolett.5b02900
[47]
Richter M, Heumüller T, Matt G J, et al. Carbon photodetectors: the versatility of carbon allotropes. Adv Energy Mater, 2017, 7(10) doi: 10.1002/aenm.201601574
[48]
Barkelid M, Zwiller V. Photocurrent generation in semiconducting and metallic carbon nanotubes. Nat Photonics, 2014, 8(1), 47 doi: 10.1038/nphoton.2013.311
[49]
Siitonen A J, Tsyboulski D A, Bachilo S M, et al. Dependence of exciton mobility on structure in single-walled carbon nanotubes. J Phys Chem Lett, 2010, 1(14), 2189 doi: 10.1021/jz100749c
[50]
Chen K, Gao W, Emaminejad S, et al. Printed carbon nanotube electronics and sensor systems. Adv Mater, 2016, 28(22), 4397 doi: 10.1002/adma.201504958
[51]
Zhang S, Cai L, Wang T, et al. Fully printed flexible carbon nanotube photodetectors. Appl Phys Lett, 2017, 110(12) doi: 10.1063/1.4978935
[52]
Rogalski A, Chrzanowski K. Infrared devices and techniques. Metrol Meas Syst, 2014, 21(4), 565 doi: 10.2478/mms-2014-0057
[53]
Liu Y, Wei N, Zeng Q, et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv Opt Mater, 2016, 4(2), 238 doi: 10.1002/adom.201500529
[54]
Huang Z, Gao M, Yan Z, et al. Flexible infrared detectors based on p–n junctions of multi-walled carbon nanotubes. Nanoscale, 2016, 8(18), 9592 doi: 10.1039/C5NR08791K
[55]
Takahashi T, Yu Z, Chen K, et al. Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers. Nano Lett, 2013, 13(11), 5425 doi: 10.1021/nl403001r
[56]
Suzuki D, Oda S, Kawano Y. A flexible and wearable terahertz scanner. Nat Photonics, 2016, 10(12), 809 doi: 10.1038/nphoton.2016.209
[57]
Liu Y, Liu Y, Qin S, et al. Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res, 2017, 10(6), 1880 doi: 10.1007/s12274-016-1370-9
[58]
Pradhan B, Setyowati K, Liu H, et al. Carbon nanotube-polymer nanocomposite infrared sensor. Nano Lett, 2008, 8(4), 1142 doi: 10.1021/nl0732880
[59]
Hou W, Zhao N J, Meng D, et al. Controlled growth of well-defined conjugated polymers from the surfaces of multiwalled carbon nanotubes: photoresponse enhancement via charge separation. ACS Nano, 2016, 10(5), 5189 doi: 10.1021/acsnano.6b00673
[60]
Sarker B K, Arif M, Khondaker S I. Near-infrared photoresponse in single-walled carbon nanotube/polymer composite films. Carbon, 2010, 48(5), 1539 doi: 10.1016/j.carbon.2009.11.065
[61]
Pyo S, Kim W, Jung H Il, et al. Heterogeneous integration of carbon-nanotube–graphene for high-performance, flexible, and transparent photodetectors. Small, 2017, 13(27), 1700918 doi: 10.1002/smll.201700918
[62]
Du J, Pei S, Ma L, et al. Carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv Mater, 2014, 26(13), 1958 doi: 10.1002/adma.201304135
[63]
Kim D H, Ahn J H, Won M C, et al. Stretchable and foldable silicon integrated circuits. Science, 2008, 320(5875), 507 doi: 10.1126/science.1154367
[64]
Huang Z, Geyer N, Werner P, et al. Metal-assisted chemical etching of silicon: A review. Adv Mater, 2011, 23(2), 285 doi: 10.1002/adma.201001784
[65]
Mulazimoglu E, Coskun S, Gunoven M, et al. Silicon nanowire network metal–semiconductor–metal photodetectors. Appl Phys Lett, 2013, 103(8), 083114 doi: 10.1063/1.4819387
[66]
Kim D H, Lee W, Myoung J M. Flexible multi-wavelength photodetector based on porous silicon nanowires. Nanoscale, 2018, 10(37), 17705 doi: 10.1039/C8NR05096A
[67]
Hossain M, Kumar G S, Barimar Prabhava S N, et al. Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications. ACS Nano, 2018, 12(5), 4727 doi: 10.1021/acsnano.8b01387
[68]
Shen L, Pun E Y B, Ho J C. Recent developments in III–V semiconducting nanowires for high-performance photodetectors. Mater Chem Front, 2017, 1, 630 doi: 10.1039/C6QM00279J
[69]
Miao J, Hu W, Guo N, et al. Single InAs nanowire room-temperature near-infrared photodetectors. ACS Nano, 2014, 8, 3628 doi: 10.1021/nn500201g
[70]
Han N, Yang Z X, Wang F, et al. High-performance GaAs nanowire solar cells for flexible and transparent photovoltaics. ACS Appl Mater Interfaces, 2015, 7(36), 20454 doi: 10.1021/acsami.5b06452
[71]
Yang Z, Han N, Fang M, et al. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nat Commun, 2014, 5, 5249 doi: 10.1038/ncomms6249
[72]
Duan T, Liao C, Chen T, et al. Single crystalline nitrogen-doped InP nanowires for low-voltage field-effect transistors and photodetectors on rigid silicon and flexible mica substrates. Nano Energy, 2015, 15, 293 doi: 10.1016/j.nanoen.2015.05.002
[73]
Luo T, Liang B, Liu Z, et al. Single-GaSb-nanowire-based room temperature photodetectors with broad spectral response. Sci Bull, 2015, 60, 101 doi: 10.1007/s11434-014-0687-6
[74]
Royo M, De Luca M, Rurali R, et al. A review on III–V core–multishell nanowires: growth, properties, and applications. J Phys D, 2017, 50, 143001 doi: 10.1088/1361-6463/aa5d8e
[75]
Han S, Lee S K, Choi I, et al. Highly efficient and flexible photosensors with GaN nanowires horizontally embedded in a graphene sandwich channel. ACS Appl Mater Interfaces, 2018, 10(44), 38173 doi: 10.1021/acsami.8b11229
[76]
Lapierre R R, Robson M, Azizur-Rahman K M, et al. A review of III-V nanowire infrared photodetectors and sensors. J Phys D, 2017, 50(12), 123001 doi: 10.1088/1361-6463/aa5ab3
[77]
Hua M, Zhang S, Pan B, et al. Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater, 2012, 211, 317 doi: 10.1016/j.jhazmat.2011.10.016
[78]
Zou Y, Zhang Y, Hu Y, et al. Ultraviolet detectors based on wide bandgap semiconductor nanowire: A review. Sensors, 2018, 18(7), 2072 doi: 10.3390/s18072072
[79]
Sun Y F, Liu S B, Meng F L, et al. Metal oxide nanostructures and their gas sensing properties: A review. Sensors, 2012, 12(3), 2610 doi: 10.3390/s120302610
[80]
Wong H S P, Lee H Y, Yu S, et al. Metal-oxide RRAM. Proc IEEE, 2012, 100(6), 1951 doi: 10.1109/JPROC.2012.2190369
[81]
Zheng Z, Gan L, Zhang J B, et al. An enhanced UV-Vis-NIR an d flexible photodetector based on electrospun Zno nanowire array/PbS quantum dots film heterostructure. Adv Sci, 2017, 4(3), 1600316 doi: 10.1002/advs.201600316
[82]
Wang S, Sun H, Wang Z, et al. In situ synthesis of monoclinic β-Ga2O3 nanowires on flexible substrate and solar-blind photodetector. J Alloys Compd, 2019, 787(30), 133 doi: 10.1016/j.jallcom.2019.02.031
[83]
Liu Z, Huang H, Liang B, et al. Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates. Opt Express, 2012, 20, 2982 doi: 10.1364/OE.20.002982
[84]
Mallampati B, Nair S V, Ruda H E, et al. Role of surface in high photoconductive gain measured in ZnO nanowire-based photodetector. J Nanoparticle Res, 2015, 17(4), 176 doi: 10.1007/s11051-015-2973-x
[85]
Alsultany F H, Hassan Z, Ahmed N M. A high-sensitivity, fast-response, rapid-recovery UV photodetector fabricated based on catalyst-free growth of ZnO nanowire networks on glass substrate. Opt Mater, 2016, 60, 30 doi: 10.1016/j.optmat.2016.07.004
[86]
Zhao X, Wang F, Shi L, et al. Performance enhancement in ZnO nanowire based double Schottky-barrier photodetector by applying optimized Ag nanoparticles. RSC Adv, 2016, 6(6), 4634 doi: 10.1039/C5RA20161F
[87]
Liu J, Lu R, Xu G, et al. Development of a seedless floating growth process in solution for synthesis of crystalline ZnO micro/nanowire arrays on graphene: Towards high-performance nanohybrid ultraviolet photodetectors. Adv Funct Mater, 2013, 23(39), 4941 doi: 10.1002/adfm.201300468
[88]
Wu J M, Chen Y R, Lin Y H. Rapidly synthesized ZnO nanowires by ultraviolet decomposition process in ambient air for flexible photodetector. Nanoscale, 2011, 3(3), 1053 doi: 10.1039/C0NR00595A
[89]
Liu J, Wu W, Bai S, et al. Synthesis of high crystallinity ZnO nanowire array on polymer substrate and flexible fiber-based sensor. ACS Appl Mater Interfaces, 2011, 3(11), 4197 doi: 10.1021/am200797f
[90]
Zheng Z, Gan L, Li H, et al. A fully transparent and flexible ultraviolet-visible photodetector based on controlled electrospun ZnO–CdO heterojunction nanofiber arrays. Adv Funct Mater, 2015, 25(37), 5885 doi: 10.1002/adfm.201502499
[91]
Manekkathodi A, Lu M Y, Wang C W, et al. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv Mater, 2010, 22(36), 4059 doi: 10.1002/adma.201001289
[92]
Li L, Gu L, Lou Z, et al. ZnO Quantum dot decorated Zn2SnO4 nanowire heterojunction photodetectors with drastic performance enhancement and flexible ultraviolet image sensors. ACS Nano, 2017, 11(4), 4067 doi: 10.1021/acsnano.7b00749
[93]
Shen X, Duan L, Li J, et al. Enhanced performance of flexible ultraviolet photodetectors based on carbon nitride quantum dot/ZnO nanowire nanocomposites. Mater Res Express, 2019, 6(4), 045002 doi: 10.1088/2053-1591/aaf915
[94]
Li L, Lou Z, Shen G. Flexible broadband image sensors with SnS quantum dots/Zn2SnO4 nanowires hybrid nanostructures. Adv Funct Mater, 2018, 28(6), 1705389 doi: 10.1002/adfm.201705389
[95]
Dong Y, Zou Y, Song J, et al. Self-powered fiber-shaped wearable omnidirectional photodetectors. Nano Energy, 2016, 30, 173 doi: 10.1016/j.nanoen.2016.10.009
[96]
Wang X, Liu B, Liu R, et al. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew Chemie, 2014, 53(7), 1849 doi: 10.1002/anie.201307581
[97]
Zhang F, Niu S, Guo W, et al. Piezo-phototronic effect enhanced visible/UV photodetector of a carbon-fiber/ZnO-CdS double-shell microwire. ACS Nano, 2013, 7(5), 4537 doi: 10.1021/nn401232k
[98]
Wang S, Zou Y, Shan Q, et al. Nanowire network-based photodetectors with imaging performance for omnidirectional photodetecting through a wire-shaped structure. RSC Adv, 2018, 8(59), 3666 doi: 10.1039/C8RA06555A
[99]
Sun H, Tian W, Cao F, et al. Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector. Adv Mater, 2018, 30(21), 1706986 doi: 10.1002/adma.201706986
[100]
Xie X, Shen G. Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse. Nanoscale, 2015, 7, 5046 doi: 10.1039/C5NR00410A
[101]
Graham R, Miller C, Oh E, et al. Electric field dependent photocurrent decay length in single lead sulfide nanowire field effect transistors. Nano Lett, 2011, 11(2), 717 doi: 10.1021/nl1038456
[102]
Li L, Lou Z, Shen G. Hierarchical CdS nanowires based rigid and flexible photodetectors with ultrahigh sensitivity. ACS Appl Mater Interfaces, 2015, 7, 23507 doi: 10.1021/acsami.5b06070
[103]
Chen G, Wang W, Wang C, et al. Controlled synthesis of ultrathin Sb2Se3 nanowires and application for flexible photodetectors. Adv Sci, 2015, 2(10), 1500109 doi: 10.1002/advs.201500109
[104]
Liang Y, Wang Y, Wang J, et al. High-performance flexible photodetectors based on single-crystalline Sb2Se3 nanowires. RSC Adv, 2016, 6(14), 11501 doi: 10.1039/C5RA23542A
[105]
Hu W, Huang W, Yang S, et al. High-performance flexible photodetectors based on high-quality perovskite thin films by a vapor–solution method. Adv Mater, 2017, 29(43), 1703256 doi: 10.1002/adma.201703256
[106]
Bao C, Zhu W, Yang J, et al. Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Appl Mater Interfaces, 2016, 8(36), 23868 doi: 10.1021/acsami.6b08318
[107]
Yang W S, Park B W, Jung E H, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345), 1376 doi: 10.1126/science.aan2301
[108]
Chen Q, De Marco N, Yang Y, et al. Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10(3), 355 doi: 10.1016/j.nantod.2015.04.009
[109]
Xu X, Zhang X X, Deng W, et al. Saturated vapor-assisted growth of single-crystalline organic-inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability. ACS Appl Mater Interfaces, 2018, 10(12), 10287 doi: 10.1021/acsami.7b17176
[110]
Asuo I M, Fourmont P, Ka I, et al. Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires. Small, 2019, 15(1), 1804150 doi: 10.1002/smll.201804150
[111]
Zhu B S, He Z, Yao J S, et al. Potassium ion assisted synthesis of organic–inorganic hybrid perovskite nanobelts for stable and flexible photodetectors. Adv Opt Mater, 2018, 6(3), 1701029 doi: 10.1002/adom.201701029
[112]
Cao F, Tian W, Wang M, et al. Semitransparent, flexible, and self-powered photodetectors based on ferroelectricity-assisted perovskite nanowire arrays. Adv Funct Mater, 2019, 1901280 doi: 10.1002/adfm.201901280
[113]
Meng Y, Lan C, Li F, et al. Direct vapor–liquid–solid synthesis of all-inorganic perovskite nanowires for high-performance electronics and optoelectronics. ACS Nano, 2019, 13(5), 6060 doi: 10.1021/acsnano.9b02379
[114]
Zhou Y, Luo J, Zhao Y, et al. Flexible linearly polarized photodetectors based on all-inorganic perovskite CsPbI3 nanowires. Adv Opt Mater, 2018, 6(22), 1800679 doi: 10.1002/adom.201800679
[115]
Kaplan H. Practical applications of infrared thermal sensing and imaging equipment. 3rd ed. SPIE Press, 2007
[116]
Song Y M, Xie Y, Malyarchuk V, et al. Digital cameras with designs inspired by the arthropod eye. Nature, 2013, 497(7447), 95 doi: 10.1038/nature12083
[117]
Krauss T C, Warlen S C. The forensic science use of reflective ultraviolet photography. J Forensic Sci, 1985, 30(1), 262 doi: 10.1520/JFS10991J
[118]
Fulton J E. Utilizing the ultraviolet (UV detect) camera to enhance the appearance of photodamage and other skin conditions. Dermatologic Surg, 1997, 23(3), 163 doi: 10.1111/j.1524-4725.1997.tb00013.x
[119]
Wilkes T C, McGonigle A J S, Pering T D, et al. Ultraviolet imaging with low cost smartphone sensors: Development and application of a raspberry pi-based UV camera. Sensors, 2016, 16(10), 1649 doi: 10.3390/s16101649
[120]
Fingas M, Brown C. Review of oil spill remote sensing. Mar Pollut Bull, 2014, 83(1), 9 doi: 10.1016/j.marpolbul.2014.03.059
[121]
Zhou W, Li H, Yi X, et al. A criterion for UV detection of AC corona inception in a rod-plane air gap. IEEE Trans Dielectr Electr Insul, 2011, 18(1), 232 doi: 10.1109/TDEI.2011.5704514
[122]
Gade R, Moeslund T B. Thermal cameras and applications: A survey. Mach Vis Appl, 2014, 25(1), 245 doi: 10.1007/s00138-013-0570-5
[123]
Zhang Q, Lin Y, Tsui K H, et al. 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv Mater, 2016, 28(44), 9713 doi: 10.1002/adma.201601603
[124]
Fan Z, Kapadia R, Leu P W, et al. Ordered arrays of dual-diameter nanopillars for maximized optical absorption. Nano Lett, 2010, 10(10), 3823 doi: 10.1021/nl1010788
[125]
Deng W, Zhang X, Huang L, et al. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv Mater, 2016, 28, 2201 doi: 10.1002/adma.201505126
[126]
Xu S, Qin Y, Xu C, et al. Self-powered nanowire devices. Nat Nanotechnol, 2010, 5(5), 366 doi: 10.1038/nnano.2010.46
[127]
Wu W, Bai S, Yuan M, et al. Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano, 2012, 6(7), 6231 doi: 10.1021/nn3016585
[128]
Gu S, Lou Z, Li L, et al. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res, 2016, 9(2), 424 doi: 10.1007/s12274-015-0923-7
[129]
Wang X, Liu B, Wang Q, et al. Three-dimensional hierarchical GeSe2 nanostructures for high performance flexible all-solid-state supercapacitors. Adv Mater, 2013, 25(10), 1479 doi: 10.1002/adma.201204063
[130]
Xu J, Shen G. A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy, 2015, 13, 131 doi: 10.1016/j.nanoen.2015.02.027
[131]
Yue Y, Yang Z, Liu N, et al. A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil. ACS Nano, 2016, 10, 11249 doi: 10.1021/acsnano.6b06326
[132]
Costa J C, Spina F, Lugoda P, et al. Flexible sensors—from materials to applications. Technologies, 2019, 7, 35 doi: 10.3390/technologies7020035
Fig. 1.  (Color online) (a) Schematic illustrations of the formation mechanism of GaAs NWs. (b) SEM images of high aspect ratio GaAs NW produced from a 600 nm wide square Au mesh pattern in H2SO4 and KMnO4 solution at 40–45 °C. Reprinted from Ref. [9] with permission, Copyright 2011, American Chemical Society.

Fig. 2.  (Color online) Illustration depicting the growth mechanism of a MAPbI3·DMF NW by in situ monitoring with an UV−Vis microspectrometer. Reprinted from Ref. [20] with permission, Copyright 2018, American Chemical Society.

Fig. 3.  (Color online) (a) Schematic of the process flow for contact printing of nanowire arrays. (b) Dark-field optical and (c) SEM images of Ge NWs (d ~ 30 nm) printed on a Si/SiO2 substrate showing highly dense and aligned monolayer of nanowires. The self-limiting process limits the transfer of NWs to a single layer, without significant NW bundling. (d) and (e) Optical images of double layer printing for Si NW (d ~ 30 nm) cross assembly. Reprinted from Ref. [28] with permission, Copyright 2008, American Chemical Society; (f) (Top) SEM and (bottom) schematic of a back-gated InGaAs NW array FET. The scale bar is 1 μm. (g) Transfer characteristic of a representative InGaAs NW parallel device under VDS = 0.1, 0.4, 0.7, and 1 V, about 200 NWs bridging S/D. (h) Mobility assessment of this NW array device under VDS = 0.1 V. Reproduced from Ref. [29] with permission, Copyright 2012, American Chemical Society.

Fig. 4.  (Color online) Schematic of the spray-coating process that involves a direct transfer of NW suspension to the receiver substrates. (a) Schematic and scanning electron microscopy (SEM) image of the NW sample used in this study. (b) Schematic of the NW suspension. (c) Schematic of the assembled apparatus used in this study. (d) Schematic and optical microscopy image of Si NW spray-coated on the SiOx/Si substrate. Reprinted from Ref. [31] with permission, Copyright 2012, American Chemical Society.

Fig. 5.  (Color online) Schematic of two-step all-printable process and materials characterization. (a) Printing setup schematic. (b, c) Electrospinning ejection from the tailored cone apex. (d, e) Optical images of the as-printed electrospun ZnAc/PVA nanofibres with 5 and 10 mm spacing, respectively. (f) SEM image of an as-calcinated ZnO GNW. (g) Transmission electron microscopy image of a GNW. Reprinted from Ref. [44] with permission, Copyright 2014, Springer Nature.

Fig. 6.  (Color online) (a) Schematic representation of the fabrication steps: encapsulation in PDMS and peel-off of the membrane; deposition of the back metal contact; deposition of the top transparent contact composed of a silver nanowire mesh. (b) Bird’s eye view SEM image of the top surface of the detector. (c) Top view SEM image of an individual nitride NW contacted with silver nanowires. (d) Device photo illustrating its flexibility. Reproduced from Ref. [25] with permission, Copyright ©2016, American Chemical Society.

Fig. 7.  (Color online) (a) Scheme of the PVA/CNT flexible photodetector. (b) I–V characteristic of the photodetector with and without 523 K blackbody illumination in 25 wt% CNT device. (c) Responsivity and detectivity trends according to the CNT content wt%. Reproduced from Ref. [4] with permission, Copyright 2018, American Chemical Society.

Fig. 8.  (Color online) (a) Schematic of the measurement setup of the flexible percolative Si NW photodetector; (b) The transient photocurrent of the photocurrent. (c) The rise time and decay time, (d) the photoresponse at different frequency, (e) time-dependent photocurrent and dark current when the photodetector is bent or flat, and (f) the photocurrent and dark current of the flexible percolative Si NW photodetector as a function of bending cycles. Reproduced from Ref. [67] with permission, Copyright 2018, American Chemical Society.

Fig. 9.  (Color online) (a) Schematic and (b) the band diagram of the transfer process of the GaN NW/graphene sandwich photodetector. Reproduced from Ref. [75] with permission, Copyright 2018, American Chemical Society.

Fig. 10.  (Color online) (a) I–V characteristic of the ZnO NW array/ PbS QDs photodetector under the illumination of different wavelength. (b) Transient response of the photodetector under different wavelength. Reproduced from Ref. [81] Copyright 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Fig. 11.  (Color online) (a) The rise time and decay time and (b) the responsivity and detectivity curves of the perovskite NW photodetector at 0 V. Reprinted from Ref. [112] with permission, Copyright 2019, WILEY-VCH Verlag GmbH & Co.

Fig. 12.  (Color online) (a) Human fingertip radiation detection at different by the CNT/PVA image sensor. (b) (left) The thermal image of the human finger on the right. Reprinted from Ref. [4] with permission, Copyright 2018, American Chemical Society.

Fig. 13.  (Color online) (a) The schematic of the FTNG integrated UV detector. (b) Photoresponse of the UV detector with different UV intensity. (c) Plot of UV detector voltage against the UV intensity. Reprinted from Ref. [127] with permission, Copyright 2012, American Chemical Society.

[1]
Cheong P, Chang K F, Lai Y H, et al. A ZigBee-based wireless sensor network node for ultraviolet detection of flame. IEEE Trans Ind Electron, 2011, 58(11), 5271 doi: 10.1109/TIE.2011.2119455
[2]
Yao S, Swetha P, Zhu Y. Nanomaterial-enabled wearable sensors for healthcare. Adv Healthc Mater, 2018, 7(1) doi: 10.1002/adhm.201700889
[3]
Elgala H, Mesleh R, Haas H. Indoor optical wireless communication: Potential and state-of-the-art. IEEE Commun Mag, 2011, 49(9), 56 doi: 10.1109/MCOM.2011.6011734
[4]
Zhang M, Yeow J T W. Flexible polymer-carbon nanotube composite with high-response stability for wearable thermal imaging. ACS Appl Mater Interfaces, 2018, 10(31), 26604 doi: 10.1021/acsami.8b06482
[5]
Peng L, Hu L, Fang X. Energy harvesting for nanostructured self-powered photodetectors. Adv Funct Mater, 2014, 24(18), 2591 doi: 10.1002/adfm.201303367
[6]
Xie C, Mak C, Tao X, et al. Photodetectors based on two-dimensional layered materials beyond graphene. Adv Funct Mater, 2017, 27(19), 1603886 doi: 10.1002/adfm.201603886
[7]
Buscema M, Island J O, Groenendijk D J, et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev, 2015, 44(11), 3691 doi: 10.1039/C5CS00106D
[8]
Sun Z, Chang H. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano, 2014, 8(5), 4133 doi: 10.1021/nn500508c
[9]
Dejarld M, Shin J C, Chern W, et al. Formation of high aspect ratio GaAs nanostructures with metal-assisted chemical etching. Nano Lett, 2011, 11, 5259 doi: 10.1021/nl202708d
[10]
Mohseni P K, Kim S H, Zhao X, et al. GaAs pillar array-based light emitting diodes fabricated by metal-assisted chemical etching. J Appl Phys, 2013, 114, 64909 doi: 10.1063/1.4817424
[11]
Lu W, Lieber C M. Semiconductor nanowires. J Phys D, 2006, 39, R387 doi: 10.1088/0022-3727/39/21/R01
[12]
Yan R, Gargas D, Yang P. Nanowire photonics. Nat Photonics, 2009, 3, 569 doi: 10.1038/nphoton.2009.184
[13]
Dick K A, Deppert K, Martensson T, et al. Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett, 2005, 5, 761 doi: 10.1021/nl050301c
[14]
Persson A, Larsson M, Stenstrom S, et al. Solid-phase diffusion mechanism for GaAs nanowire growth. Nat Mater, 2004, 3, 677 doi: 10.1038/nmat1220
[15]
Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998, 279, 208 doi: 10.1126/science.279.5348.208
[16]
Colombo C, Spirkoska D, Frimmer M, et al. Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys Rev B, 2008, 77, 155326 doi: 10.1103/PhysRevB.77.155326
[17]
Han N, Wang F, Hui A T, et al. Facile synthesis and growth mechanism of Ni-catalyzed GaAs nanowires on non-crystalline substrates. Nanotechnology, 2011, 22, 285607 doi: 10.1088/0957-4484/22/28/285607
[18]
Hui A T, Wang F, Han N, et al. High-performance indium phosphide nanowires synthesized on amorphous substrates: from formation mechanism to optical and electrical transport measurements. J Mater Chem, 2012, 22, 10704 doi: 10.1039/c2jm31232h
[19]
Yang Z X, Wang F, Han N, et al. Crystalline GaSb nanowires synthesized on amorphous substrates: From the formation mechanism to p-channel transistor applications. ACS Appl Mater Interfaces, 2013, 5, 10946 doi: 10.1021/am403161t
[20]
Zhou Q, Park J G, Nie R, et al. Nanochannel-assisted perovskite nanowires: from growth mechanisms to photodetector applications. ACS Nano, 2018, 12, 8406 doi: 10.1021/acsnano.8b03826
[21]
Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 2015, 14, 636 doi: 10.1038/nmat4271
[22]
Gholipour B, Adamo G, Cortecchia D, et al. Organometallic perovskite metasurfaces. Adv Mater, 2017, 29, 1604268 doi: 10.1002/adma.201604268
[23]
Maceiczyk R M, Dumbgen K, Lignos I, et al. Microfluidic reactors provide preparative and mechanistic insights into the synthesis of formamidinium lead halide perovskite nanocrystals. Chem Mater, 2017, 29, 8433 doi: 10.1021/acs.chemmater.7b02998
[24]
Lignos I, Maceiczyk R M, Demello A J. Microfluidic technology: uncovering the mechanisms of nanocrystal nucleation and growth. Acc Chem Res, 2017, 50, 1248 doi: 10.1021/acs.accounts.7b00088
[25]
Zhang H, Dai X, Guan N, et al. Flexible photodiodes based on nitride core/shell p–n junction nanowires. ACS Appl Mater Interfaces, 2016, 8, 26198 doi: 10.1021/acsami.6b06414
[26]
Takahashi T, Takei K, Adabi E, et al. Parallel array InAs nanowire transistors for mechanically bendable, ultrahigh frequency electronics. ACS Nano, 2010, 4, 5855 doi: 10.1021/nn1018329
[27]
Fan Z, Ho J C, Takahashi T, et al. Toward the development of printable nanowire electronics and sensors. Adv Mater, 2009, 21, 3730 doi: 10.1002/adma.200900860
[28]
Fan Z, Ho J C, Jacobson Z A, et al. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett, 2008, 8, 20 doi: 10.1021/nl071626r
[29]
Hou J J, Han N, Wang F, et al. Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices. ACS Nano, 2012, 6, 3624 doi: 10.1021/nn300966j
[30]
Li D, Lan C, Manikandan A, et al. Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nat Commun, 2019, 10, 1664 doi: 10.1038/s41467-019-09606-y
[31]
Assad O, Leshansky A, Wang B, et al. Spray-coating route for highly aligned and large-scale arrays of nanowires. ACS Nano, 2012, 6, 4702 doi: 10.1021/nn204513y
[32]
Lee J, Shin D, Park J. Fabrication of silver nanowire-based stretchable electrodes using spray coating. Thin Solid Films, 2016, 608, 34 doi: 10.1016/j.tsf.2016.04.008
[33]
Binda M, Natali D, Iacchetti A, et al. Integration of an organic photodetector onto a plastic optical fiber by means of spray coating technique. Adv Mater, 2013, 25(31), 4335 doi: 10.1002/adma.201301285
[34]
Park S, Kim S J, Nam J H, et al. Significant enhancement of infrared photodetector sensitivity using a semiconducting single-walled carbon nanotube/C60 phototransistor. Adv Mater, 2015, 27, 759 doi: 10.1002/adma.201404544
[35]
Konstantatos G, Clifford J, Levina L, et al. Sensitive solution-processed visible-wavelength photodetectors. Nat Photonics, 2007, 1(9), 531 doi: 10.1038/nphoton.2007.147
[36]
Konstantatos G, Howard I, Fischer A, et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature, 2006, 442(7099), 180 doi: 10.1038/nature04855
[37]
Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications. Nat Photonics, 2010, 4(5), 297 doi: 10.1038/nphoton.2010.40
[38]
Xia F, Mueller T, Lin Y M, et al. Ultrafast graphene photodetector. Nat Nanotechnol, 2009, 4, 839 doi: 10.1038/nnano.2009.292
[39]
Liu Y, Wang F, Wang X, et al. Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetectors. Nat Commun, 2015, 6, 8589 doi: 10.1038/ncomms9589
[40]
Xie J, Liu W, Macewan M R, et al. Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS Nano, 2014, 8, 1878 doi: 10.1021/nn406363j
[41]
Hu X, Zhang X, Liang L, et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv Funct Mater, 2014, 24(46), 7373 doi: 10.1002/adfm.201402020
[42]
Wu H, Sun Y, Lin D, et al. GaN Nanofibers based on electrospinning: facile synthesis, controlled assembly, precise doping, and application as high performance UV photodetector. Adv Mater, 2009, 21, 227 doi: 10.1002/adma.200800529
[43]
Zheng Z, Gan L, Zhai T. Electrospun nanowire arrays for electronics and optoelectronics. Sci Chin Mater, 2016, 59, 200 doi: 10.1007/s40843-016-5026-4
[44]
Liu X, Gu L, Zhang Q, et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat Commun, 2014, 5, 4007 doi: 10.1038/ncomms5007
[45]
Li D, Wang Y, Xia Y. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater, 2004, 16, 361 doi: 10.1002/adma.200306226
[46]
Dai X, Messanvi A, Zhang H, et al. Flexible light-emitting diodes based on vertical nitride nanowires. Nano Lett, 2015, 15, 6958 doi: 10.1021/acs.nanolett.5b02900
[47]
Richter M, Heumüller T, Matt G J, et al. Carbon photodetectors: the versatility of carbon allotropes. Adv Energy Mater, 2017, 7(10) doi: 10.1002/aenm.201601574
[48]
Barkelid M, Zwiller V. Photocurrent generation in semiconducting and metallic carbon nanotubes. Nat Photonics, 2014, 8(1), 47 doi: 10.1038/nphoton.2013.311
[49]
Siitonen A J, Tsyboulski D A, Bachilo S M, et al. Dependence of exciton mobility on structure in single-walled carbon nanotubes. J Phys Chem Lett, 2010, 1(14), 2189 doi: 10.1021/jz100749c
[50]
Chen K, Gao W, Emaminejad S, et al. Printed carbon nanotube electronics and sensor systems. Adv Mater, 2016, 28(22), 4397 doi: 10.1002/adma.201504958
[51]
Zhang S, Cai L, Wang T, et al. Fully printed flexible carbon nanotube photodetectors. Appl Phys Lett, 2017, 110(12) doi: 10.1063/1.4978935
[52]
Rogalski A, Chrzanowski K. Infrared devices and techniques. Metrol Meas Syst, 2014, 21(4), 565 doi: 10.2478/mms-2014-0057
[53]
Liu Y, Wei N, Zeng Q, et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv Opt Mater, 2016, 4(2), 238 doi: 10.1002/adom.201500529
[54]
Huang Z, Gao M, Yan Z, et al. Flexible infrared detectors based on p–n junctions of multi-walled carbon nanotubes. Nanoscale, 2016, 8(18), 9592 doi: 10.1039/C5NR08791K
[55]
Takahashi T, Yu Z, Chen K, et al. Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers. Nano Lett, 2013, 13(11), 5425 doi: 10.1021/nl403001r
[56]
Suzuki D, Oda S, Kawano Y. A flexible and wearable terahertz scanner. Nat Photonics, 2016, 10(12), 809 doi: 10.1038/nphoton.2016.209
[57]
Liu Y, Liu Y, Qin S, et al. Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res, 2017, 10(6), 1880 doi: 10.1007/s12274-016-1370-9
[58]
Pradhan B, Setyowati K, Liu H, et al. Carbon nanotube-polymer nanocomposite infrared sensor. Nano Lett, 2008, 8(4), 1142 doi: 10.1021/nl0732880
[59]
Hou W, Zhao N J, Meng D, et al. Controlled growth of well-defined conjugated polymers from the surfaces of multiwalled carbon nanotubes: photoresponse enhancement via charge separation. ACS Nano, 2016, 10(5), 5189 doi: 10.1021/acsnano.6b00673
[60]
Sarker B K, Arif M, Khondaker S I. Near-infrared photoresponse in single-walled carbon nanotube/polymer composite films. Carbon, 2010, 48(5), 1539 doi: 10.1016/j.carbon.2009.11.065
[61]
Pyo S, Kim W, Jung H Il, et al. Heterogeneous integration of carbon-nanotube–graphene for high-performance, flexible, and transparent photodetectors. Small, 2017, 13(27), 1700918 doi: 10.1002/smll.201700918
[62]
Du J, Pei S, Ma L, et al. Carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv Mater, 2014, 26(13), 1958 doi: 10.1002/adma.201304135
[63]
Kim D H, Ahn J H, Won M C, et al. Stretchable and foldable silicon integrated circuits. Science, 2008, 320(5875), 507 doi: 10.1126/science.1154367
[64]
Huang Z, Geyer N, Werner P, et al. Metal-assisted chemical etching of silicon: A review. Adv Mater, 2011, 23(2), 285 doi: 10.1002/adma.201001784
[65]
Mulazimoglu E, Coskun S, Gunoven M, et al. Silicon nanowire network metal–semiconductor–metal photodetectors. Appl Phys Lett, 2013, 103(8), 083114 doi: 10.1063/1.4819387
[66]
Kim D H, Lee W, Myoung J M. Flexible multi-wavelength photodetector based on porous silicon nanowires. Nanoscale, 2018, 10(37), 17705 doi: 10.1039/C8NR05096A
[67]
Hossain M, Kumar G S, Barimar Prabhava S N, et al. Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications. ACS Nano, 2018, 12(5), 4727 doi: 10.1021/acsnano.8b01387
[68]
Shen L, Pun E Y B, Ho J C. Recent developments in III–V semiconducting nanowires for high-performance photodetectors. Mater Chem Front, 2017, 1, 630 doi: 10.1039/C6QM00279J
[69]
Miao J, Hu W, Guo N, et al. Single InAs nanowire room-temperature near-infrared photodetectors. ACS Nano, 2014, 8, 3628 doi: 10.1021/nn500201g
[70]
Han N, Yang Z X, Wang F, et al. High-performance GaAs nanowire solar cells for flexible and transparent photovoltaics. ACS Appl Mater Interfaces, 2015, 7(36), 20454 doi: 10.1021/acsami.5b06452
[71]
Yang Z, Han N, Fang M, et al. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nat Commun, 2014, 5, 5249 doi: 10.1038/ncomms6249
[72]
Duan T, Liao C, Chen T, et al. Single crystalline nitrogen-doped InP nanowires for low-voltage field-effect transistors and photodetectors on rigid silicon and flexible mica substrates. Nano Energy, 2015, 15, 293 doi: 10.1016/j.nanoen.2015.05.002
[73]
Luo T, Liang B, Liu Z, et al. Single-GaSb-nanowire-based room temperature photodetectors with broad spectral response. Sci Bull, 2015, 60, 101 doi: 10.1007/s11434-014-0687-6
[74]
Royo M, De Luca M, Rurali R, et al. A review on III–V core–multishell nanowires: growth, properties, and applications. J Phys D, 2017, 50, 143001 doi: 10.1088/1361-6463/aa5d8e
[75]
Han S, Lee S K, Choi I, et al. Highly efficient and flexible photosensors with GaN nanowires horizontally embedded in a graphene sandwich channel. ACS Appl Mater Interfaces, 2018, 10(44), 38173 doi: 10.1021/acsami.8b11229
[76]
Lapierre R R, Robson M, Azizur-Rahman K M, et al. A review of III-V nanowire infrared photodetectors and sensors. J Phys D, 2017, 50(12), 123001 doi: 10.1088/1361-6463/aa5ab3
[77]
Hua M, Zhang S, Pan B, et al. Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater, 2012, 211, 317 doi: 10.1016/j.jhazmat.2011.10.016
[78]
Zou Y, Zhang Y, Hu Y, et al. Ultraviolet detectors based on wide bandgap semiconductor nanowire: A review. Sensors, 2018, 18(7), 2072 doi: 10.3390/s18072072
[79]
Sun Y F, Liu S B, Meng F L, et al. Metal oxide nanostructures and their gas sensing properties: A review. Sensors, 2012, 12(3), 2610 doi: 10.3390/s120302610
[80]
Wong H S P, Lee H Y, Yu S, et al. Metal-oxide RRAM. Proc IEEE, 2012, 100(6), 1951 doi: 10.1109/JPROC.2012.2190369
[81]
Zheng Z, Gan L, Zhang J B, et al. An enhanced UV-Vis-NIR an d flexible photodetector based on electrospun Zno nanowire array/PbS quantum dots film heterostructure. Adv Sci, 2017, 4(3), 1600316 doi: 10.1002/advs.201600316
[82]
Wang S, Sun H, Wang Z, et al. In situ synthesis of monoclinic β-Ga2O3 nanowires on flexible substrate and solar-blind photodetector. J Alloys Compd, 2019, 787(30), 133 doi: 10.1016/j.jallcom.2019.02.031
[83]
Liu Z, Huang H, Liang B, et al. Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates. Opt Express, 2012, 20, 2982 doi: 10.1364/OE.20.002982
[84]
Mallampati B, Nair S V, Ruda H E, et al. Role of surface in high photoconductive gain measured in ZnO nanowire-based photodetector. J Nanoparticle Res, 2015, 17(4), 176 doi: 10.1007/s11051-015-2973-x
[85]
Alsultany F H, Hassan Z, Ahmed N M. A high-sensitivity, fast-response, rapid-recovery UV photodetector fabricated based on catalyst-free growth of ZnO nanowire networks on glass substrate. Opt Mater, 2016, 60, 30 doi: 10.1016/j.optmat.2016.07.004
[86]
Zhao X, Wang F, Shi L, et al. Performance enhancement in ZnO nanowire based double Schottky-barrier photodetector by applying optimized Ag nanoparticles. RSC Adv, 2016, 6(6), 4634 doi: 10.1039/C5RA20161F
[87]
Liu J, Lu R, Xu G, et al. Development of a seedless floating growth process in solution for synthesis of crystalline ZnO micro/nanowire arrays on graphene: Towards high-performance nanohybrid ultraviolet photodetectors. Adv Funct Mater, 2013, 23(39), 4941 doi: 10.1002/adfm.201300468
[88]
Wu J M, Chen Y R, Lin Y H. Rapidly synthesized ZnO nanowires by ultraviolet decomposition process in ambient air for flexible photodetector. Nanoscale, 2011, 3(3), 1053 doi: 10.1039/C0NR00595A
[89]
Liu J, Wu W, Bai S, et al. Synthesis of high crystallinity ZnO nanowire array on polymer substrate and flexible fiber-based sensor. ACS Appl Mater Interfaces, 2011, 3(11), 4197 doi: 10.1021/am200797f
[90]
Zheng Z, Gan L, Li H, et al. A fully transparent and flexible ultraviolet-visible photodetector based on controlled electrospun ZnO–CdO heterojunction nanofiber arrays. Adv Funct Mater, 2015, 25(37), 5885 doi: 10.1002/adfm.201502499
[91]
Manekkathodi A, Lu M Y, Wang C W, et al. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv Mater, 2010, 22(36), 4059 doi: 10.1002/adma.201001289
[92]
Li L, Gu L, Lou Z, et al. ZnO Quantum dot decorated Zn2SnO4 nanowire heterojunction photodetectors with drastic performance enhancement and flexible ultraviolet image sensors. ACS Nano, 2017, 11(4), 4067 doi: 10.1021/acsnano.7b00749
[93]
Shen X, Duan L, Li J, et al. Enhanced performance of flexible ultraviolet photodetectors based on carbon nitride quantum dot/ZnO nanowire nanocomposites. Mater Res Express, 2019, 6(4), 045002 doi: 10.1088/2053-1591/aaf915
[94]
Li L, Lou Z, Shen G. Flexible broadband image sensors with SnS quantum dots/Zn2SnO4 nanowires hybrid nanostructures. Adv Funct Mater, 2018, 28(6), 1705389 doi: 10.1002/adfm.201705389
[95]
Dong Y, Zou Y, Song J, et al. Self-powered fiber-shaped wearable omnidirectional photodetectors. Nano Energy, 2016, 30, 173 doi: 10.1016/j.nanoen.2016.10.009
[96]
Wang X, Liu B, Liu R, et al. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew Chemie, 2014, 53(7), 1849 doi: 10.1002/anie.201307581
[97]
Zhang F, Niu S, Guo W, et al. Piezo-phototronic effect enhanced visible/UV photodetector of a carbon-fiber/ZnO-CdS double-shell microwire. ACS Nano, 2013, 7(5), 4537 doi: 10.1021/nn401232k
[98]
Wang S, Zou Y, Shan Q, et al. Nanowire network-based photodetectors with imaging performance for omnidirectional photodetecting through a wire-shaped structure. RSC Adv, 2018, 8(59), 3666 doi: 10.1039/C8RA06555A
[99]
Sun H, Tian W, Cao F, et al. Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector. Adv Mater, 2018, 30(21), 1706986 doi: 10.1002/adma.201706986
[100]
Xie X, Shen G. Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse. Nanoscale, 2015, 7, 5046 doi: 10.1039/C5NR00410A
[101]
Graham R, Miller C, Oh E, et al. Electric field dependent photocurrent decay length in single lead sulfide nanowire field effect transistors. Nano Lett, 2011, 11(2), 717 doi: 10.1021/nl1038456
[102]
Li L, Lou Z, Shen G. Hierarchical CdS nanowires based rigid and flexible photodetectors with ultrahigh sensitivity. ACS Appl Mater Interfaces, 2015, 7, 23507 doi: 10.1021/acsami.5b06070
[103]
Chen G, Wang W, Wang C, et al. Controlled synthesis of ultrathin Sb2Se3 nanowires and application for flexible photodetectors. Adv Sci, 2015, 2(10), 1500109 doi: 10.1002/advs.201500109
[104]
Liang Y, Wang Y, Wang J, et al. High-performance flexible photodetectors based on single-crystalline Sb2Se3 nanowires. RSC Adv, 2016, 6(14), 11501 doi: 10.1039/C5RA23542A
[105]
Hu W, Huang W, Yang S, et al. High-performance flexible photodetectors based on high-quality perovskite thin films by a vapor–solution method. Adv Mater, 2017, 29(43), 1703256 doi: 10.1002/adma.201703256
[106]
Bao C, Zhu W, Yang J, et al. Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Appl Mater Interfaces, 2016, 8(36), 23868 doi: 10.1021/acsami.6b08318
[107]
Yang W S, Park B W, Jung E H, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345), 1376 doi: 10.1126/science.aan2301
[108]
Chen Q, De Marco N, Yang Y, et al. Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10(3), 355 doi: 10.1016/j.nantod.2015.04.009
[109]
Xu X, Zhang X X, Deng W, et al. Saturated vapor-assisted growth of single-crystalline organic-inorganic hybrid perovskite nanowires for high-performance photodetectors with robust stability. ACS Appl Mater Interfaces, 2018, 10(12), 10287 doi: 10.1021/acsami.7b17176
[110]
Asuo I M, Fourmont P, Ka I, et al. Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires. Small, 2019, 15(1), 1804150 doi: 10.1002/smll.201804150
[111]
Zhu B S, He Z, Yao J S, et al. Potassium ion assisted synthesis of organic–inorganic hybrid perovskite nanobelts for stable and flexible photodetectors. Adv Opt Mater, 2018, 6(3), 1701029 doi: 10.1002/adom.201701029
[112]
Cao F, Tian W, Wang M, et al. Semitransparent, flexible, and self-powered photodetectors based on ferroelectricity-assisted perovskite nanowire arrays. Adv Funct Mater, 2019, 1901280 doi: 10.1002/adfm.201901280
[113]
Meng Y, Lan C, Li F, et al. Direct vapor–liquid–solid synthesis of all-inorganic perovskite nanowires for high-performance electronics and optoelectronics. ACS Nano, 2019, 13(5), 6060 doi: 10.1021/acsnano.9b02379
[114]
Zhou Y, Luo J, Zhao Y, et al. Flexible linearly polarized photodetectors based on all-inorganic perovskite CsPbI3 nanowires. Adv Opt Mater, 2018, 6(22), 1800679 doi: 10.1002/adom.201800679
[115]
Kaplan H. Practical applications of infrared thermal sensing and imaging equipment. 3rd ed. SPIE Press, 2007
[116]
Song Y M, Xie Y, Malyarchuk V, et al. Digital cameras with designs inspired by the arthropod eye. Nature, 2013, 497(7447), 95 doi: 10.1038/nature12083
[117]
Krauss T C, Warlen S C. The forensic science use of reflective ultraviolet photography. J Forensic Sci, 1985, 30(1), 262 doi: 10.1520/JFS10991J
[118]
Fulton J E. Utilizing the ultraviolet (UV detect) camera to enhance the appearance of photodamage and other skin conditions. Dermatologic Surg, 1997, 23(3), 163 doi: 10.1111/j.1524-4725.1997.tb00013.x
[119]
Wilkes T C, McGonigle A J S, Pering T D, et al. Ultraviolet imaging with low cost smartphone sensors: Development and application of a raspberry pi-based UV camera. Sensors, 2016, 16(10), 1649 doi: 10.3390/s16101649
[120]
Fingas M, Brown C. Review of oil spill remote sensing. Mar Pollut Bull, 2014, 83(1), 9 doi: 10.1016/j.marpolbul.2014.03.059
[121]
Zhou W, Li H, Yi X, et al. A criterion for UV detection of AC corona inception in a rod-plane air gap. IEEE Trans Dielectr Electr Insul, 2011, 18(1), 232 doi: 10.1109/TDEI.2011.5704514
[122]
Gade R, Moeslund T B. Thermal cameras and applications: A survey. Mach Vis Appl, 2014, 25(1), 245 doi: 10.1007/s00138-013-0570-5
[123]
Zhang Q, Lin Y, Tsui K H, et al. 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv Mater, 2016, 28(44), 9713 doi: 10.1002/adma.201601603
[124]
Fan Z, Kapadia R, Leu P W, et al. Ordered arrays of dual-diameter nanopillars for maximized optical absorption. Nano Lett, 2010, 10(10), 3823 doi: 10.1021/nl1010788
[125]
Deng W, Zhang X, Huang L, et al. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv Mater, 2016, 28, 2201 doi: 10.1002/adma.201505126
[126]
Xu S, Qin Y, Xu C, et al. Self-powered nanowire devices. Nat Nanotechnol, 2010, 5(5), 366 doi: 10.1038/nnano.2010.46
[127]
Wu W, Bai S, Yuan M, et al. Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. ACS Nano, 2012, 6(7), 6231 doi: 10.1021/nn3016585
[128]
Gu S, Lou Z, Li L, et al. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res, 2016, 9(2), 424 doi: 10.1007/s12274-015-0923-7
[129]
Wang X, Liu B, Wang Q, et al. Three-dimensional hierarchical GeSe2 nanostructures for high performance flexible all-solid-state supercapacitors. Adv Mater, 2013, 25(10), 1479 doi: 10.1002/adma.201204063
[130]
Xu J, Shen G. A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy, 2015, 13, 131 doi: 10.1016/j.nanoen.2015.02.027
[131]
Yue Y, Yang Z, Liu N, et al. A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil. ACS Nano, 2016, 10, 11249 doi: 10.1021/acsnano.6b06326
[132]
Costa J C, Spina F, Lugoda P, et al. Flexible sensors—from materials to applications. Technologies, 2019, 7, 35 doi: 10.3390/technologies7020035
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4399 Times PDF downloads: 89 Times Cited by: 0 Times

    History

    Received: 21 July 2019 Revised: Online: Accepted Manuscript: 21 October 2019Uncorrected proof: 22 October 2019Published: 08 November 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Senpo Yip, Lifan Shen, Johnny C Ho. Recent advances in flexible photodetectors based on 1D nanostructures[J]. Journal of Semiconductors, 2019, 40(11): 111602. doi: 10.1088/1674-4926/40/11/111602 S P Yip, L F Shen, J C Ho, Recent advances in flexible photodetectors based on 1D nanostructures[J]. J. Semicond., 2019, 40(11): 111602. doi: 10.1088/1674-4926/40/11/111602.Export: BibTex EndNote
      Citation:
      Senpo Yip, Lifan Shen, Johnny C Ho. Recent advances in flexible photodetectors based on 1D nanostructures[J]. Journal of Semiconductors, 2019, 40(11): 111602. doi: 10.1088/1674-4926/40/11/111602

      S P Yip, L F Shen, J C Ho, Recent advances in flexible photodetectors based on 1D nanostructures[J]. J. Semicond., 2019, 40(11): 111602. doi: 10.1088/1674-4926/40/11/111602.
      Export: BibTex EndNote

      Recent advances in flexible photodetectors based on 1D nanostructures

      doi: 10.1088/1674-4926/40/11/111602
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return