J. Semicond. > Volume 39 > Issue 6 > Article Number: 061001

Emerging technologies in Si active photonics

Xiaoxin Wang , and Jifeng Liu ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Silicon photonics for synergistic electronic–photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro-optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p–i–n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronicSilicon photonics for synergistic electronic-photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro–optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p–i–n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronic–photonic integration with performance inaccessible from conventional Si photonics technologies-photonic integration with performance inaccessible from conventional Si photonics technologies.

Key words: silicon photonicslasermodulatorphotodetectorsingle photon detectionelectronic-photonic integration

Abstract: Silicon photonics for synergistic electronic–photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro-optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p–i–n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronicSilicon photonics for synergistic electronic-photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro–optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p–i–n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronic–photonic integration with performance inaccessible from conventional Si photonics technologies-photonic integration with performance inaccessible from conventional Si photonics technologies.

Key words: silicon photonicslasermodulatorphotodetectorsingle photon detectionelectronic-photonic integration



References:

[1]

Soref R A, Lorenzo J P. Single-crystal silicon: a new material for 1.3 and 1.6 μm integrated-optical components. Electron Lett, 1985, 21(21): 953

[2]

Albares D J, Soref R A. Silicon-on-sapphire waveguides. Proc SPIE, 1987, 0704: 24

[3]

Lim A E J, Song J, Fang Q, et al. Review of silicon photonics foundry efforts. IEEE J Sel Topics Quantum Electron, 2014, 20(4): 8300112

[4]

Soref R A, Bennett B R. Electrooptical effects in silicon. IEEE J Quantum Electron, 1987, 23(1): 123

[5]

Reed G, Headley W, Png C. Silicon photonics: the early years. Proc SPIE, 2005, 5730: 596921

[6]

Soref R A. The past, present, and future of silicon photonics. IEEE J Sel Topics Quantum Electron, 2006, 12(6): 1678

[7]

Subbaraman H, Xu X. Recent advances in silicon-based passive and active optical interconnects. Opt Express, 2015, 23(3): 2487

[8]

Yole Développement. The silicon photonics industry is ready for takeoff. Objective: a multibillion dollar market. Silicon Photonics for Data Centers and Other Applications Report, Oct. 2016 http://www.yole.fr/SiliconPhotonics_Market_Applications.aspx

[9]

Liu J F. Monolithically integrated Ge-on-Si active photonics. Photonics, 2014, 1(3): 162

[10]

Feng D, Luff B J, Asghari M. Micron-scale silicon photonic devices and circuits. Optical Fiber Communications Conference, 2014: TH4C.1

[11]

Boeuf F, Cremer S, Temporiti E, et al. Recent progress in silicon photonics R&D and manufacturing on 300 mm wafer platform. Optical Fiber Communications Conference, 2015: W3A.1

[12]

Doerr C, Chen L, Vermeulen D, et al. Single-chip silicon photonics 100-Gb/s coherent transceiver. Optical Fiber Communications Conference, 2014: Th5C.1

[13]

http://www.aimphotonics.com/pdk/

[14]

Liang D, Bowers J. Recent progress in lasers on silicon. Nat Photonics, 2010, 4(8): 511

[15]

Liu J F, Kimerling L C, Michel J. Monolithic Ge-on-Si lasers for large-scale electronic photonic integration. Semicond Sci Technol, 2012, 27(9): 094006

[16]

Paul D J, The progress towards terahertz quantum cascade lasers on silicon substrates. The progress towards terahertz quantum cascade lasers on silicon substrates. Laser Photonics Rev, 2010, 4(5): 610

[17]

Liu J F. Ge-on-Si lasers. In: Photonics and Electronics with Germanium. Eds. Wada K and Kimerling L C. Chapter 12. Weinheim: Willey-VCH Verlag, 2015

[18]

Camacho-Aguilera R, Cai Y, Patel N, et al. An electrically pumped germanium laser. Opt Express, 2012, 20(10): 11316

[19]

Koerner R, Schwarz d, Clausen C, et al. The germanium Zenner-emitter for silicon photonics. 19th European Conference on Integrated Photonics, 2017: M2.2

[20]

Wirths S, Geiger R, Driesch N, et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat Photonics, 2015, 9(2): 88

[21]

Margetis J, Al-Kabi S, Du W, et al. Si-based GeSn lasers with wavelength coverage of 2 to 3 μm and operating temperatures up to 180 K. ACS Photonics, 2018, 5(3): 827

[22]

Duan G H, Jany C, Liepvre A L, et al. Hyrbrid III–V on silicon lasers for photonic integrated circuits on silicon. IEEE J Sel Topics Quantum Electron, 2014, 20(4): 6100213

[23]

Reed G, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photonics, 2010, 4(8): 518

[24]

D’Andrea D. CMOS photonics: today and tomorrow. https://mphotonics.mit.edu/microphotonics-center/meeting-presentations-restricted/spring-2009/714-cmos-photonics-today-and-tomorrow/file

[25]

Ackert J J, Thomson D J, Shen L et al. High-speed detection at two micrometres with monolithic silicon photodiodes. Nat Photonics, 2015, 9(6): 393

[26]

Liu J F, Cannon D D, Wada K, et al. Tensile strained Ge p–i–n photodetectors on Si platform for C and L band telecommunications. Appl Phys Lett, 2005, 87(1): 011110

[27]

Michel J, Liu J F, Kimerling L C. High-performance Ge-on-Si photodetectors. Nat Photonics, 2010, 4(8): 527

[28]

Liu J F, Camacho-Aguilera R, Bessette J T, et al. Ge-on-Si optoelectronics. Thin Solid Films, 2012, 8(1): 3354

[29]

Liu J F, Sun X, Pan D, et al. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt Express, 2007, 15(18): 11272

[30]

Chang G E, Chang S W, Chuang S L. Theory for n-type doped, tensile-strained Ge-SixGeySn1-x-y quantum well lasers. Opt Express, 2009, 17(14): 11246

[31]

El Kurdi M, Fishman G, Sauvage S, et al. Band structure and optical gain of tensile-strained germanium based on a 30 band k·p formalism. J Appl Phys, 2010, 107(1): 013710

[32]

Wang X X, Li H, Camacho-Aguilera R E, et al. Infrared absorption of n-type tensile-strained Ge-on-Si. Opt Lett, 2013, 38(5): 652

[33]

Spitzer W G, Whelan J M. Infrared absorption and electron effective mass in n-type gallium arsenide. Phys Rev, 1959, 114(1): 59

[34]

Cai Y, Han Z, Wang X X, et al. Analysis of threshold current behavior for bulk and quantum well germanium laser structures. IEEE J Sel Topics Quantum Electron, 2013, 19(4): 1901009

[35]

Liu J F, Sun X, Camacho-Aguilera R, et al. Direct-gap optical gain of Ge on Si at room temperature. Opt Lett, 2009, 34(11): 1738

[36]

Luan H C, Lim D R, Lee K K, et al. High-quality Ge epilayers on Si with low threading-dislocation densities. Appl Phys Lett, 1999, 75(19): 2909

[37]

de Kersauson M, El Kurdi M, David Sgnes I, et al. Optical gain in single tensile-strained germanium photonic wire. Opt Express, 2011, 19(19): 17925

[38]

Lange C, Köster N S, Chatterjee S, et al. Ultrafast nonlinear optical response of photoexcited Ge/SiGe quantum wells: Evidence for a femtosecond transient population inversion. Phys Rev B, 2009, 79(20): 201306R

[39]

Zhou X Q, van Driel H M, Mak G. Femtosecond kinetics of photoexcited carriers in germanium. Phys Rev B, 1994, 50(8): 5226

[40]

Wang X X, Kimerling L C, Michel J, et al. Large inherent optical gain from the direct gap transition of Ge thin films. Appl Phys Lett, 2013, 102(13): 131116

[41]

Xu X J, Wang X X, Nishida K, et al. Ultralarge transient optical gain from tensile-strained, n-doped germanium on silicon by spin-on dopant diffusion. Appl Phys Express, 2015, 8(9): 092101

[42]

Liu J F, Sun X, Camacho-Aguilera R, et al. Ge-on-Si laser operating at room temperature. Opt Lett, 2010, 35(5): 679

[43]

Yako M, Park C H, Ahn D, et al. Low threshold light emission from reverse-rib n+Ge cavity made by P diffusion. ECS Trans, 2016, 75(8): 193

[44]

Sun X, Liu J F, Kimerling L C, et al. Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. Opt Lett, 2009, 34(8): 1198

[45]

Cheng S L, Lu J, Shambat G, et al. Room Temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate. Opt Express, 2009, 17(12): 10019

[46]

Kasper E, Oehme M, Aguirov T,et al. Room temperature direct band gap emission from Ge p–i–n heterojunction photodiodes. 7th IEEE International Conference on Group IV Photonics, Beijing, China, Sep 2010

[47]

Arguirov T, Kittler M, Oehme M, et al. Room temperature direct band-gap emission from an unstrained Ge p–i–n LED on Si. Solid State Phenom, 2011, 178/179: 25

[48]

Sun X, Liu J F, Kimerling L C, et al. Toward a germanium laser for integrated silicon photonics. IEEE J Sel Topics Quantum Electron, 2010, 16(1): 124

[49]

Camacho-Aguilera R E, Cai Y, Bessette J T, et al. High active carrier concentration in n-type, thin film Ge using delta-doping. Opt Mater Express, 2012, 2(11): 1462

[50]

Li X, Li Z, Li S, et al. Design considerations of biaxially tensile strained germanium-on-silicon lasers. Semicond Sci Technol, 2016, 31(6): 065015

[51]

Cai Y. Materials science and design for germanium monolithic light source on silicon. PhD Dissertation, Massachusetts Institute of Technology, 2014

[52]

Geiger R, Frigerio J, Süess M J et al. Excess carrier lifetimes in Ge layers on Si. Appl Phys Lett, 2014, 104(6): 062106

[53]

Nam D, Kang J H, Brongersma M L, et al. Observation of improved minority carrier lifetimes in high quality Ge-on-insulator using time-resolved photoluminescence. Opt Lett, 2014, 39(21): 6205

[54]

Koerner R, Oehme M, Gollhofer M, et al. Electrically pumped lasing from Ge Fabry-Perot resonators on Si. Opt Express, 2015, 23(11): 14815

[55]

Koerner R, Schwaiz D, Fischer I A, et al. The Zener-emitter: a novel superluminescent Ge optical waveguide-amplifie with 4.7 dB gain at 92 mA based on free-carrier modulation by direct Zener tunneling monolithically integrated on Si. Proc the International Electron Devices Meeting (IEDM), 2016: 22.5

[56]

Kao K H, Verhulst A S, Vandenberghe W G, et al. Direct and indirect band-to-band tunneling in germanium-based TFETs. IEEE Trans Electron Devices, 2012, 59(2): 292

[57]

Camacho-Aguilera R, Bessette J, Cai Y et al. Single step epitaxial growth of Ge-on-Si for active photonic devices. Advanced Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), 2011: ITuC4

[58]

Camacho-Aguilera R E, Cai Y, Kimerling L C, et al. Ge-on-Si bufferless epitaxial growth for photonic devices. ECS Trans, 2012, 50(9): 469

[59]

Niu G, Capellini C, Schubert M A, et al. Dislocation-free Ge nano-crystals via pattern independent selective Ge heteroepitaxy on Si nano-tip wafers. Sci Rep, 2016, 6: 22709

[60]

Sun X, Liu J F, Kimerling L C, et al. Direct gap photoluminescence of n-type tensile-strained Ge-on-Si. Appl Phys Lett, 2009, 95(1): 011911

[61]

Thomson D J, Shen L, Ackert J J, et al. Optical detection and modulation at 2-2.5 μm in silicon. Opt Express, 2014, 22(9): 10825

[62]

Jenkins D, Dow J. Electronic properties of metastable GexSn1-x alloys. Phys Rev B, 1987, 36(15): 7994

[63]

Al-Kabi S, Ghetmiri S A, Margetis J, et al. An optically pumped 2.5 μm GeSn laser on Si operating at 110 K. Appl Phys Lett, 2016, 109(17): 171105

[64]

Stange D, Wirths S, Geiger R, et al. Optically pumped GeSn microdisk lasers on Si. ACS Photonics, 2016, 3(7): 1279

[65]

Chen R, Lin H, Huo Y, et al. Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy. Appl Phys Lett, 2011, 99(18): 181125

[66]

Ghetmiri S A, Du W, Margetis J, et al. Direct-bandgap GeSn grown on silicon with 2230 nm photoluminescence. Appl Phys Lett, 2014, 105(15): 151109

[67]

Low K L, Yang Y, Han G, et al. Electronic band structure and effective mass parameters of Ge1-xSnx alloys. J Appl Phys, 2012, 112(10): 103715

[68]

Jiang L, Gallagher J D, Senaratne C L, et al. Compositional dependence of the direct and indirect band gaps in Ge1−ySny alloys from room temperature photoluminescence: implications for the indirect to direct gap crossover in intrinsic and n-type materials. Semicond Sci Technol, 2014, 29(11): 115028

[69]

Li H F, Wang X X, Liu J F. Highly effective strain-induced band-engineering of (111) oriented, direct-gap GeSn crystallized on amorphous SiO2 layers. Appl Phys Lett, 2016, 108(10): 102101

[70]

Bauer M, Taraci J, Tolle J, et al. Ge–Sn semiconductors for band-gap and lattice engineering. Appl Phys Lett, 2002, 81(16): 2992

[71]

Wallace P M, Senaratne C L, Xu C, et al. Molecular epitaxy of pseudomorphic Ge1−ySny (y = 0.06–0.17) structures and devices on Si/Ge at ultra-low temperatures via reactions of Ge4H10 and SnD4. Semicond Sci Technol, 2017, 32(2): 025003

[72]

Roucka R, Mathews J, Beeler R T, et al. Direct gap electroluminescence from Si/Ge1-ySny p–i–n heterostructure diode. Appl Phys Lett, 2011, 98(6): 061109

[73]

Mathews J, Roucka R, Xie J Q, et al. Extended performance GeSn/Si(100) p–i–n photodetectors for full spectral range telecommunication applications. Appl Phys Lett, 2009, 95(13): 133506

[74]

Chen R, Lin H, Huo Y et al. Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy. Appl Phys Lett, 2011, 99(18): 181125

[75]

Mathews J, Beeler R T, Tolle J, et al. Direct-gap photoluminescence with tunable emission wavelength in Ge1−ySny alloys on silicon. Appl Phys Lett, 2010, 97(22): 221912

[76]

Grützmacher D. Future applications of SiGeSn and GeSn. ECS Ge, SiGe and Related Materials Meeting, 2016: 2027

[77]

Margetis J, Mosleh A, Al-Kabi S, et al. Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas. J Cryst Growth, 2017, 463: 128

[78]

Von Den Driesch N, Stange D, Wirths S, et al. SiGeSn ternaries for efficient group IV heterostructure light emitters. Small, 2017, 13(16): 1603321

[79]

Burns G, Dill F H Jr, Nathan M I. The effect of temperature on the properties of GaAs laser. Proc IEEE, 1963, 51(6): 947

[80]

Nuese C J, Stillman G E, Sirkis M D, et al. Gallium arsenide-phosphide: crystal, diffusion and laser properties. Solid-State Electron, 1966, 9(8): 735

[81]

Buca D. SiGeSn/GeSn heterostructures for group IV lasers. IEEE Photonics Society Summer Topical Meeting, San Juan, Puerto Rico, 2017

[82]

Stange D, Wirths S, von den Driesch, et al. Optical transitions in direct-bandgap Ge1–xSnx alloys. ACS Photonics, 2015, 2(11): 1539

[83]

Biswas S, Doherty J, Saladukha D, et al. Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1−xSnx nanowires. Nat Commun, 2016, 7: 11405

[84]

Pezzoli F, Giorgioni A, Patchett D, et al. Temperature-dependent photoluminescence characteristics of GeSn epitaxial layers. ACS Photonics, 2016, 3(11): 2004

[85]

Wang X X, Li H F, Liu J F. Power-dependent transient gain study on direct gap GeSn crystallized on amorphous layers. ECS Trans, 2016, 75(8): 223

[86]

Fang A W, Park H, Cohen O, et al. Electrically pumped hybrid AlGaInAs–silicon evanescent laser. Opt Express, 2006, 14(20): 9203

[87]

Wang T, Liu H, Lee A, et al 1. 3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 2011, 19(12): 11381

[88]

Liu A Y, Zhang C, Norman J, et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 2014, 104(04): 041104

[89]

Chen S, Li W, Wu J, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 2016, 10(5): 307

[90]

http://www.fujitsu.com/global/about/resources/news/press-releases/2004/0910-01.html

[91]

Tanabe K, Guimard D, Bordel D, et al. Electrically pumped 1.3 μm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer. Opt Express, 2010, 18(10): 10604

[92]

Mi Z, Yang J, Bhattacharya P, et al. Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon. Electron Lett, 2016, 42(2): 121

[93]

Liu H, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photonics, 2011, 5(7): 416

[94]

Lubyshev D, Fastenau J, Wu Y, et al. Molecular beam epitaxy growth of metamorphic high electron mobility transistors and metamorphic heterojunction bipolar transistors on Ge and Ge-on-insulator/Si substrates. J Vac Sci Technol B, 2008, 26(3): 1115

[95]

Chen S, Liao M, Tang M, et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt Express, 2017, 25(5): 4632

[96]

Chuang S L. Physics of optoelectronic devices. New York: Wiley, 1995

[97]

Miller D A B, Chemla D S, Damen T C, et al. Electric field dependence of optical absorption near the band gap of quantum well structures. Phys Rev B, 1985, 32(2): 1043

[98]

Liu J F. Photonics and electronics with germanium. Weinheim: Willey-VCH Verlag, 2016

[99]

Frova A, Handler P, Germano F A, et al. Electro-absorption effect at the band edges of silicon and germanium. Phys Rev, 1966, 145(2): 575

[100]

Frova A, Handler P. Franz-Keldysh effect in the space-charge region of a germanium p−n junction. Phys Rev, 1965, 137(6A): 1857

[101]

Jongthammanurak S, Liu J F, Wada K, et al. Large electro-optic effect in tensile strained Ge-on-Si films. Appl Phys Lett, 2006, 89(16): 161115

[102]

Liu J F, Dong P, Jongthammanurak S, et al. Design of monolithically integrated GeSi electroabsorption modulators and photodetectors on an SOI platform. Opt Express, 2007, 15(2): 623

[103]

Reiger M M, Vogl P. Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates. Phys Rev B, 1993, 48(19): 14276

[104]

Kuo Y H, Lee Y K, Ge Y, et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature, 2005, 437(7063): 1334

[105]

Roth J E, Fidaner O, Edwards E H, et al. C-band side-entry Ge quantum-well electroabsorption modulator on SOI operating at 1 V swing. Electron Lett, 2008, 44(1): 49

[106]

Edwards E H, Lever L, Fei E T, et al. Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon. Opt Express, 2013, 21(1): 867

[107]

Rouifed M S, Marris-Morini D, Chaisukul P, et al. Advances toward Ge/SiGe quantum-well waveguide modulators at 1.3 μm. IEEE J Sel Topic Quantum Electron, 2014, 20(4): 3400207

[108]

Liu J F, Beals M, Pomerene A, et al. Waveguide integrated, ultra-low energy GeSi electro-absorption modulators. Nat Photonics, 2008, 2(7): 433

[109]

Lim A E J, Liow T Y, Qing F, et al. Novel evanescent-coupled germanium electro-absorption modulator featuring monolithic integration with germanium p–i–n photodetector. Opt Express, 2011, 19(6): 5040

[110]

Feng N N, Feng D Z, Liao S, et al. 30 GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide. Opt Express, 2011, 19(8): 7062

[111]

Feng D Z, Liao S, Liang H, et al. High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide. Opt Express, 2012, 20(20): 22224

[112]

Feng D, Qian W, Liang H, et al. High-speed GeSi electroabsorption modulator on the SOI waveguide platform. IEEE J Sel Topics Quantum Electron, 2013, 19(6): 3401710

[113]

Krishnamoorthy A V, Zheng X, Feng D, et al. A low-power, high-speed, 9-channel germanium-silicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer. Opt Express, 2014, 22(10): 12289

[114]

Gupta S, Srinivasan S A, Pantouvaki M, et al. 50 GHz Ge waveguide electro-absorption modulator integrated in a 220 nm SOI photonics platform. Optical Fiber Communication Conference, 2015: Tu2A.4

[115]

Srinivasan S A, Pantouvaki M, Gupta S, et al. 56 Gb/s germanium waveguide electro-absorption modulator. J Lightwave Technol, 2016, 34(2): 419

[116]

Roth J E, Fidaner O, Schaevitz R K, et al. Optical modulator on silicon employing germanium quantum wells. Opt Express, 2007, 15(9): 5851

[117]

Chaisakul P, Marris-Morini D, Isella G, et al. Polarization dependence of quantum-confined Stark effect in Ge/SiGe quantum well planar waveguides. Opt Lett, 2011, 36(10): 1794

[118]

Chaisakul P, Marris-Morini D, Rouifed M-S, et al. 23 GHz Ge/SiGe multiple quantum well electro-absorption modulator. Opt Express, 2012, 20(3): 3219

[119]

Ren S, Rong Y, Claussen S A, et al. Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides. IEEE Photonics Technol Lett, 2012, 24(6): 461

[120]

Lampin J F, Desplanque L, Mollot F. Detection of picosecond electrical pulses using the intrinsic Franz-Keldysh effect. Appl Phys Lett, 2001, 78(26): 4103

[121]

De Heyn P , Kopp V I, Srinivasan S A, et al. Ultra-dense 16×56 Gb/s NRZ GeSi EAM-PD arrays coupled to multicore fiber for short-reach 896Gb/s optical links. Optical Fiber Communication Conference, 2017: Th1B.7

[122]

Verbist J, Verplaetse M, Srivinasan S A, et al. First real-time 100-Gb/s NRZ-OOK transmission over 2 km with a silicon photonic electro-absorption modulator. Optical Fiber Communication Conference, 2017: Th5C.4

[123]

Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials. Nat Photonics, 2016, 10(4): 227

[124]

Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64

[125]

Wang F, Zhang Y, Tian C, et al. Gate-variable optical transitions in graphene. Science, 2008, 320(5873): 206

[126]

Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308

[127]

Gan X, Shiue R J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photonics, 2013, 7(11): 883

[128]

Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8): 574

[129]

Liu M, Yin X, Zhang X. Double-layer graphene optical modulator. Nano Lett, 2012, 12(3): 1482

[130]

Mohsin M, Schall D, Otto M, et al. Graphene based low insertion loss electroabsorption modulator on SOI waveguide. Opt Express, 2014, 22(2): 15292

[131]

Xu H, Chen Y, Zhang J, et al. Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO2 substrates using Raman spectroscopy. Small, 2012, 8(18): 2833

[132]

Qiu C, Gao W, Vajtai R, et al. Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator. Nano Lett, 2014, 14(12): 6811

[133]

Phare C T, Lee Y H D, Cardenas J, et al. Graphene electro-optic modulator with 30 Ghz bandwidth. Nat Photonics, 2015, 9(8): 511

[134]

Kim K K, Reina A, Shi Y, et al. Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 2010, 21(28): 285205

[135]

Hao R, Du W, Chen H, et al. Ultra-compact optical modulator by graphene induced electro-refraction effect. Appl Phys Lett, 2013, 103(6): 061116

[136]

Du W, Hao R, Li E P. The study of few-layer graphene based Mach–Zehnder modulator. Opt Commun, 2014, 323: 49

[137]

Phatak A, Cheng Z Z, Qin C Y, et al. Design of electro-optic modulators based on graphene-on-silicon slot waveguides. Opt Lett, 2016, 41(11): 2501

[138]

Dionne J A, Diest K, Sweatlock L A, et al. PlasMOStor: a metal–oxide–Si field effect plasmonic modulator. Nano Lett, 2009, 9(2): 897

[139]

Melikyan A, Lindenmann N, Walheim S, et al. Surface plasmon polariton absorption modulator. Opt Express, 2011, 19(9): 8855

[140]

Sorger Volker J, Norberto D L K, Ma R M, et al. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics, 2012, 1(1): 17

[141]

Melikyan A, Alloatti L, Muslija A, et al. High-speed plasmonic phase modulators. Nat Photonics, 2014, 8(3): 229

[142]

Haffner C, Heni W, Feforyshyn Y, Plasmonic organic hybrid modulators—scaling highest speed photonics to the microscale. Plasmonic organic hybrid modulators—scaling highest speed photonics to the microscale. Proc IEEE, 2016, 104(12): 2362

[143]

Haffner C, Heni W, Fedoryshyn Y, et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics, 2015, 9(8): 526

[144]

Huang M, Cai P, Li S, et al. Cost-effective 25G APD TO-Can/ROSA for 100G applications. Optical Fiber Communication Conference, 2017: Th3B.3

[145]

Zhong K P, Zhou X, Wang Y, et al. Amplifier-less transmission of 56 Gbit/s PAM4 over 60 km using 25 Gbps EML and APD. Optical Fiber Communication Conference, 2017: Tu2D.1

[146]

Werner J, Oehme M, Schmid M, et al. Germanium-tin p–i–n photodetectors integrated on silicon grown by molecular beam epitaxy. Appl Phys Lett, 2011, 98(6): 061108

[147]

Roucka R, Mathews J, Weng C, et al. High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge–Sn devices integrated on silicon. IEEE J Quantum Electron, 2011, 47(2): 213

[148]

Su S, Cheng B, Xue C, et al. GeSn p–i–n photodetector for all telecommunication bands detection. Opt Express, 2011, 19(7): 6400

[149]

Oehme M, Schmid M, Kaschel M, et al. GeSn p–i–n detectors integrated on Si with up to 4% Sn. Appl Phys Lett, 2012, 101(14): 141110

[150]

Oehme M, Kostecki K, Ye K, et al. GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz. Opt Express, 2014, 22(1): 839

[151]

Pham T, Du W, Tran H et al. Systematic study of Si-based GeSn photodiodes with 2.6 μm detector cutoff for short-wave infrared detection. Opt Express, 2016, 24(5): 4519

[152]

Gassenq A, Gencarelli F, Van Campenhout J, et al. GeSn/Ge heteostructure short-wave infrared photodetectors on silicon. Opt Express, 2012, 20(25): 27297

[153]

Dong Y, Wang W, Xu S, et al. Two-micro-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth. Opt Express, 2017, 25(14): 15818

[154]

Peng Y H, Cheng H H, Mashanov V I, et al. GeSn p–i–n waveguide photodetectors on silicon substrates. Appl Phys Lett, 2014, 105(23): 231109

[155]

Casalino M, Coppola G, Iodice M, et al. Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives. Sensors, 2010, 10(12): 10571

[156]

Berini P. Surface plasmon photodetectors and their applications. Laser Photonics Rev, 2014, 8(2): 197

[157]

Fukuda M, Aihara T, Yamaguchi K,et al. Light detection enhanced by surface plasmon resonance in metal film. Appl Phys Lett, 2012, 96(15): 153107

[158]

Knight MW, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas. Science, 2011, 332(6030): 702

[159]

Akbari A, Berini P. Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide. Appl Phys Lett, 2009, 95(2): 021104

[160]

Fukuda M, Aihara T, Yamaguchi K, et al. Light detection enhanced by surface plasmon resonance in metal film. Appl Phys Lett, 2010, 96(15): 153107

[161]

Goykhman I, Desiatov B, Khurgin J, et al. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt Express, 2012, 20(27): 28594

[162]

Goykhman I, Sassi U, Desiatov B, et al. On-chip integrated, silicon−graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain. Nano Lett, 2016, 16(5): 3005

[163]

Levy U. Plasmonic silicon Schottky photodetectors: The physics behind graphene enhanced internal photoemission. APL Photonics, 2017, 2(2): 026013

[164]

Fossum E R, Ma J, Masoodian et al. The quanta image sensor: every photon counts. Sensors, 2016, 16(8): 1260

[165]

Ma J, Fossum E R. Quanta image sensor jot with sub 0.3 e-rms read noise and photon counting capability. IEEE Electron Device Lett, 2015, 36(9): 926-928

[166]

Ma J, Photon counting jot devices for quanta image sensors. PhD Dissertation, Dartmouth College, 2017

[167]

Masoodian S, Ma J, Starkey D et al. Room temperature 1040 fps, 1 megapixel photon-counting image sensor with 1.1 μm pixel pitch. SPIE Commercial + Scientific Sensing and Imaging Conference, 2017: 102120H-102120H-8

[168]

Alan Migdall A. Pushing single-photon detection to the limits (and perhaps beyond). IEEE Photonics Society Summer Topical Meeting, 2017: MF4.3

[1]

Soref R A, Lorenzo J P. Single-crystal silicon: a new material for 1.3 and 1.6 μm integrated-optical components. Electron Lett, 1985, 21(21): 953

[2]

Albares D J, Soref R A. Silicon-on-sapphire waveguides. Proc SPIE, 1987, 0704: 24

[3]

Lim A E J, Song J, Fang Q, et al. Review of silicon photonics foundry efforts. IEEE J Sel Topics Quantum Electron, 2014, 20(4): 8300112

[4]

Soref R A, Bennett B R. Electrooptical effects in silicon. IEEE J Quantum Electron, 1987, 23(1): 123

[5]

Reed G, Headley W, Png C. Silicon photonics: the early years. Proc SPIE, 2005, 5730: 596921

[6]

Soref R A. The past, present, and future of silicon photonics. IEEE J Sel Topics Quantum Electron, 2006, 12(6): 1678

[7]

Subbaraman H, Xu X. Recent advances in silicon-based passive and active optical interconnects. Opt Express, 2015, 23(3): 2487

[8]

Yole Développement. The silicon photonics industry is ready for takeoff. Objective: a multibillion dollar market. Silicon Photonics for Data Centers and Other Applications Report, Oct. 2016 http://www.yole.fr/SiliconPhotonics_Market_Applications.aspx

[9]

Liu J F. Monolithically integrated Ge-on-Si active photonics. Photonics, 2014, 1(3): 162

[10]

Feng D, Luff B J, Asghari M. Micron-scale silicon photonic devices and circuits. Optical Fiber Communications Conference, 2014: TH4C.1

[11]

Boeuf F, Cremer S, Temporiti E, et al. Recent progress in silicon photonics R&D and manufacturing on 300 mm wafer platform. Optical Fiber Communications Conference, 2015: W3A.1

[12]

Doerr C, Chen L, Vermeulen D, et al. Single-chip silicon photonics 100-Gb/s coherent transceiver. Optical Fiber Communications Conference, 2014: Th5C.1

[13]

http://www.aimphotonics.com/pdk/

[14]

Liang D, Bowers J. Recent progress in lasers on silicon. Nat Photonics, 2010, 4(8): 511

[15]

Liu J F, Kimerling L C, Michel J. Monolithic Ge-on-Si lasers for large-scale electronic photonic integration. Semicond Sci Technol, 2012, 27(9): 094006

[16]

Paul D J, The progress towards terahertz quantum cascade lasers on silicon substrates. The progress towards terahertz quantum cascade lasers on silicon substrates. Laser Photonics Rev, 2010, 4(5): 610

[17]

Liu J F. Ge-on-Si lasers. In: Photonics and Electronics with Germanium. Eds. Wada K and Kimerling L C. Chapter 12. Weinheim: Willey-VCH Verlag, 2015

[18]

Camacho-Aguilera R, Cai Y, Patel N, et al. An electrically pumped germanium laser. Opt Express, 2012, 20(10): 11316

[19]

Koerner R, Schwarz d, Clausen C, et al. The germanium Zenner-emitter for silicon photonics. 19th European Conference on Integrated Photonics, 2017: M2.2

[20]

Wirths S, Geiger R, Driesch N, et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat Photonics, 2015, 9(2): 88

[21]

Margetis J, Al-Kabi S, Du W, et al. Si-based GeSn lasers with wavelength coverage of 2 to 3 μm and operating temperatures up to 180 K. ACS Photonics, 2018, 5(3): 827

[22]

Duan G H, Jany C, Liepvre A L, et al. Hyrbrid III–V on silicon lasers for photonic integrated circuits on silicon. IEEE J Sel Topics Quantum Electron, 2014, 20(4): 6100213

[23]

Reed G, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photonics, 2010, 4(8): 518

[24]

D’Andrea D. CMOS photonics: today and tomorrow. https://mphotonics.mit.edu/microphotonics-center/meeting-presentations-restricted/spring-2009/714-cmos-photonics-today-and-tomorrow/file

[25]

Ackert J J, Thomson D J, Shen L et al. High-speed detection at two micrometres with monolithic silicon photodiodes. Nat Photonics, 2015, 9(6): 393

[26]

Liu J F, Cannon D D, Wada K, et al. Tensile strained Ge p–i–n photodetectors on Si platform for C and L band telecommunications. Appl Phys Lett, 2005, 87(1): 011110

[27]

Michel J, Liu J F, Kimerling L C. High-performance Ge-on-Si photodetectors. Nat Photonics, 2010, 4(8): 527

[28]

Liu J F, Camacho-Aguilera R, Bessette J T, et al. Ge-on-Si optoelectronics. Thin Solid Films, 2012, 8(1): 3354

[29]

Liu J F, Sun X, Pan D, et al. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt Express, 2007, 15(18): 11272

[30]

Chang G E, Chang S W, Chuang S L. Theory for n-type doped, tensile-strained Ge-SixGeySn1-x-y quantum well lasers. Opt Express, 2009, 17(14): 11246

[31]

El Kurdi M, Fishman G, Sauvage S, et al. Band structure and optical gain of tensile-strained germanium based on a 30 band k·p formalism. J Appl Phys, 2010, 107(1): 013710

[32]

Wang X X, Li H, Camacho-Aguilera R E, et al. Infrared absorption of n-type tensile-strained Ge-on-Si. Opt Lett, 2013, 38(5): 652

[33]

Spitzer W G, Whelan J M. Infrared absorption and electron effective mass in n-type gallium arsenide. Phys Rev, 1959, 114(1): 59

[34]

Cai Y, Han Z, Wang X X, et al. Analysis of threshold current behavior for bulk and quantum well germanium laser structures. IEEE J Sel Topics Quantum Electron, 2013, 19(4): 1901009

[35]

Liu J F, Sun X, Camacho-Aguilera R, et al. Direct-gap optical gain of Ge on Si at room temperature. Opt Lett, 2009, 34(11): 1738

[36]

Luan H C, Lim D R, Lee K K, et al. High-quality Ge epilayers on Si with low threading-dislocation densities. Appl Phys Lett, 1999, 75(19): 2909

[37]

de Kersauson M, El Kurdi M, David Sgnes I, et al. Optical gain in single tensile-strained germanium photonic wire. Opt Express, 2011, 19(19): 17925

[38]

Lange C, Köster N S, Chatterjee S, et al. Ultrafast nonlinear optical response of photoexcited Ge/SiGe quantum wells: Evidence for a femtosecond transient population inversion. Phys Rev B, 2009, 79(20): 201306R

[39]

Zhou X Q, van Driel H M, Mak G. Femtosecond kinetics of photoexcited carriers in germanium. Phys Rev B, 1994, 50(8): 5226

[40]

Wang X X, Kimerling L C, Michel J, et al. Large inherent optical gain from the direct gap transition of Ge thin films. Appl Phys Lett, 2013, 102(13): 131116

[41]

Xu X J, Wang X X, Nishida K, et al. Ultralarge transient optical gain from tensile-strained, n-doped germanium on silicon by spin-on dopant diffusion. Appl Phys Express, 2015, 8(9): 092101

[42]

Liu J F, Sun X, Camacho-Aguilera R, et al. Ge-on-Si laser operating at room temperature. Opt Lett, 2010, 35(5): 679

[43]

Yako M, Park C H, Ahn D, et al. Low threshold light emission from reverse-rib n+Ge cavity made by P diffusion. ECS Trans, 2016, 75(8): 193

[44]

Sun X, Liu J F, Kimerling L C, et al. Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. Opt Lett, 2009, 34(8): 1198

[45]

Cheng S L, Lu J, Shambat G, et al. Room Temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate. Opt Express, 2009, 17(12): 10019

[46]

Kasper E, Oehme M, Aguirov T,et al. Room temperature direct band gap emission from Ge p–i–n heterojunction photodiodes. 7th IEEE International Conference on Group IV Photonics, Beijing, China, Sep 2010

[47]

Arguirov T, Kittler M, Oehme M, et al. Room temperature direct band-gap emission from an unstrained Ge p–i–n LED on Si. Solid State Phenom, 2011, 178/179: 25

[48]

Sun X, Liu J F, Kimerling L C, et al. Toward a germanium laser for integrated silicon photonics. IEEE J Sel Topics Quantum Electron, 2010, 16(1): 124

[49]

Camacho-Aguilera R E, Cai Y, Bessette J T, et al. High active carrier concentration in n-type, thin film Ge using delta-doping. Opt Mater Express, 2012, 2(11): 1462

[50]

Li X, Li Z, Li S, et al. Design considerations of biaxially tensile strained germanium-on-silicon lasers. Semicond Sci Technol, 2016, 31(6): 065015

[51]

Cai Y. Materials science and design for germanium monolithic light source on silicon. PhD Dissertation, Massachusetts Institute of Technology, 2014

[52]

Geiger R, Frigerio J, Süess M J et al. Excess carrier lifetimes in Ge layers on Si. Appl Phys Lett, 2014, 104(6): 062106

[53]

Nam D, Kang J H, Brongersma M L, et al. Observation of improved minority carrier lifetimes in high quality Ge-on-insulator using time-resolved photoluminescence. Opt Lett, 2014, 39(21): 6205

[54]

Koerner R, Oehme M, Gollhofer M, et al. Electrically pumped lasing from Ge Fabry-Perot resonators on Si. Opt Express, 2015, 23(11): 14815

[55]

Koerner R, Schwaiz D, Fischer I A, et al. The Zener-emitter: a novel superluminescent Ge optical waveguide-amplifie with 4.7 dB gain at 92 mA based on free-carrier modulation by direct Zener tunneling monolithically integrated on Si. Proc the International Electron Devices Meeting (IEDM), 2016: 22.5

[56]

Kao K H, Verhulst A S, Vandenberghe W G, et al. Direct and indirect band-to-band tunneling in germanium-based TFETs. IEEE Trans Electron Devices, 2012, 59(2): 292

[57]

Camacho-Aguilera R, Bessette J, Cai Y et al. Single step epitaxial growth of Ge-on-Si for active photonic devices. Advanced Photonics, OSA Technical Digest (CD) (Optical Society of America, 2011), 2011: ITuC4

[58]

Camacho-Aguilera R E, Cai Y, Kimerling L C, et al. Ge-on-Si bufferless epitaxial growth for photonic devices. ECS Trans, 2012, 50(9): 469

[59]

Niu G, Capellini C, Schubert M A, et al. Dislocation-free Ge nano-crystals via pattern independent selective Ge heteroepitaxy on Si nano-tip wafers. Sci Rep, 2016, 6: 22709

[60]

Sun X, Liu J F, Kimerling L C, et al. Direct gap photoluminescence of n-type tensile-strained Ge-on-Si. Appl Phys Lett, 2009, 95(1): 011911

[61]

Thomson D J, Shen L, Ackert J J, et al. Optical detection and modulation at 2-2.5 μm in silicon. Opt Express, 2014, 22(9): 10825

[62]

Jenkins D, Dow J. Electronic properties of metastable GexSn1-x alloys. Phys Rev B, 1987, 36(15): 7994

[63]

Al-Kabi S, Ghetmiri S A, Margetis J, et al. An optically pumped 2.5 μm GeSn laser on Si operating at 110 K. Appl Phys Lett, 2016, 109(17): 171105

[64]

Stange D, Wirths S, Geiger R, et al. Optically pumped GeSn microdisk lasers on Si. ACS Photonics, 2016, 3(7): 1279

[65]

Chen R, Lin H, Huo Y, et al. Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy. Appl Phys Lett, 2011, 99(18): 181125

[66]

Ghetmiri S A, Du W, Margetis J, et al. Direct-bandgap GeSn grown on silicon with 2230 nm photoluminescence. Appl Phys Lett, 2014, 105(15): 151109

[67]

Low K L, Yang Y, Han G, et al. Electronic band structure and effective mass parameters of Ge1-xSnx alloys. J Appl Phys, 2012, 112(10): 103715

[68]

Jiang L, Gallagher J D, Senaratne C L, et al. Compositional dependence of the direct and indirect band gaps in Ge1−ySny alloys from room temperature photoluminescence: implications for the indirect to direct gap crossover in intrinsic and n-type materials. Semicond Sci Technol, 2014, 29(11): 115028

[69]

Li H F, Wang X X, Liu J F. Highly effective strain-induced band-engineering of (111) oriented, direct-gap GeSn crystallized on amorphous SiO2 layers. Appl Phys Lett, 2016, 108(10): 102101

[70]

Bauer M, Taraci J, Tolle J, et al. Ge–Sn semiconductors for band-gap and lattice engineering. Appl Phys Lett, 2002, 81(16): 2992

[71]

Wallace P M, Senaratne C L, Xu C, et al. Molecular epitaxy of pseudomorphic Ge1−ySny (y = 0.06–0.17) structures and devices on Si/Ge at ultra-low temperatures via reactions of Ge4H10 and SnD4. Semicond Sci Technol, 2017, 32(2): 025003

[72]

Roucka R, Mathews J, Beeler R T, et al. Direct gap electroluminescence from Si/Ge1-ySny p–i–n heterostructure diode. Appl Phys Lett, 2011, 98(6): 061109

[73]

Mathews J, Roucka R, Xie J Q, et al. Extended performance GeSn/Si(100) p–i–n photodetectors for full spectral range telecommunication applications. Appl Phys Lett, 2009, 95(13): 133506

[74]

Chen R, Lin H, Huo Y et al. Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy. Appl Phys Lett, 2011, 99(18): 181125

[75]

Mathews J, Beeler R T, Tolle J, et al. Direct-gap photoluminescence with tunable emission wavelength in Ge1−ySny alloys on silicon. Appl Phys Lett, 2010, 97(22): 221912

[76]

Grützmacher D. Future applications of SiGeSn and GeSn. ECS Ge, SiGe and Related Materials Meeting, 2016: 2027

[77]

Margetis J, Mosleh A, Al-Kabi S, et al. Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas. J Cryst Growth, 2017, 463: 128

[78]

Von Den Driesch N, Stange D, Wirths S, et al. SiGeSn ternaries for efficient group IV heterostructure light emitters. Small, 2017, 13(16): 1603321

[79]

Burns G, Dill F H Jr, Nathan M I. The effect of temperature on the properties of GaAs laser. Proc IEEE, 1963, 51(6): 947

[80]

Nuese C J, Stillman G E, Sirkis M D, et al. Gallium arsenide-phosphide: crystal, diffusion and laser properties. Solid-State Electron, 1966, 9(8): 735

[81]

Buca D. SiGeSn/GeSn heterostructures for group IV lasers. IEEE Photonics Society Summer Topical Meeting, San Juan, Puerto Rico, 2017

[82]

Stange D, Wirths S, von den Driesch, et al. Optical transitions in direct-bandgap Ge1–xSnx alloys. ACS Photonics, 2015, 2(11): 1539

[83]

Biswas S, Doherty J, Saladukha D, et al. Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1−xSnx nanowires. Nat Commun, 2016, 7: 11405

[84]

Pezzoli F, Giorgioni A, Patchett D, et al. Temperature-dependent photoluminescence characteristics of GeSn epitaxial layers. ACS Photonics, 2016, 3(11): 2004

[85]

Wang X X, Li H F, Liu J F. Power-dependent transient gain study on direct gap GeSn crystallized on amorphous layers. ECS Trans, 2016, 75(8): 223

[86]

Fang A W, Park H, Cohen O, et al. Electrically pumped hybrid AlGaInAs–silicon evanescent laser. Opt Express, 2006, 14(20): 9203

[87]

Wang T, Liu H, Lee A, et al 1. 3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 2011, 19(12): 11381

[88]

Liu A Y, Zhang C, Norman J, et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 2014, 104(04): 041104

[89]

Chen S, Li W, Wu J, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 2016, 10(5): 307

[90]

http://www.fujitsu.com/global/about/resources/news/press-releases/2004/0910-01.html

[91]

Tanabe K, Guimard D, Bordel D, et al. Electrically pumped 1.3 μm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer. Opt Express, 2010, 18(10): 10604

[92]

Mi Z, Yang J, Bhattacharya P, et al. Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon. Electron Lett, 2016, 42(2): 121

[93]

Liu H, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photonics, 2011, 5(7): 416

[94]

Lubyshev D, Fastenau J, Wu Y, et al. Molecular beam epitaxy growth of metamorphic high electron mobility transistors and metamorphic heterojunction bipolar transistors on Ge and Ge-on-insulator/Si substrates. J Vac Sci Technol B, 2008, 26(3): 1115

[95]

Chen S, Liao M, Tang M, et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt Express, 2017, 25(5): 4632

[96]

Chuang S L. Physics of optoelectronic devices. New York: Wiley, 1995

[97]

Miller D A B, Chemla D S, Damen T C, et al. Electric field dependence of optical absorption near the band gap of quantum well structures. Phys Rev B, 1985, 32(2): 1043

[98]

Liu J F. Photonics and electronics with germanium. Weinheim: Willey-VCH Verlag, 2016

[99]

Frova A, Handler P, Germano F A, et al. Electro-absorption effect at the band edges of silicon and germanium. Phys Rev, 1966, 145(2): 575

[100]

Frova A, Handler P. Franz-Keldysh effect in the space-charge region of a germanium p−n junction. Phys Rev, 1965, 137(6A): 1857

[101]

Jongthammanurak S, Liu J F, Wada K, et al. Large electro-optic effect in tensile strained Ge-on-Si films. Appl Phys Lett, 2006, 89(16): 161115

[102]

Liu J F, Dong P, Jongthammanurak S, et al. Design of monolithically integrated GeSi electroabsorption modulators and photodetectors on an SOI platform. Opt Express, 2007, 15(2): 623

[103]

Reiger M M, Vogl P. Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates. Phys Rev B, 1993, 48(19): 14276

[104]

Kuo Y H, Lee Y K, Ge Y, et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature, 2005, 437(7063): 1334

[105]

Roth J E, Fidaner O, Edwards E H, et al. C-band side-entry Ge quantum-well electroabsorption modulator on SOI operating at 1 V swing. Electron Lett, 2008, 44(1): 49

[106]

Edwards E H, Lever L, Fei E T, et al. Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon. Opt Express, 2013, 21(1): 867

[107]

Rouifed M S, Marris-Morini D, Chaisukul P, et al. Advances toward Ge/SiGe quantum-well waveguide modulators at 1.3 μm. IEEE J Sel Topic Quantum Electron, 2014, 20(4): 3400207

[108]

Liu J F, Beals M, Pomerene A, et al. Waveguide integrated, ultra-low energy GeSi electro-absorption modulators. Nat Photonics, 2008, 2(7): 433

[109]

Lim A E J, Liow T Y, Qing F, et al. Novel evanescent-coupled germanium electro-absorption modulator featuring monolithic integration with germanium p–i–n photodetector. Opt Express, 2011, 19(6): 5040

[110]

Feng N N, Feng D Z, Liao S, et al. 30 GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide. Opt Express, 2011, 19(8): 7062

[111]

Feng D Z, Liao S, Liang H, et al. High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide. Opt Express, 2012, 20(20): 22224

[112]

Feng D, Qian W, Liang H, et al. High-speed GeSi electroabsorption modulator on the SOI waveguide platform. IEEE J Sel Topics Quantum Electron, 2013, 19(6): 3401710

[113]

Krishnamoorthy A V, Zheng X, Feng D, et al. A low-power, high-speed, 9-channel germanium-silicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer. Opt Express, 2014, 22(10): 12289

[114]

Gupta S, Srinivasan S A, Pantouvaki M, et al. 50 GHz Ge waveguide electro-absorption modulator integrated in a 220 nm SOI photonics platform. Optical Fiber Communication Conference, 2015: Tu2A.4

[115]

Srinivasan S A, Pantouvaki M, Gupta S, et al. 56 Gb/s germanium waveguide electro-absorption modulator. J Lightwave Technol, 2016, 34(2): 419

[116]

Roth J E, Fidaner O, Schaevitz R K, et al. Optical modulator on silicon employing germanium quantum wells. Opt Express, 2007, 15(9): 5851

[117]

Chaisakul P, Marris-Morini D, Isella G, et al. Polarization dependence of quantum-confined Stark effect in Ge/SiGe quantum well planar waveguides. Opt Lett, 2011, 36(10): 1794

[118]

Chaisakul P, Marris-Morini D, Rouifed M-S, et al. 23 GHz Ge/SiGe multiple quantum well electro-absorption modulator. Opt Express, 2012, 20(3): 3219

[119]

Ren S, Rong Y, Claussen S A, et al. Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides. IEEE Photonics Technol Lett, 2012, 24(6): 461

[120]

Lampin J F, Desplanque L, Mollot F. Detection of picosecond electrical pulses using the intrinsic Franz-Keldysh effect. Appl Phys Lett, 2001, 78(26): 4103

[121]

De Heyn P , Kopp V I, Srinivasan S A, et al. Ultra-dense 16×56 Gb/s NRZ GeSi EAM-PD arrays coupled to multicore fiber for short-reach 896Gb/s optical links. Optical Fiber Communication Conference, 2017: Th1B.7

[122]

Verbist J, Verplaetse M, Srivinasan S A, et al. First real-time 100-Gb/s NRZ-OOK transmission over 2 km with a silicon photonic electro-absorption modulator. Optical Fiber Communication Conference, 2017: Th5C.4

[123]

Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials. Nat Photonics, 2016, 10(4): 227

[124]

Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64

[125]

Wang F, Zhang Y, Tian C, et al. Gate-variable optical transitions in graphene. Science, 2008, 320(5873): 206

[126]

Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308

[127]

Gan X, Shiue R J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photonics, 2013, 7(11): 883

[128]

Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8): 574

[129]

Liu M, Yin X, Zhang X. Double-layer graphene optical modulator. Nano Lett, 2012, 12(3): 1482

[130]

Mohsin M, Schall D, Otto M, et al. Graphene based low insertion loss electroabsorption modulator on SOI waveguide. Opt Express, 2014, 22(2): 15292

[131]

Xu H, Chen Y, Zhang J, et al. Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO2 substrates using Raman spectroscopy. Small, 2012, 8(18): 2833

[132]

Qiu C, Gao W, Vajtai R, et al. Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator. Nano Lett, 2014, 14(12): 6811

[133]

Phare C T, Lee Y H D, Cardenas J, et al. Graphene electro-optic modulator with 30 Ghz bandwidth. Nat Photonics, 2015, 9(8): 511

[134]

Kim K K, Reina A, Shi Y, et al. Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 2010, 21(28): 285205

[135]

Hao R, Du W, Chen H, et al. Ultra-compact optical modulator by graphene induced electro-refraction effect. Appl Phys Lett, 2013, 103(6): 061116

[136]

Du W, Hao R, Li E P. The study of few-layer graphene based Mach–Zehnder modulator. Opt Commun, 2014, 323: 49

[137]

Phatak A, Cheng Z Z, Qin C Y, et al. Design of electro-optic modulators based on graphene-on-silicon slot waveguides. Opt Lett, 2016, 41(11): 2501

[138]

Dionne J A, Diest K, Sweatlock L A, et al. PlasMOStor: a metal–oxide–Si field effect plasmonic modulator. Nano Lett, 2009, 9(2): 897

[139]

Melikyan A, Lindenmann N, Walheim S, et al. Surface plasmon polariton absorption modulator. Opt Express, 2011, 19(9): 8855

[140]

Sorger Volker J, Norberto D L K, Ma R M, et al. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics, 2012, 1(1): 17

[141]

Melikyan A, Alloatti L, Muslija A, et al. High-speed plasmonic phase modulators. Nat Photonics, 2014, 8(3): 229

[142]

Haffner C, Heni W, Feforyshyn Y, Plasmonic organic hybrid modulators—scaling highest speed photonics to the microscale. Plasmonic organic hybrid modulators—scaling highest speed photonics to the microscale. Proc IEEE, 2016, 104(12): 2362

[143]

Haffner C, Heni W, Fedoryshyn Y, et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics, 2015, 9(8): 526

[144]

Huang M, Cai P, Li S, et al. Cost-effective 25G APD TO-Can/ROSA for 100G applications. Optical Fiber Communication Conference, 2017: Th3B.3

[145]

Zhong K P, Zhou X, Wang Y, et al. Amplifier-less transmission of 56 Gbit/s PAM4 over 60 km using 25 Gbps EML and APD. Optical Fiber Communication Conference, 2017: Tu2D.1

[146]

Werner J, Oehme M, Schmid M, et al. Germanium-tin p–i–n photodetectors integrated on silicon grown by molecular beam epitaxy. Appl Phys Lett, 2011, 98(6): 061108

[147]

Roucka R, Mathews J, Weng C, et al. High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge–Sn devices integrated on silicon. IEEE J Quantum Electron, 2011, 47(2): 213

[148]

Su S, Cheng B, Xue C, et al. GeSn p–i–n photodetector for all telecommunication bands detection. Opt Express, 2011, 19(7): 6400

[149]

Oehme M, Schmid M, Kaschel M, et al. GeSn p–i–n detectors integrated on Si with up to 4% Sn. Appl Phys Lett, 2012, 101(14): 141110

[150]

Oehme M, Kostecki K, Ye K, et al. GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz. Opt Express, 2014, 22(1): 839

[151]

Pham T, Du W, Tran H et al. Systematic study of Si-based GeSn photodiodes with 2.6 μm detector cutoff for short-wave infrared detection. Opt Express, 2016, 24(5): 4519

[152]

Gassenq A, Gencarelli F, Van Campenhout J, et al. GeSn/Ge heteostructure short-wave infrared photodetectors on silicon. Opt Express, 2012, 20(25): 27297

[153]

Dong Y, Wang W, Xu S, et al. Two-micro-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth. Opt Express, 2017, 25(14): 15818

[154]

Peng Y H, Cheng H H, Mashanov V I, et al. GeSn p–i–n waveguide photodetectors on silicon substrates. Appl Phys Lett, 2014, 105(23): 231109

[155]

Casalino M, Coppola G, Iodice M, et al. Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives. Sensors, 2010, 10(12): 10571

[156]

Berini P. Surface plasmon photodetectors and their applications. Laser Photonics Rev, 2014, 8(2): 197

[157]

Fukuda M, Aihara T, Yamaguchi K,et al. Light detection enhanced by surface plasmon resonance in metal film. Appl Phys Lett, 2012, 96(15): 153107

[158]

Knight MW, Sobhani H, Nordlander P, et al. Photodetection with active optical antennas. Science, 2011, 332(6030): 702

[159]

Akbari A, Berini P. Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide. Appl Phys Lett, 2009, 95(2): 021104

[160]

Fukuda M, Aihara T, Yamaguchi K, et al. Light detection enhanced by surface plasmon resonance in metal film. Appl Phys Lett, 2010, 96(15): 153107

[161]

Goykhman I, Desiatov B, Khurgin J, et al. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt Express, 2012, 20(27): 28594

[162]

Goykhman I, Sassi U, Desiatov B, et al. On-chip integrated, silicon−graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain. Nano Lett, 2016, 16(5): 3005

[163]

Levy U. Plasmonic silicon Schottky photodetectors: The physics behind graphene enhanced internal photoemission. APL Photonics, 2017, 2(2): 026013

[164]

Fossum E R, Ma J, Masoodian et al. The quanta image sensor: every photon counts. Sensors, 2016, 16(8): 1260

[165]

Ma J, Fossum E R. Quanta image sensor jot with sub 0.3 e-rms read noise and photon counting capability. IEEE Electron Device Lett, 2015, 36(9): 926-928

[166]

Ma J, Photon counting jot devices for quanta image sensors. PhD Dissertation, Dartmouth College, 2017

[167]

Masoodian S, Ma J, Starkey D et al. Room temperature 1040 fps, 1 megapixel photon-counting image sensor with 1.1 μm pixel pitch. SPIE Commercial + Scientific Sensing and Imaging Conference, 2017: 102120H-102120H-8

[168]

Alan Migdall A. Pushing single-photon detection to the limits (and perhaps beyond). IEEE Photonics Society Summer Topical Meeting, 2017: MF4.3

[1]

Haijun Wu, Bin Li, Huabin Zhang, Zhengping Li, Longyue Zeng. A single die 1.2 V 55 to 95 dB DR delta sigma ADC with configurable modulator and OSR. J. Semicond., 2014, 35(3): 035003. doi: 10.1088/1674-4926/35/3/035003

[2]

Yanlong Yin, Jiang Li, Yang Xu, Hon Ki Tsang, Daoxin Dai. Silicon-graphene photonic devices. J. Semicond., 2018, 39(6): 061009. doi: 10.1088/1674-4926/39/6/061009

[3]

Yunchou Zhao, Hao Jia, Jianfeng Ding, Lei Zhang, Xin Fu, Lin Yang. Five-port silicon optical router based on Mach-Zehnder optical switches for photonic networks-on-chip. J. Semicond., 2016, 37(11): 114008. doi: 10.1088/1674-4926/37/11/114008

[4]

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits. J. Semicond., 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

[5]

Gao Tianbao, Wang Jingchao, Zhang Chun, Li Yongming, Wang Zhihua. Design of a Modulator and Demodulator for UHF RFID Readers. J. Semicond., 2008, 29(7): 1403.

[6]

Yong Zhao, Chao Xu, Xiaoqing Jiang, Huiliang Ge. Avalanche-enhanced photocurrents in pin silicon waveguides at 1550 nm wavelength. J. Semicond., 2013, 34(6): 064009. doi: 10.1088/1674-4926/34/6/064009

[7]

Feng Guoqiang, Shangguan Shipeng, Ma Yingqi, Han Jianwei. SEE characteristics of small feature size devices by using laser backside testing. J. Semicond., 2012, 33(1): 014008. doi: 10.1088/1674-4926/33/1/014008

[8]

Yan Yao, Xiong Liu, Li Yuan, Zhaohua Zhang, Tianling Ren. A novel PIN photodetector with double linear arrays for rainfall prediction. J. Semicond., 2015, 36(9): 094011. doi: 10.1088/1674-4926/36/9/094011

[9]

Qing Ke, Shaoyang Tan, Songtao Liu, Dan Lu, Ruikang Zhang, Wei Wang, Chen Ji. Fabrication and optimization of 1.55-μm InGaAsP/InP high-power semiconductor diode laser. J. Semicond., 2015, 36(9): 094010. doi: 10.1088/1674-4926/36/9/094010

[10]

Zhao Yong, Wang Wanjun, Shao Haifeng, Yang Jianyi, Wang Minghua, Jiang Xiaoqing. Influence of doping position on the extinction ratio of Mach-Zehnder-interference based silicon optical modulators. J. Semicond., 2012, 33(1): 014009. doi: 10.1088/1674-4926/33/1/014009

[11]

Shujie Pan, Victoria Cao, Mengya Liao, Ying Lu, Zizhuo Liu, Mingchu Tang, Siming Chen, Alwyn Seeds, Huiyun Liu. Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate. J. Semicond., 2019, 40(10): 000000.

[12]

Zhang Yu, Wang Yongbin, Xu Yingqiang, Xu Yun, Niu Zhichuan, Song Guofeng. High-temperature (T=80℃) operation of a 2 μm InGaSb-AlGaAsSb quantum well laser. J. Semicond., 2012, 33(4): 044006. doi: 10.1088/1674-4926/33/4/044006

[13]

Lü Jihe, Huang Hui, Ren Xiaomin, Miao Ang, Li Yiqun, Wang Rui, Huang Yongqing, Wang Qi. A Monolithic Integrated Long-Wavelength Tunable Photodetector Based on a Low Temperature Buffer Layer. J. Semicond., 2007, 28(11): 1807.

[14]

Buwen Cheng, Cheng Li, Zhi Liu, Chunlai Xue. Research progress of Si-based germanium materials and devices. J. Semicond., 2016, 37(8): 081001. doi: 10.1088/1674-4926/37/8/081001

[15]

Chengying Chen, Xiaoyu Hu, Jun Fan, Yong Hei. A 55-dB SNDR, 2.2-mW double chopper-stabilized analog front-end for a thermopile sensor. J. Semicond., 2014, 35(5): 055003. doi: 10.1088/1674-4926/35/5/055003

[16]

Lan Dai, Wenkai Liu, Yan Lu. A 410 μW, 70 dB SNR high performance analog front-end for portable audio application. J. Semicond., 2014, 35(10): 105013. doi: 10.1088/1674-4926/35/10/105013

[17]

Chen Dianyu, Xu Changxi, Chen Haoqiong, Li Zhen, Guo Xiuli, Hui Zhiqiang, Shi Peng, Wang Yue, Wu Yue, Xiong Shaozhen. A Novel Digital Transceiver for CT0 Standard. J. Semicond., 2007, 28(6): 833.

[18]

Pengyi Yue, Xiuming Dou, Xiangbin Su, Zhichuan Niu, Baoquan Sun. Room-temperature optically pumped InAs/GaAs quantum dots microdisk lasers on SiO2/Si chip. J. Semicond., 2018, 39(8): 084003. doi: 10.1088/1674-4926/39/8/084003

[19]

Yang Xinrong, Xu Bo, Wang Zhanguo, Ren Yunyun, Jiao Yuheng, Liang Lingyan, Tang Chenguang. Electroluminescence Spectra of the Near-Infrared InP-Based QuantumWire Lasers. J. Semicond., 2007, 28(S1): 457.

[20]

Tianxiao Fang, Bifeng Cui, Shuai Hao, Yang Wang. The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers. J. Semicond., 2018, 39(2): 024001. doi: 10.1088/1674-4926/39/2/024001

Search

Advanced Search >>

GET CITATION

X X Wang, J F Liu. Emerging technologies in Si active photonics[J]. J. Semicond., 2018, 39(6): 061001. doi: 10.1088/1674-4926/39/6/061001.

Export: BibTex EndNote

Article Metrics

Article views: 2531 Times PDF downloads: 151 Times Cited by: 0 Times

History

Manuscript received: 15 August 2017 Manuscript revised: Online: Accepted Manuscript: 30 January 2018 Uncorrected proof: 30 January 2018 Published: 01 June 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误