J. Semicond. > Volume 38 > Issue 3 > Article Number: 031005

Devices and applications of van der Waals heterostructures

Chao Li , Peng Zhou , and David Wei Zhang

+ Author Affilications + Find other works by these authors

PDF

Abstract: Van der Waals heterostructures, composed of individual two-dimensional material have been developing extremely fast. Synthesis of van der Waals heterostructures without the constraint of lattice matching and processing compatibility provides an ideal platform for fundamental research and new device exploitation. We review the approach of synthesis of van der Waals heterostructures, discuss the property of heterostructures and thoroughly illustrate the functional van der Waals heterostructures used in novel electronic and photoelectronic device.

Key words: van der Waals heterostructuretwo-dimensional materialelectronic and photoelectronic device

Abstract: Van der Waals heterostructures, composed of individual two-dimensional material have been developing extremely fast. Synthesis of van der Waals heterostructures without the constraint of lattice matching and processing compatibility provides an ideal platform for fundamental research and new device exploitation. We review the approach of synthesis of van der Waals heterostructures, discuss the property of heterostructures and thoroughly illustrate the functional van der Waals heterostructures used in novel electronic and photoelectronic device.

Key words: van der Waals heterostructuretwo-dimensional materialelectronic and photoelectronic device



References:

[1]

Novoselov K S, Jiang D, Schedin F. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451. doi: 10.1073/pnas.0502848102

[2]

Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183. doi: 10.1038/nmat1849

[3]

Gao H, Liu Z, Feng X. From 2004 to 2014:a fruitful decade for graphene research in China[J]. Small, 2014, 10(11): 2121. doi: 10.1002/smll.201400915

[4]

Jariwala D, Sangwan V K, Lauhon L J. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides[J]. ACS Nano, 2014, 8(2): 1102. doi: 10.1021/nn500064s

[5]

Chhowalla M, Shin H S, Eda G. The chemistry of twodimensional layered transition metal dichalcogenide nanosheets[J]. Nat Chem, 2013, 5(4): 263. doi: 10.1038/nchem.1589

[6]

Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499(7459): 419. doi: 10.1038/nature12385

[7]

Novoselov K S, Jiang D, Schedin F. Two-dimensional atomic crystals[J]. Proc National Academy of Sciences of the United States of America, 2005, 102(30): 10451. doi: 10.1073/pnas.0502848102

[8]

Dean C R, Young A F, Meric I. Boron nitride substrates for high-quality graphene electronics[J]. Nat Nanotechnol, 2010, 5(10): 722. doi: 10.1038/nnano.2010.172

[9]

Jena D. Tunneling transistors based on graphene and 2-D crystals[J]. Proc IEEE, 2013, 101(7): 1585. doi: 10.1109/JPROC.2013.2253435

[10]

Roy T, Tosun M, Kang J S. Field-effect transistors built from all two-dimensional material components[J]. ACS Nano, 2014, 8(6): 6259. doi: 10.1021/nn501723y

[11]

Allain A, Kang J, Banerjee K. Electrical contacts to twodimensional semiconductors[J]. Nat Mater, 2015, 14(12): 1195. doi: 10.1038/nmat4452

[12]

Das S, Chen H Y, Penumatcha A V. High performance multilayer MoS2 transistors with scandium contacts[J]. Nano Lett, 2012, 13(1): 100.

[13]

Liu Y, Wu H, Cheng H C. Toward barrier free contact to molybdenum disulfide using graphene electrodes[J]. Nano Lett, 2015, 15(5): 3030. doi: 10.1021/nl504957p

[14]

D Qu, X Liu, Ahmed F. Self-screened high performance multi-layer MoS2 transistor formed by using a bottom graphene electrode[J]. Nanoscale, 2015, 7(45): 19273. doi: 10.1039/C5NR06076A

[15]

Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105(13): 136805. doi: 10.1103/PhysRevLett.105.136805

[16]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6(3): 147. doi: 10.1038/nnano.2010.279

[17]

Podzorov V, Gershenson M E, Kloc C. High-mobility fieldeffect transistors based on transition metal dichalcogenides[J]. Appl Phys Lett, 2004, 84(17): 3301. doi: 10.1063/1.1723695

[18]

Tran V, Soklaski R, Liang Y. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Phys Rev B, 2014, 89(23): 235319. doi: 10.1103/PhysRevB.89.235319

[19]

Li L, Yu Y, Ye G J. Black phosphorus field-effect transistors[J]. Nat Nanotechnol, 2014, 9(5): 372. doi: 10.1038/nnano.2014.35

[20]

Engel M, Steiner M, Avouris P. Black phosphorus photodetector for multispectral, high-resolution imaging[J]. Nano Lett, 2014, 14(11): 6414. doi: 10.1021/nl502928y

[21]

Lu S B, Miao L L, Guo Z N. Broadband nonlinear optical response in multi-layer black phosphorus:an emerging infrared and mid-infrared optical material[J]. Opt Express, 2015, 23(9): 11183. doi: 10.1364/OE.23.011183

[22]

Mayorov A S, Gorbachev R V, Morozov S V. Micrometerscale ballistic transport in encapsulated graphene at room temperature[J]. Nano Lett, 2011, 11(6): 2396. doi: 10.1021/nl200758b

[23]

Meric I, Dean C, Young A. Graphene field-effect transistors based on boron nitride gate dielectrics[J]. Physics, 2011, 100(23): 23.

[24]

Britnell L, Gorbachev R V, Jalil R. Electron tunneling through ultrathin boron nitride crystalline barriers[J]. Nano Lett, 2012, 12(3): 1707. doi: 10.1021/nl3002205

[25]

Min S C, Lee G H, Yu Y J. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices[J]. Nat Commun, 2013, 4(3): 1624.

[26]

Wang J, Yao Q, Huang C W. High mobility MoS2 transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer[J]. Adv Mater, 2016, 28(37): 8302. doi: 10.1002/adma.v28.37

[27]

Yang W, Chen G, Shi Z. Epitaxial growth of single-domain graphene on hexagonal boron nitride[J]. Nat Mater, 2013, 12(9): 792. doi: 10.1038/nmat3695

[28]

Nourbakhsh A, Zubair A, Dresselhaus M S. Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application[J]. Nano Lett, 2016, 16(2): 1359. doi: 10.1021/acs.nanolett.5b04791

[29]

Li H, Wu J, Huang X. A universal, rapid method for clean transfer of nanostructures onto various substrates[J]. ACS Nano, 2014, 8(7): 6563. doi: 10.1021/nn501779y

[30]

Haigh S J, Gholinia A, Jalil R. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices[J]. Nat Mater, 2012, 11(9): 764. doi: 10.1038/nmat3386

[31]

Kretinin A V, Cao Y, Tu J S. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals[J]. Nano Lett, 2014, 14(6): 3270. doi: 10.1021/nl5006542

[32]

Mishchenko A, Tu J S, Cao Y. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures[J]. Nat Nanotechnol, 2014, 9(10): 808. doi: 10.1038/nnano.2014.187

[33]

Tang S, Wang H, Zhang Y. Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition[J]. Sci Rep, 2013, 3: 2666.

[34]

Lin Y C, Ghosh R K, Addou R. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures[J]. Nat Commun, 2015, 6(33): 1.

[35]

Miwa J A, Dendzik M, Groborg S S. Van der Waals epitaxy of two-dimensional MoS2-graphene heterostructures in ultrahigh vacuum[J]. Acs Nano, 2015, 9(6): 6502. doi: 10.1021/acsnano.5b02345

[36]

Shi Y, Zhou W, Lu A Y. van der Waals epitaxy of MoS2 layers using graphene as growth templates[J]. Nano Lett, 2012, 12(6): 2784. doi: 10.1021/nl204562j

[37]

Li X, Basile L, Huang B. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene[J]. Acs Nano, 2015, 9(8): 8078. doi: 10.1021/acsnano.5b01943

[38]

Gong Y, Lin J, Wang X. Vertical and in-plane heterostructures from WS2/MoS2 monolayers[J]. Nat Mater, 2014, 13(12): 1135. doi: 10.1038/nmat4091

[39]

Huang C, Wu S, Sanchez A M. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors[J]. Nat Mater, 2014, 13(12): 1096. doi: 10.1038/nmat4064

[40]

Li X, Lin M W, Lin J. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy[J]. Sci Adv, 2016, 2(4): e1501882. doi: 10.1126/sciadv.1501882

[41]

Li B, Huang L, Zhong M. Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch[J]. Adv Electron Mater, 2016, 2: 1600298. doi: 10.1002/aelm.v2.11

[42]

Yu W J, Li Z, Zhou H. Vertically stacked multiheterostructures of layered materials for logic transistors and complementary inverters[J]. Nat Mater, 2013, 12(3): 246.

[43]

Moriya R, Yamaguchi T, Inoue Y. Large current modulation in exfoliated-graphene/MoS2/metal vertical heterostructures[J]. Appl Phys Lett, 2014, 105(8): 083119. doi: 10.1063/1.4894256

[44]

Britnell L, Gorbachev R V, Jalil R. Field-effect tunneling transistor based on vertical graphene heterostructures[J]. Science, 2012, 335(6071): 947. doi: 10.1126/science.1218461

[45]

Zhou G, Li R, Vasen T, et al. Novel gate-recessed vertical InAs/GaSb TFETs with record high ION of 180μA/μm at VDS D 0:5 V. IEEE International Electron Devices Meeting (IEDM), 2012:32.6.1

[46]

Li M O, Esseni D, Snider G. Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor[J]. J Appl Phys, 2014, 115(7): 074508. doi: 10.1063/1.4866076

[47]

Roy T, Tosun M, Cao X. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors[J]. ACS Nano, 2015, 9(2): 2071. doi: 10.1021/nn507278b

[48]

Roy T, Tosun M, Hettick M. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures[J]. Appl Phys Lett, 2016, 108(8): 083111. doi: 10.1063/1.4942647

[49]

Sarkar D, Xie X, Liu W. A subthermionic tunnel fieldeffect transistor with an atomically thin channel[J]. Nature, 2015, 526(7571): 91. doi: 10.1038/nature15387

[50]

Britnell L, Ribeiro R M, Eckmann A. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 2013, 340(6138): 1311.

[51]

Fang H, Battaglia C, Carraro C. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides[J]. Proc National Academy of Sciences, 2014, 111(17): 6198. doi: 10.1073/pnas.1405435111

[52]

Lee C H, Lee G H, Van Der Zande A M. Atomically thin p-n junctions with van der Waals heterointerfaces[J]. Nat Nanotechnol, 2014, 9(9): 676. doi: 10.1038/nnano.2014.150

[53]

Furchi M M, Pospischil A, Libisch F. Photovoltaic effect in an electrically tunable van der Waals heterojunction[J]. Nano Lett, 2014, 14(8): 4785. doi: 10.1021/nl501962c

[54]

Deng Y, Luo Z, Conrad N J. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode[J]. ACS Nano, 2014, 8(8): 8292. doi: 10.1021/nn5027388

[55]

Huo N, Kang J, Wei Z. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors[J]. Adv Funct Mater, 2014, 24(44): 7025. doi: 10.1002/adfm.201401504

[56]

Choi M S, Qu D, Lee D. Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics[J]. ACS Nano, 2014, 8(9): 9332. doi: 10.1021/nn503284n

[57]

Li H M, Lee D, Qu D. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide[J]. Nat Commun, 2015, 6: 6564. doi: 10.1038/ncomms7564

[58]

Wang F, Wang Z, Xu K. Tunable GaTe-MoS2 van der Waals p-n Junctions with novel optoelectronic performance[J]. Nano Lett, 2015, 15: 7558. doi: 10.1021/acs.nanolett.5b03291

[59]

Long M, Liu E, Wang P. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Lett, 2016, 16(4): 2254. doi: 10.1021/acs.nanolett.5b04538

[60]

Cheng R, Li D, Zhou H. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes[J]. Nano Lett, 2014, 14(10): 5590. doi: 10.1021/nl502075n

[61]

Withers F, Pozo-Zamudio O D, Mishchenko A. Lightemitting diodes by band-structure engineering in van der Waals heterostructures[J]. Nat Mater, 2015, 14(3): 301. doi: 10.1038/nmat4205

[62]

Withers F, Del P Z O, Schwarz S. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature[J]. Nano Lett, 2015, 15(12): 8223. doi: 10.1021/acs.nanolett.5b03740

[1]

Novoselov K S, Jiang D, Schedin F. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451. doi: 10.1073/pnas.0502848102

[2]

Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183. doi: 10.1038/nmat1849

[3]

Gao H, Liu Z, Feng X. From 2004 to 2014:a fruitful decade for graphene research in China[J]. Small, 2014, 10(11): 2121. doi: 10.1002/smll.201400915

[4]

Jariwala D, Sangwan V K, Lauhon L J. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides[J]. ACS Nano, 2014, 8(2): 1102. doi: 10.1021/nn500064s

[5]

Chhowalla M, Shin H S, Eda G. The chemistry of twodimensional layered transition metal dichalcogenide nanosheets[J]. Nat Chem, 2013, 5(4): 263. doi: 10.1038/nchem.1589

[6]

Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499(7459): 419. doi: 10.1038/nature12385

[7]

Novoselov K S, Jiang D, Schedin F. Two-dimensional atomic crystals[J]. Proc National Academy of Sciences of the United States of America, 2005, 102(30): 10451. doi: 10.1073/pnas.0502848102

[8]

Dean C R, Young A F, Meric I. Boron nitride substrates for high-quality graphene electronics[J]. Nat Nanotechnol, 2010, 5(10): 722. doi: 10.1038/nnano.2010.172

[9]

Jena D. Tunneling transistors based on graphene and 2-D crystals[J]. Proc IEEE, 2013, 101(7): 1585. doi: 10.1109/JPROC.2013.2253435

[10]

Roy T, Tosun M, Kang J S. Field-effect transistors built from all two-dimensional material components[J]. ACS Nano, 2014, 8(6): 6259. doi: 10.1021/nn501723y

[11]

Allain A, Kang J, Banerjee K. Electrical contacts to twodimensional semiconductors[J]. Nat Mater, 2015, 14(12): 1195. doi: 10.1038/nmat4452

[12]

Das S, Chen H Y, Penumatcha A V. High performance multilayer MoS2 transistors with scandium contacts[J]. Nano Lett, 2012, 13(1): 100.

[13]

Liu Y, Wu H, Cheng H C. Toward barrier free contact to molybdenum disulfide using graphene electrodes[J]. Nano Lett, 2015, 15(5): 3030. doi: 10.1021/nl504957p

[14]

D Qu, X Liu, Ahmed F. Self-screened high performance multi-layer MoS2 transistor formed by using a bottom graphene electrode[J]. Nanoscale, 2015, 7(45): 19273. doi: 10.1039/C5NR06076A

[15]

Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105(13): 136805. doi: 10.1103/PhysRevLett.105.136805

[16]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6(3): 147. doi: 10.1038/nnano.2010.279

[17]

Podzorov V, Gershenson M E, Kloc C. High-mobility fieldeffect transistors based on transition metal dichalcogenides[J]. Appl Phys Lett, 2004, 84(17): 3301. doi: 10.1063/1.1723695

[18]

Tran V, Soklaski R, Liang Y. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Phys Rev B, 2014, 89(23): 235319. doi: 10.1103/PhysRevB.89.235319

[19]

Li L, Yu Y, Ye G J. Black phosphorus field-effect transistors[J]. Nat Nanotechnol, 2014, 9(5): 372. doi: 10.1038/nnano.2014.35

[20]

Engel M, Steiner M, Avouris P. Black phosphorus photodetector for multispectral, high-resolution imaging[J]. Nano Lett, 2014, 14(11): 6414. doi: 10.1021/nl502928y

[21]

Lu S B, Miao L L, Guo Z N. Broadband nonlinear optical response in multi-layer black phosphorus:an emerging infrared and mid-infrared optical material[J]. Opt Express, 2015, 23(9): 11183. doi: 10.1364/OE.23.011183

[22]

Mayorov A S, Gorbachev R V, Morozov S V. Micrometerscale ballistic transport in encapsulated graphene at room temperature[J]. Nano Lett, 2011, 11(6): 2396. doi: 10.1021/nl200758b

[23]

Meric I, Dean C, Young A. Graphene field-effect transistors based on boron nitride gate dielectrics[J]. Physics, 2011, 100(23): 23.

[24]

Britnell L, Gorbachev R V, Jalil R. Electron tunneling through ultrathin boron nitride crystalline barriers[J]. Nano Lett, 2012, 12(3): 1707. doi: 10.1021/nl3002205

[25]

Min S C, Lee G H, Yu Y J. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices[J]. Nat Commun, 2013, 4(3): 1624.

[26]

Wang J, Yao Q, Huang C W. High mobility MoS2 transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer[J]. Adv Mater, 2016, 28(37): 8302. doi: 10.1002/adma.v28.37

[27]

Yang W, Chen G, Shi Z. Epitaxial growth of single-domain graphene on hexagonal boron nitride[J]. Nat Mater, 2013, 12(9): 792. doi: 10.1038/nmat3695

[28]

Nourbakhsh A, Zubair A, Dresselhaus M S. Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application[J]. Nano Lett, 2016, 16(2): 1359. doi: 10.1021/acs.nanolett.5b04791

[29]

Li H, Wu J, Huang X. A universal, rapid method for clean transfer of nanostructures onto various substrates[J]. ACS Nano, 2014, 8(7): 6563. doi: 10.1021/nn501779y

[30]

Haigh S J, Gholinia A, Jalil R. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices[J]. Nat Mater, 2012, 11(9): 764. doi: 10.1038/nmat3386

[31]

Kretinin A V, Cao Y, Tu J S. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals[J]. Nano Lett, 2014, 14(6): 3270. doi: 10.1021/nl5006542

[32]

Mishchenko A, Tu J S, Cao Y. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures[J]. Nat Nanotechnol, 2014, 9(10): 808. doi: 10.1038/nnano.2014.187

[33]

Tang S, Wang H, Zhang Y. Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition[J]. Sci Rep, 2013, 3: 2666.

[34]

Lin Y C, Ghosh R K, Addou R. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures[J]. Nat Commun, 2015, 6(33): 1.

[35]

Miwa J A, Dendzik M, Groborg S S. Van der Waals epitaxy of two-dimensional MoS2-graphene heterostructures in ultrahigh vacuum[J]. Acs Nano, 2015, 9(6): 6502. doi: 10.1021/acsnano.5b02345

[36]

Shi Y, Zhou W, Lu A Y. van der Waals epitaxy of MoS2 layers using graphene as growth templates[J]. Nano Lett, 2012, 12(6): 2784. doi: 10.1021/nl204562j

[37]

Li X, Basile L, Huang B. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene[J]. Acs Nano, 2015, 9(8): 8078. doi: 10.1021/acsnano.5b01943

[38]

Gong Y, Lin J, Wang X. Vertical and in-plane heterostructures from WS2/MoS2 monolayers[J]. Nat Mater, 2014, 13(12): 1135. doi: 10.1038/nmat4091

[39]

Huang C, Wu S, Sanchez A M. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors[J]. Nat Mater, 2014, 13(12): 1096. doi: 10.1038/nmat4064

[40]

Li X, Lin M W, Lin J. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy[J]. Sci Adv, 2016, 2(4): e1501882. doi: 10.1126/sciadv.1501882

[41]

Li B, Huang L, Zhong M. Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch[J]. Adv Electron Mater, 2016, 2: 1600298. doi: 10.1002/aelm.v2.11

[42]

Yu W J, Li Z, Zhou H. Vertically stacked multiheterostructures of layered materials for logic transistors and complementary inverters[J]. Nat Mater, 2013, 12(3): 246.

[43]

Moriya R, Yamaguchi T, Inoue Y. Large current modulation in exfoliated-graphene/MoS2/metal vertical heterostructures[J]. Appl Phys Lett, 2014, 105(8): 083119. doi: 10.1063/1.4894256

[44]

Britnell L, Gorbachev R V, Jalil R. Field-effect tunneling transistor based on vertical graphene heterostructures[J]. Science, 2012, 335(6071): 947. doi: 10.1126/science.1218461

[45]

Zhou G, Li R, Vasen T, et al. Novel gate-recessed vertical InAs/GaSb TFETs with record high ION of 180μA/μm at VDS D 0:5 V. IEEE International Electron Devices Meeting (IEDM), 2012:32.6.1

[46]

Li M O, Esseni D, Snider G. Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor[J]. J Appl Phys, 2014, 115(7): 074508. doi: 10.1063/1.4866076

[47]

Roy T, Tosun M, Cao X. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors[J]. ACS Nano, 2015, 9(2): 2071. doi: 10.1021/nn507278b

[48]

Roy T, Tosun M, Hettick M. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures[J]. Appl Phys Lett, 2016, 108(8): 083111. doi: 10.1063/1.4942647

[49]

Sarkar D, Xie X, Liu W. A subthermionic tunnel fieldeffect transistor with an atomically thin channel[J]. Nature, 2015, 526(7571): 91. doi: 10.1038/nature15387

[50]

Britnell L, Ribeiro R M, Eckmann A. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 2013, 340(6138): 1311.

[51]

Fang H, Battaglia C, Carraro C. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides[J]. Proc National Academy of Sciences, 2014, 111(17): 6198. doi: 10.1073/pnas.1405435111

[52]

Lee C H, Lee G H, Van Der Zande A M. Atomically thin p-n junctions with van der Waals heterointerfaces[J]. Nat Nanotechnol, 2014, 9(9): 676. doi: 10.1038/nnano.2014.150

[53]

Furchi M M, Pospischil A, Libisch F. Photovoltaic effect in an electrically tunable van der Waals heterojunction[J]. Nano Lett, 2014, 14(8): 4785. doi: 10.1021/nl501962c

[54]

Deng Y, Luo Z, Conrad N J. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode[J]. ACS Nano, 2014, 8(8): 8292. doi: 10.1021/nn5027388

[55]

Huo N, Kang J, Wei Z. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors[J]. Adv Funct Mater, 2014, 24(44): 7025. doi: 10.1002/adfm.201401504

[56]

Choi M S, Qu D, Lee D. Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics[J]. ACS Nano, 2014, 8(9): 9332. doi: 10.1021/nn503284n

[57]

Li H M, Lee D, Qu D. Ultimate thin vertical p-n junction composed of two-dimensional layered molybdenum disulfide[J]. Nat Commun, 2015, 6: 6564. doi: 10.1038/ncomms7564

[58]

Wang F, Wang Z, Xu K. Tunable GaTe-MoS2 van der Waals p-n Junctions with novel optoelectronic performance[J]. Nano Lett, 2015, 15: 7558. doi: 10.1021/acs.nanolett.5b03291

[59]

Long M, Liu E, Wang P. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Lett, 2016, 16(4): 2254. doi: 10.1021/acs.nanolett.5b04538

[60]

Cheng R, Li D, Zhou H. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes[J]. Nano Lett, 2014, 14(10): 5590. doi: 10.1021/nl502075n

[61]

Withers F, Pozo-Zamudio O D, Mishchenko A. Lightemitting diodes by band-structure engineering in van der Waals heterostructures[J]. Nat Mater, 2015, 14(3): 301. doi: 10.1038/nmat4205

[62]

Withers F, Del P Z O, Schwarz S. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature[J]. Nano Lett, 2015, 15(12): 8223. doi: 10.1021/acs.nanolett.5b03740

[1]

Zhongxin Zheng, Jiandong Sun, Yu Zhou, Zhipeng Zhang, Hua Qin. Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure. J. Semicond., 2015, 36(10): 104002. doi: 10.1088/1674-4926/36/10/104002

[2]

Hanming Zhou, Xiao Lin, Hongwei Guo, Shisheng Lin, Yiwei Sun, Yang Xu. Ab initio electronic transport study of two-dimensional silicon carbide-based p-n junctions. J. Semicond., 2017, 38(3): 033002. doi: 10.1088/1674-4926/38/3/033002

[3]

Huihui Yang, Feng Gao, Mingjin Dai, Dechang Jia, Yu Zhou, Ping'an Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond., 2017, 38(3): 031004. doi: 10.1088/1674-4926/38/3/031004

[4]

Luan Suzhen, Liu Hongxia, Jia Renxu, Wang Jin. A Two-Dimensional Subthreshold Current Model for Dual Material Gate SOI nMOSFETs with Asymmetric Halos. J. Semicond., 2008, 29(4): 746.

[5]

Li Jin, Liu Hongxia, Yuan Bo, Cao Lei, Li Bin. A two-dimensional analytical model of fully depleted asymmetrical dual material gate double-gate strained-Si MOSFETs. J. Semicond., 2011, 32(4): 044005. doi: 10.1088/1674-4926/32/4/044005

[6]

Jie Jiang, Zhenhua Ni. Defect engineering in two-dimensional materials. J. Semicond., 2019, 40(7): 000000.

[7]

Shuliang Ren, Qinghai Tan, Jun Zhang. Review on the quantum emitters in two-dimensional materials. J. Semicond., 2019, 40(7): 000000.

[8]

Bahniman Ghosh, Naval Kishor. An ab initio study of strained two-dimensional MoSe2. J. Semicond., 2015, 36(4): 043001. doi: 10.1088/1674-4926/36/4/043001

[9]

Wang Yu, Zhou Zhiwen, Li Cheng, Chen Songyan, Lai Hongkai. Preparation of Two-Dimensional Patterned Silicon Substrate by Holographic Lithography. J. Semicond., 2007, 28(5): 774.

[10]

Anna V. Krivosheeva, Victor L. Shaposhnikov, Victor E. Borisenko, Jean-Louis Lazzari, Chow Waileong, Julia Gusakova, Beng Kang Tay. Theoretical study of defect impact on two-dimensional MoS2. J. Semicond., 2015, 36(12): 122002. doi: 10.1088/1674-4926/36/12/122002

[11]

Haolin Wang, Yajuan Zhao, Yong Xie, Xiaohua Ma, Xingwang Zhang. Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond., 2017, 38(3): 031003. doi: 10.1088/1674-4926/38/3/031003

[12]

Congxin Xia, Jingbo Li. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. J. Semicond., 2016, 37(5): 051001. doi: 10.1088/1674-4926/37/5/051001

[13]

Shuxian Wang, Zhihao Yu, Xinran Wang. Electrical contacts to two-dimensional transition-metal dichalcogenides. J. Semicond., 2018, 39(12): 124001. doi: 10.1088/1674-4926/39/12/124001

[14]

Xue Lijun, Xia Yang, Liu Ming, Wang Yan, Shao Xue, Lu Jing, Ma Jie, Xie Changqing, Yu Zhiping. Two-Dimensional Static Numerical Modeling and Simulation of AlGaN/GaN HEMT. J. Semicond., 2006, 27(2): 298.

[15]

Cheng Jia, Zhu Yu, Wang Jinsong. Two-Dimensional Discharge Simulation of InductivelyCoupled Plasma Etcher. J. Semicond., 2007, 28(6): 989.

[16]

Ziqi Zhou, Yu Cui, Ping-Heng Tan, Xuelu Liu, Zhongming Wei. Optical and electrical properties of two-dimensional anisotropic materials. J. Semicond., 2019, 40(6): 061001. doi: 10.1088/1674-4926/40/6/061001

[17]

Lun Dai. Room-temperature stable two-dimensional ferroelectric materials. J. Semicond., 2019, 40(6): 060402. doi: 10.1088/1674-4926/40/6/060402

[18]

Bai Xianping, Ban Shiliang. Pressure Effect on Electronic Mobility in Quasi-Two-Dimensional AlxGa1-xAs/GaAs Heterojunction Systems. J. Semicond., 2005, 26(12): 2422.

[19]

Li Hongli, Sun Yicai, Wang Wei, Harry Hutchinson. Neurocomputing van der Pauw function for the measurement of a semiconductor's resistivity without use of the learning rate of weight vector regulation. J. Semicond., 2011, 32(12): 122002. doi: 10.1088/1674-4926/32/12/122002

[20]

Yuanhui Sun, Xinjiang Wang, Xin-Gang Zhao, Zhiming Shi, Lijun Zhang. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond., 2018, 39(7): 072001. doi: 10.1088/1674-4926/39/7/072001

Search

Advanced Search >>

GET CITATION

C Li, P Zhou, D W Zhang. Devices and applications of van der Waals heterostructures[J]. J. Semicond., 2017, 38(3): 031005. doi: 10.1088/1674-4926/38/3/031005.

Export: BibTex EndNote

Article Metrics

Article views: 2254 Times PDF downloads: 44 Times Cited by: 0 Times

History

Manuscript received: 31 October 2016 Manuscript revised: 27 November 2016 Online: Published: 01 March 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误