ARTICLES 

Improvement of tunnel compensated quantum well infrared detector

Chaohui Li1, Jun Deng1, , Weiye Sun1, Leilei He1, Jianjun Li1, Jun Han1 and Yanli Shi2

+ Author Affiliations

 Corresponding author: Jun Deng, Email: dengsu@sbjut.edu.cn

PDF

Turn off MathJax

Abstract: To reduce the difficulty of the epitaxy caused by multiple quantum well infrared photodetector (QWIP) with tunnel compensation structure, an improved structure is proposed. In the new structure, the superlattices are located between the tunnel junction and the barrier as the infrared absorption region, eliminating the effect of doping concentration on the well width in the original structure. Theoretical analysis and experimental verification of the new structure are carried out. The experimental sample is a two-cycle device, each cycle contains a tunnel junction, a superlattice infrared absorption region and a thick barrier. The photosurface of the detector is 200 × 200 μm2 and the light is optically coupled by 45° oblique incidence. The results show that the optimal operating voltage of the sample is –1.1 V, the dark current is 2.99 × 10–8 A, and the blackbody detectivity is 1.352 × 108 cm·Hz1/2·W–1 at 77 K. Our experiments show that the new structure can work normally.

Key words: infrared detectortunnel compensationsuperlattice



[1]
Rogalski A. Recent progress in infrared detector technologies. Infrared Phys Technol, 2011, 54, 136 doi: 10.1016/j.infrared.2010.12.003
[2]
Kataria H, Asplund C, Lindberg A, et al. Novel high-resolution VGA QWIP detector. Proc SPIE, 2017, 10177
[3]
Roodenko K, Choi K K, Clark K P, et al. Control over the optical and electronic performance of GaAs/AlGaAs QWIPs grown by production MBE. Infrared Phys Technol, 2017, 84, 33 doi: 10.1016/j.infrared.2017.03.001
[4]
Jhabvala M, Choi K K, Monroy C, et al. Development of a 1 K × 1 K 8–12 μm QWIP array. Infrared Phys Technol, 2007, 50, 234 doi: 10.1016/j.infrared.2006.10.029
[5]
Kaya Y, Ravikumar A, Chen G P, et al. Two-band ZnCdSe/ZnCdMgSe quantum well infrared photodetector. AIP Adv, 2018, 8, 075105 doi: 10.1063/1.5013607
[6]
Li Z F, Jing Y L, Zhou Y W. Multi-band integrated quantum well infrared photodetectors. International Conference on Infrared Millimeter and Terahertz Waves, 2018
[7]
Wu Y, Liu H M, Li P Z. Dual-band quantum well infrared photodetector with metallic structure. Proc SPIE, 2018, 10697
[8]
Rogalski A. Infrared detectors: an overview. Infrared Phys Technol, 2002, 43, 187 doi: 10.1016/S1350-4495(02)00140-8
[9]
Haran T L, James J C, Lane S E, et al. Quantum efficiency and spatial noise tradeoffs for III–V focal plane arrays. Infrared Phys Technol, 2019, 97, 309 doi: 10.1016/j.infrared.2019.01.001
[10]
Eker S U, Hostut M, Ergun Y, et al. A new approach to quantum well infrared photodetectors: Staircase-like quantum well and barriers. Infrared Phys Technol, 2006, 48, 101 doi: 10.1016/j.infrared.2005.04.009
[11]
Choi K K, Allen S C, Sun J G, et al. Small pitch resonator-QWIP detectors and arrays. Infrared Phys Technol, 2018, 94, 118 doi: 10.1016/j.infrared.2018.09.006
[12]
DeCuir E A Jr, Choi K K, Sun J, et al. Progress in resonator quantum well infrared photodetector (R-QWIP) focal plane arrays. Infrared Phys Technol, 2015, 70, 138 doi: 10.1016/j.infrared.2014.09.018
[13]
Su G X, Liu L, Zang W B, et al. Highly efficient dielectric optical incoupler for quantum well infrared photodetectors. IEEE Photonics Technol Lett, 2018, 30, 1167 doi: 10.1109/LPT.2018.2834927
[14]
Deng J, Shen G D, Lian P, et al. Optoelectronic transport mechanism from subband infrared absorption and tunneling regeneration. Curr Appl Phys, 2002, 2, 373 doi: 10.1016/S1567-1739(02)00142-6
[15]
Billaha A, Das M K . Influence of doping on the performance of GaAs/AlGaAs QWIP for long wavelength applications. Opto−Electron Rev, 2016, 24(1), 25 doi: 10.1515/oere-2016-0006
[16]
Deng J. Study on novel GaAs/AlGaAs multi-quantum wells infrared photodetecting mechanism and MOCVD epitaxy technology. Beijing: Beijing University of Technology, 2005, 79
Fig. 1.  Schematic diagram of the multi-quantum well infrared detector with tunnel compensation structure[14] (under the reverse bias).

Fig. 2.  The relationship between ND and depletion layer width (NA = 2 × 1019 cm–3).

Fig. 3.  The relationship between Lw and sub-levels. E1 is the first level, E2 is the second level and Eb is the barrier height.

Fig. 4.  Schematic diagram of the improved structure under the reverse bias.

Fig. 5.  The relationship between the gain and wavelength of different numbers of wells: (a) single well, (b) double well and (c) triple well.

Fig. 6.  Response spectrum of sample at 77 K.

Fig. 7.  Dark current versus applied bias of sample at 77 K. (a) Forward bias. (b) Reverse bias.

Fig. 8.  Blackbody response test of sample at 77 K.

Table 1.   Structural parameters of the experimental sample.

MaterialThickness (nm)
P+-GaAs300
2 cyclesP+-GaAs12
N+-GaAs24
20
cycles
i-AlxGa1–xAsx = 0.286
N+-GaAs6
i-AlxGa1–xAs x = 0.2740
N+-GaAs500
Semi-insulating GaAs (100) substrate
DownLoad: CSV
[1]
Rogalski A. Recent progress in infrared detector technologies. Infrared Phys Technol, 2011, 54, 136 doi: 10.1016/j.infrared.2010.12.003
[2]
Kataria H, Asplund C, Lindberg A, et al. Novel high-resolution VGA QWIP detector. Proc SPIE, 2017, 10177
[3]
Roodenko K, Choi K K, Clark K P, et al. Control over the optical and electronic performance of GaAs/AlGaAs QWIPs grown by production MBE. Infrared Phys Technol, 2017, 84, 33 doi: 10.1016/j.infrared.2017.03.001
[4]
Jhabvala M, Choi K K, Monroy C, et al. Development of a 1 K × 1 K 8–12 μm QWIP array. Infrared Phys Technol, 2007, 50, 234 doi: 10.1016/j.infrared.2006.10.029
[5]
Kaya Y, Ravikumar A, Chen G P, et al. Two-band ZnCdSe/ZnCdMgSe quantum well infrared photodetector. AIP Adv, 2018, 8, 075105 doi: 10.1063/1.5013607
[6]
Li Z F, Jing Y L, Zhou Y W. Multi-band integrated quantum well infrared photodetectors. International Conference on Infrared Millimeter and Terahertz Waves, 2018
[7]
Wu Y, Liu H M, Li P Z. Dual-band quantum well infrared photodetector with metallic structure. Proc SPIE, 2018, 10697
[8]
Rogalski A. Infrared detectors: an overview. Infrared Phys Technol, 2002, 43, 187 doi: 10.1016/S1350-4495(02)00140-8
[9]
Haran T L, James J C, Lane S E, et al. Quantum efficiency and spatial noise tradeoffs for III–V focal plane arrays. Infrared Phys Technol, 2019, 97, 309 doi: 10.1016/j.infrared.2019.01.001
[10]
Eker S U, Hostut M, Ergun Y, et al. A new approach to quantum well infrared photodetectors: Staircase-like quantum well and barriers. Infrared Phys Technol, 2006, 48, 101 doi: 10.1016/j.infrared.2005.04.009
[11]
Choi K K, Allen S C, Sun J G, et al. Small pitch resonator-QWIP detectors and arrays. Infrared Phys Technol, 2018, 94, 118 doi: 10.1016/j.infrared.2018.09.006
[12]
DeCuir E A Jr, Choi K K, Sun J, et al. Progress in resonator quantum well infrared photodetector (R-QWIP) focal plane arrays. Infrared Phys Technol, 2015, 70, 138 doi: 10.1016/j.infrared.2014.09.018
[13]
Su G X, Liu L, Zang W B, et al. Highly efficient dielectric optical incoupler for quantum well infrared photodetectors. IEEE Photonics Technol Lett, 2018, 30, 1167 doi: 10.1109/LPT.2018.2834927
[14]
Deng J, Shen G D, Lian P, et al. Optoelectronic transport mechanism from subband infrared absorption and tunneling regeneration. Curr Appl Phys, 2002, 2, 373 doi: 10.1016/S1567-1739(02)00142-6
[15]
Billaha A, Das M K . Influence of doping on the performance of GaAs/AlGaAs QWIP for long wavelength applications. Opto−Electron Rev, 2016, 24(1), 25 doi: 10.1515/oere-2016-0006
[16]
Deng J. Study on novel GaAs/AlGaAs multi-quantum wells infrared photodetecting mechanism and MOCVD epitaxy technology. Beijing: Beijing University of Technology, 2005, 79
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3374 Times PDF downloads: 46 Times Cited by: 0 Times

    History

    Received: 26 February 2019 Revised: 22 May 2019 Online: Accepted Manuscript: 13 June 2019Uncorrected proof: 18 June 2019Published: 09 December 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chaohui Li, Jun Deng, Weiye Sun, Leilei He, Jianjun Li, Jun Han, Yanli Shi. Improvement of tunnel compensated quantum well infrared detector[J]. Journal of Semiconductors, 2019, 40(12): 122902. doi: 10.1088/1674-4926/40/12/122902 C H Li, J Deng, W Y Sun, L L He, J J Li, J Han, Y L Shi, Improvement of tunnel compensated quantum well infrared detector[J]. J. Semicond., 2019, 40(12): 122902. doi: 10.1088/1674-4926/40/12/122902.Export: BibTex EndNote
      Citation:
      Chaohui Li, Jun Deng, Weiye Sun, Leilei He, Jianjun Li, Jun Han, Yanli Shi. Improvement of tunnel compensated quantum well infrared detector[J]. Journal of Semiconductors, 2019, 40(12): 122902. doi: 10.1088/1674-4926/40/12/122902

      C H Li, J Deng, W Y Sun, L L He, J J Li, J Han, Y L Shi, Improvement of tunnel compensated quantum well infrared detector[J]. J. Semicond., 2019, 40(12): 122902. doi: 10.1088/1674-4926/40/12/122902.
      Export: BibTex EndNote

      Improvement of tunnel compensated quantum well infrared detector

      doi: 10.1088/1674-4926/40/12/122902
      More Information
      • Corresponding author: Email: dengsu@sbjut.edu.cn
      • Received Date: 2019-02-26
      • Revised Date: 2019-05-22
      • Published Date: 2019-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return