SEMICONDUCTOR INTEGRATED CIRCUITS

245 GHz subharmonic receiver with on-chip antenna for gas spectroscopy application

Yanfei Mao1, Shiju E1, , Klaus Schmalz2 and J. Christoph Scheytt3

+ Author Affiliations

 Corresponding author: E Shiju. Email: eshiju@163.com

PDF

Turn off MathJax

Abstract: A 2nd transconductance subharmonic receiver for 245 GHz spectroscopy sensor applications has been proposed. The receiver consists of a 245 GHz on-chip folded dipole antenna, a CB (common base) LNA, a 2nd transconductance SHM (subharmonic mixer), and a 120 GHz push-push VCO with 1/64 divider. The receiver is fabricated in fT/fmax = 300/500 GHz SiGe:C BiCMOS technology. The receiver dissipates a low power of 288 mW. Integrated with the on-chip antenna, the receiver is measured on-chip with a conversion gain of 15 dB, a bandwidth of 15 GHz, and the chip will be utilized in PCB board design for gas spectroscopy sensor application.

Key words: SiGe BiCMOSCB LNA2nd transconductance subharmonic receiver245 GHzon-chip antennagas spectroscopy



[1]
Öjefors E, Heinemann B, Pfeiffer U R. A 220 GHz subharmonic receiver front end in a SiGe HBT technology. IEEE RFIC, 2011: 1
[2]
Grzyb J, Statnikov K, Sarmah N, et al. A 210–270 GHz circularly polarized FMCW radar with a single-lens-coupled SiGe HBT chip. IEEE Trans Terahertz Sci Technol, 2016, 6(6): 771 doi: 10.1109/TTHZ.2016.2602539
[3]
Schmalz K, Borngräber J, Wang R, et al. Subharmonic 245 GHz SiGe receiver with antenna. European Microwave Integrated Circuit Conference, 2013: 121
[4]
Schmalz K, Wang R, Mao Y F, et al. 245 GHz SiGe sensor system for gas spectroscopy. 44th European Microwave Conference, 2014: 644
[5]
Schmalz K, Borngräber J, Yilmaz S B, et al. Gas spectroscopy with 245 GHz circuits in SiGe BiCMOS and Frac-N PLL for frequency ramps. IEEE SENSORS, 2016: 1
[6]
Schmalz K, Rothbart N, Neumaier P F X, et al. Gas spectroscopy system for breath analysis at mm-wave/THz using SiGe BiCMOS circuits. IEEE Trans Microwave Theory Tech, 2017, 65(5): 1807 doi: 10.1109/TMTT.2017.2650915
[7]
Vazquez P R, Grzyb J, Sarmah N, et al. A 219–266 GHz fully-integrated direct conversion IQ receiver module in a SiGe HBT technology. IEEE EuMA, 2017: 261
[8]
Sarmah N, Grzyb J, Statnikov K, et al. A fully integrated 240 GHz direct conversion quadrature transmitter and receiver chipset in SiGe technology. IEEE Trans Microwave Theory Tech, 2016, 64(2): 562 doi: 10.1109/TMTT.2015.2504930
[9]
Eissaa M H, Awny A, Ko M, et al. A 220–275 GHz direct conversion receiver in 130 nm SiGe:C BiCMOS technology. IEEE Microwave Compon Wireless Compon Lett, 2017, 27(7): 675 doi: 10.1109/LMWC.2017.2711559
[10]
Yang X, Yang H, Zhang H Y, et al. A monolithic 60 GHz balanced low noise amplifier. J Semicond, 2015, 36(4): 045003 doi: 10.1088/1674-4926/36/4/045003
[11]
Zhong Y H, Zhang Y M, Zhang Y M, et al. A W-band two-stage cascade amplifier with gain of 25.7 dB. J Semicond, 2013, 34(12): 125003 doi: 10.1088/1674-4926/34/12/125003
[12]
Yao C F, Zhou M, Luo Y S, et al. W-band high output power schottky diode doublers with quartz substrate. J Semicond, 2013, 34(12): 125004 doi: 10.1088/1674-4926/34/12/125004
[13]
Wang C, Li Z Q, Li Q, et al. A broadband 47–67 GHz LNA with 17.3 dB gain in 65-nm CMOS. J Semicond, 2015, 36(10): 105010 doi: 10.1088/1674-4926/36/10/105010
[14]
Mao Y F, Schmalz K, Borngräber J, et al. 245 GHz subharmonic receiver in SiGe. IEEE MTT-S International Microwave Symposium Digest (MTT), 2013: 1
[15]
Schmalz K, Mao Y, Borngräber J, et al. Tunable 245 GHz transmitter and receiver in SiGe technology for gas spectroscopy. IEEE Electron Lett, 2014, 50(12): 881 doi: 10.1049/el.2014.0625
[16]
Schmalz K, Borngräber J, Debski W, et al. 245-GHz transmitter array in SiGe BiCMOS for gas spectroscopy. IEEE Trans Terahertz Sci Technol, 2016, 6(2): 318 doi: 10.1109/TTHZ.2015.2513278
[17]
Mao Y, Schmalz K, Borngräber J, et al. 245-GHz LNA, mixer, and subharmonic receiver in SiGe technology. IEEE Trans Microwave Theory Tech, 2012, 60(12): 3823 doi: 10.1109/TMTT.2012.2209447
[18]
Schmalz K, Ruoyu W, Borngräber J, et al. 245 GHz SiGe transmitter with integrated antenna and external PLL. IEEE IMS, 2013: 1
[19]
Rücker H, Heinemann B, Fox A. Half-terahertz SiGe BiCMOS Technology. IEEE SiRF, 2012: 133
Fig. 1.  Topology of the subharmonic receiver with on-chip antenna.

Fig. 3.  (Color online) Chip photo of the 2nd transconductance subharmonic receiver with on-chip antenna.

Fig. 4.  S21 of CB LNA.

Fig. 5.  Output power of the LO signal versus LO frequency.

Fig. 2.  Schematics of (a) one stage of the 4 stage 245 GHz CB LNA, (b) 2nd transconductance SHM, and (c) 120 GHz VCO.

Fig. 6.  (Color online) Conversion gain of the LNA-SHM chain versus RF frequency.

Fig. 7.  (Color online) The comparison between measured and simulated gain of the on-chip antenna.

Fig. 8.  (Color online) A photo of the on-chip measurement of subharmonic receivers with antenna.

Fig. 9.  Details upon setup of the on-chip measurement of subharmonic receivers with antenna.

Fig. 10.  Calculated conversion gain of receiver integrated with on-chip antenna.

Table 1.   Performance of the receiver.

Parameter Value
CB LNA 25 mA at 2 V
SHM 17 mA at 3 V
VCO 32 mA at 3.3 V
Divider 29.5 at 3 V
Total power dissipation 288 mW
Antenna gain[18] 7 dBi at 245 GHz
NF[14] 17 dB
Input referred 1 dB compression point[14] −24 dBm
Conversion gain 15 dB at 245 GHz
RF bandwidth 15 GHz
DownLoad: CSV

Table 2.   Comparison with state-of-the-art.

Parameter RF (GHz) ft/fmax (GHz) Integration level Conv. gain (dB) Power dissipation (mW) Input 1 dB CP (dBm) NF (dB) Bandwidth (GHz)
Ref. [1] 220 280/435 LNA, mixer 16 216 18 25
Refs. [3, 4] 245 300/500[19] LNA, SHM, 120 GHz VCO, divider, LO-Buffer, on-chip antenna 18 712.3 −25 18
Ref. [7] 240 350/550 Balun, ×16 multiplier chain, mixer, PA, quadrature coupler, buffer, on-chip antenna 7.8 915.8 11.3 47
Ref. [8] 240 350/550 Balun, ×16 multiplier chain, mixer, PA,LNA, on-chip antenna 10.5 986 −18 15 17
Ref. [9] 240 300/500 TIA, LO multiplier (with external LO) 13 500 18 55
This work 245 300/500 CB LNA, 120 GHz VCO, divider, 2nd transconductance SHM, on-chip antenna 15 288/107 (with/without VCO and divider) −24 17 15
DownLoad: CSV
[1]
Öjefors E, Heinemann B, Pfeiffer U R. A 220 GHz subharmonic receiver front end in a SiGe HBT technology. IEEE RFIC, 2011: 1
[2]
Grzyb J, Statnikov K, Sarmah N, et al. A 210–270 GHz circularly polarized FMCW radar with a single-lens-coupled SiGe HBT chip. IEEE Trans Terahertz Sci Technol, 2016, 6(6): 771 doi: 10.1109/TTHZ.2016.2602539
[3]
Schmalz K, Borngräber J, Wang R, et al. Subharmonic 245 GHz SiGe receiver with antenna. European Microwave Integrated Circuit Conference, 2013: 121
[4]
Schmalz K, Wang R, Mao Y F, et al. 245 GHz SiGe sensor system for gas spectroscopy. 44th European Microwave Conference, 2014: 644
[5]
Schmalz K, Borngräber J, Yilmaz S B, et al. Gas spectroscopy with 245 GHz circuits in SiGe BiCMOS and Frac-N PLL for frequency ramps. IEEE SENSORS, 2016: 1
[6]
Schmalz K, Rothbart N, Neumaier P F X, et al. Gas spectroscopy system for breath analysis at mm-wave/THz using SiGe BiCMOS circuits. IEEE Trans Microwave Theory Tech, 2017, 65(5): 1807 doi: 10.1109/TMTT.2017.2650915
[7]
Vazquez P R, Grzyb J, Sarmah N, et al. A 219–266 GHz fully-integrated direct conversion IQ receiver module in a SiGe HBT technology. IEEE EuMA, 2017: 261
[8]
Sarmah N, Grzyb J, Statnikov K, et al. A fully integrated 240 GHz direct conversion quadrature transmitter and receiver chipset in SiGe technology. IEEE Trans Microwave Theory Tech, 2016, 64(2): 562 doi: 10.1109/TMTT.2015.2504930
[9]
Eissaa M H, Awny A, Ko M, et al. A 220–275 GHz direct conversion receiver in 130 nm SiGe:C BiCMOS technology. IEEE Microwave Compon Wireless Compon Lett, 2017, 27(7): 675 doi: 10.1109/LMWC.2017.2711559
[10]
Yang X, Yang H, Zhang H Y, et al. A monolithic 60 GHz balanced low noise amplifier. J Semicond, 2015, 36(4): 045003 doi: 10.1088/1674-4926/36/4/045003
[11]
Zhong Y H, Zhang Y M, Zhang Y M, et al. A W-band two-stage cascade amplifier with gain of 25.7 dB. J Semicond, 2013, 34(12): 125003 doi: 10.1088/1674-4926/34/12/125003
[12]
Yao C F, Zhou M, Luo Y S, et al. W-band high output power schottky diode doublers with quartz substrate. J Semicond, 2013, 34(12): 125004 doi: 10.1088/1674-4926/34/12/125004
[13]
Wang C, Li Z Q, Li Q, et al. A broadband 47–67 GHz LNA with 17.3 dB gain in 65-nm CMOS. J Semicond, 2015, 36(10): 105010 doi: 10.1088/1674-4926/36/10/105010
[14]
Mao Y F, Schmalz K, Borngräber J, et al. 245 GHz subharmonic receiver in SiGe. IEEE MTT-S International Microwave Symposium Digest (MTT), 2013: 1
[15]
Schmalz K, Mao Y, Borngräber J, et al. Tunable 245 GHz transmitter and receiver in SiGe technology for gas spectroscopy. IEEE Electron Lett, 2014, 50(12): 881 doi: 10.1049/el.2014.0625
[16]
Schmalz K, Borngräber J, Debski W, et al. 245-GHz transmitter array in SiGe BiCMOS for gas spectroscopy. IEEE Trans Terahertz Sci Technol, 2016, 6(2): 318 doi: 10.1109/TTHZ.2015.2513278
[17]
Mao Y, Schmalz K, Borngräber J, et al. 245-GHz LNA, mixer, and subharmonic receiver in SiGe technology. IEEE Trans Microwave Theory Tech, 2012, 60(12): 3823 doi: 10.1109/TMTT.2012.2209447
[18]
Schmalz K, Ruoyu W, Borngräber J, et al. 245 GHz SiGe transmitter with integrated antenna and external PLL. IEEE IMS, 2013: 1
[19]
Rücker H, Heinemann B, Fox A. Half-terahertz SiGe BiCMOS Technology. IEEE SiRF, 2012: 133
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3632 Times PDF downloads: 42 Times Cited by: 0 Times

    History

    Received: 25 September 2017 Revised: 27 December 2017 Online: Uncorrected proof: 19 July 2018Corrected proof: 01 November 2018Published: 13 December 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yanfei Mao, Shiju E, Klaus Schmalz, J. Christoph Scheytt. 245 GHz subharmonic receiver with on-chip antenna for gas spectroscopy application[J]. Journal of Semiconductors, 2018, 39(12): 125001. doi: 10.1088/1674-4926/39/12/125001 Y F Mao, S J E, K Schmalz, J C Scheytt, 245 GHz subharmonic receiver with on-chip antenna for gas spectroscopy application[J]. J. Semicond., 2018, 39(12): 125001. doi: 10.1088/1674-4926/39/12/125001.Export: BibTex EndNote
      Citation:
      Yanfei Mao, Shiju E, Klaus Schmalz, J. Christoph Scheytt. 245 GHz subharmonic receiver with on-chip antenna for gas spectroscopy application[J]. Journal of Semiconductors, 2018, 39(12): 125001. doi: 10.1088/1674-4926/39/12/125001

      Y F Mao, S J E, K Schmalz, J C Scheytt, 245 GHz subharmonic receiver with on-chip antenna for gas spectroscopy application[J]. J. Semicond., 2018, 39(12): 125001. doi: 10.1088/1674-4926/39/12/125001.
      Export: BibTex EndNote

      245 GHz subharmonic receiver with on-chip antenna for gas spectroscopy application

      doi: 10.1088/1674-4926/39/12/125001
      Funds:

      Project supported by the Zhejiang National Natural Science Foundation of China (No. LQ17F040001) and the Key Laboratory Open Project Fund of Southeast University, China (No. K201817).

      More Information
      • Corresponding author: E Shiju. Email: eshiju@163.com
      • Received Date: 2017-09-25
      • Revised Date: 2017-12-27
      • Published Date: 2018-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return