ARTICLES

Facile fabrication of heterostructure with p-BiOCl nanoflakes and n-ZnO thin film for UV photodetectors

Longxing Su1, 2, Weixin Ouyang1 and Xiaosheng Fang1,

+ Author Affiliations

 Corresponding author: Xiaosheng Fang, xshfang@fudan.edu.cn

PDF

Turn off MathJax

Abstract: Herein, high-quality n-ZnO film layer on c-sapphire and well-crystallized tetragonal p-BiOCl nanoflakes on Cu foil are prepared, respectively. According to the absorption spectra, the bandgaps of n-ZnO and p-BiOCl are confirmed as ~3.3 and ~3.5 eV, respectively. Subsequently, a p-BiOCl/n-ZnO heterostructural photodetector is constructed after a facile mechanical bonding and post annealing process. At –5 V bias, the photocurrent of the device under 350 nm irradiation is ~800 times higher than that in dark, which indicates its strong UV light response characteristic. However, the on/off ratio of In–ZnO–In photodetector is ~20 and the Cu–BiOCl–Cu photodetector depicts very weak UV light response. The heterostructure device also shows a short decay time of 0.95 s, which is much shorter than those of the devices fabricated from pure ZnO thin film and BiOCl nanoflakes. The p-BiOCl/n-ZnO heterojunction photodetector provides a promising pathway to multifunctional UV photodetectors with fast response, high signal-to-noise ratio, and high selectivity.

Key words: ZnO thin filmBiOCl nanoflakesheterostuctureUV photodetector



[1]
Chen H Y, Liu K W, Hu L F, et al. New concept ultraviolet photodetectors. Mater Today, 2015, 18(9), 493 doi: 10.1016/j.mattod.2015.06.001
[2]
Lou Z, Yang X L, Chen H R, et al. Flexible ultraviolet photodetectors based on ZnO-SnO2 heterojunction nanowire arrays. J Semicond, 2018, 39(2), 024002 doi: 10.1088/1674-4926/39/2/024002
[3]
Su L X, Yang W, Cai J, et al. Self-powered ultraviolet photodetectors driven by built-in electric field. Small, 2017, 13(45), 1701687 doi: 10.1002/smll.201701687
[4]
Xu X J, Chen J X, Cai S, et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv Mater, 2018, 30(43), 1803165 doi: 10.1002/adma.201803165
[5]
Sang L W, Liao M Y, Sumiya M. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors, 2013, 13(8), 10482 doi: 10.3390/s130810482
[6]
Li SY, Zhang Y, Yang W, et al. 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors. Adv Mater, 2020, 32(7), 1905443 doi: 10.1002/adma.201905443
[7]
Konstantatos G, Levina, L, Fischer A, et al. Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano Lett, 2008, 8(5), 1446 doi: 10.1021/nl080373e
[8]
Jin Y Z, Wang J P, Sun B Q, et al. Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett, 2008, 8(6), 1649 doi: 10.1021/nl0803702
[9]
Zhao B, Wang F, Chen H Y, et al. An ultrahigh responsivity (9.7 mA W–1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv Funct Mater, 2017, 27(17), 1700264 doi: 10.1002/adfm.201700264
[10]
Kong W Y, Wu G A, Wang K Y, et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv Mater, 2016, 28(48), 10725 doi: 10.1002/adma.201604049
[11]
Chen X M, Liu K W, Zhang Z Z, et al. A self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction. ACS Appl Mater Inter, 2016, 8(6), 4185 doi: 10.1021/acsami.5b11956
[12]
Pratiyush A S, Krishnamoorthy S, Solanke S V, et al. High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector. Appl Phys Lett, 2017, 110(22), 221107 doi: 10.1063/1.4984904
[13]
Posada F G, Songmuang R, Hertog M D, et al. Room-temperature photodetection dynamics of single GaN nanowires. Nano Lett, 2012, 12(1), 172 doi: 10.1021/nl2032684
[14]
Butuna B, Tut T, Ulker E, et al. High-performance visible-blind GaN-based p–i–n photodetectors. Appl Phys Lett, 2008, 92(3), 033507 doi: 10.1063/1.2837645
[15]
Xu G Y, Salvador A, Kim W, et al. High speed, low noise ultraviolet photodetectors based on GaN p–i–n and AlGaN(p)-GaN(i)-GaN(n) structures. Appl Phys Lett, 1997, 71(15), 2154 doi: 10.1063/1.119366
[16]
Zheng L X, Yu P P, Hu K, et al. Scalable-production, self-powered TiO2 nanowell-organic hybrid UV photodetectors with tunable performances. ACS Appl Mater Inter, 2016, 8(49), 33924 doi: 10.1021/acsami.6b11012
[17]
Li X D, Gao C T, Duan H G, et al. Nanocrystalline TiO2 film based photoelectrochemical cell as self-powered UV-photodetector. Nano Energy, 2012, 1(4), 640 doi: 10.1016/j.nanoen.2012.05.003
[18]
Patel M, Kim H S, Kim J. All transparent metal oxide ultraviolet photodetector. Adv Electron Mater, 2015, 1(11), 1500232 doi: 10.1002/aelm.201500232
[19]
Chen Z, Li B R, Mo X M, et al. Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3. Appl Phys Lett, 2017, 110(12), 123504 doi: 10.1063/1.4978765
[20]
Cai J, Xu X J, Su L X, et al. Self-powered n-SnO2/p-CuZnS core-shell microwire UV photodetector with optimized performance. Adv Opt Mater, 2018, 6(15), 1800213 doi: 10.1002/adom.201800213
[21]
Xu X J, Shukla S, Liu Y, et al. Solution-processed transparent self-powered p-CuS-ZnS/n-ZnO UV Photodiode. Phys Status Solidi RRL, 2018, 12(2), 1700381 doi: 10.1002/pssr.201700381
[22]
Su L X, Zhang Q L, Wu T Z, et al. High-performance zero-bias ultraviolet photodetector based on p-GaN/n-ZnO heterojunction. Appl Phys Lett, 2014, 105(7), 072106 doi: 10.1063/1.4893591
[23]
Su L X, Zhu Y, Yong D Y, et al. Wide range bandgap modulation based on ZnO-based alloys and fabrication of solar blind UV detectors with high rejection ratio. ACS Appl Mater Inter, 2014, 6(16), 14152 doi: 10.1021/am503427u
[24]
Moon T H, Jeong M C, Lee W, et al. The fabrication and characterization of ZnO UV detector. Appl Surf Sci, 2005, 240(1–4), 280 doi: 10.1016/j.apsusc.2004.06.149
[25]
Wang Z N, Yu R M, Wang X F, et al. Ultrafast response p-Si/n-ZnO heterojunction ultraviolet detector based on pyro-phototronic effect. Adv Mater, 2016, 28(32), 6880 doi: 10.1002/adma.201600884
[26]
Liang S, Sheng H, Liu Y, et al. ZnO Schottky ultraviolet photodetectors. J Cryst Growth, 2001, 225(2–5), 110 doi: 10.1016/S0022-0248(01)00830-2
[27]
Pearton S J, Norton D P, Ip K, et al. Recent progress in processing and properties of ZnO. Prog Mater Sci, 2005, 50(3), 293 doi: 10.1016/j.pmatsci.2004.04.001
[28]
Özgüra Ü, Alivov Y I, Liu C, et al. A comprehensive review of ZnO and related devices. J Appl Phys, 2005, 98(4), 041301 doi: 10.1063/1.1992666
[29]
Shen H, Shan C, Li B, et al. Reliable self-powered highly spectrum-selective ZnO ultraviolet photodetectors. Appl Phys Lett, 2013, 103, 232112 doi: 10.1063/1.4839495
[30]
Cho H D, Zakirov A S, Yuldashev S U, et al. Photovoltaic device on a single ZnO nanowire p –n homojunction. Nanotechnology, 2012, 23(11), 115401 doi: 10.1088/0957-4484/23/11/115401
[31]
Hu K, Teng F, Zheng L X, et al. Binary response Se/ZnO p–n heterojunction UV photodetectorrnwith high on/off ratio and fast speed. Laser Photonics Rev, 2017, 11(1), 1600257 doi: 10.1002/lpor.201600257
[32]
Chen H Y, Yu P P, Zhang Z M, et al. Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small, 2016, 12(42), 5809 doi: 10.1002/smll.201601913
[33]
Li J, Li H, Zhan G, et al. Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc Chem Res, 2017, 50(1), 112 doi: 10.1021/acs.accounts.6b00523
[34]
Huang X Y, Li B, Guo H. Synthesis, photoluminescence, cathodoluminescence and thermal properties of novel Tb3+-doped BiOCl green-emitting phosphors. J Alloy Compd, 2017, 695(25), 2773 doi: 10.1016/j.jallcom.2016.11.224
[35]
Zhang Y W, Xu X H, Xing Y, et al. Growth and electronic transport property of layered BiOCl microplates. Adv Mater Interfaces, 2015, 2(12), 1500194 doi: 10.1002/admi.201500194
[36]
Dutta S, Das T, Datta S. Impact of bi-axial strain on structural, electronic and optical properties of photo-catalytic bulk bismuth oxy-halides. Phys Chem Chem Phys, 2018, 20(1), 103 doi: 10.1039/C7CP07366F
[37]
Dash A, Sarkar S, Adusumalli V N K B, et al. Microwave synthesis, photoluminescence, and photocatalytic activity of PVA-functionalized Eu3+ -doped BiOX (X = Cl, Br, I) nanoflakes. Langmuir, 2014, 30(5), 1401 doi: 10.1021/la403996m
[38]
Li Y J, Wang Q, Liu B C, et al. The {001} facets-dependent superior photocatalytic activities of BiOCl nanosheets under visible light irradiation. Appl Surf Sci, 2015, 349(15), 957 doi: 10.1016/j.apsusc.2015.05.100
[39]
Tripathi G K, Kurchania R. Photocatalytic behavior of BiOX (X = Cl/Br, Cl/I and Br/I) composites/heterogeneous nanostructures with organic dye. Opt Quant Electron, 2017, 49(6), 203 doi: 10.1007/s11082-017-1042-3
[40]
Cheng H F, Huang B B, Dai Y. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale, 2014, 6(4), 2009 doi: 10.1039/c3nr05529a
[41]
Yu Y X, Ouyang W X, Zhang W D. Photoelectrochemical property of the BiOBr-BiOI/ZnO heterostructures with tunable bandgap. J Solid State Electrochem, 2014, 18(6), 1743 doi: 10.1007/s10008-014-2402-6
[42]
Teng F, Ouyang W X, Li Y M, et al. Novel structure for high performance UV photodetector based on BiOCl/ZnO hybrid film. Small, 2017, 13(22), 1700156 doi: 10.1002/smll.201700156
Fig. 1.  (Color online) (a) XRD pattern of ZnO thin film. (b) XRD patterns of BiOCl on Cu foil substrate and Cu foil. (c) Optical absorption spectra of BiOCl nanoflakes and ZnO thin film.

Fig. 2.  SEM images of BiOCl on Cu foil at different levels of magnification.

Fig. 3.  (Color online) (a) Top view AFM image of ZnO thin film at a scale of 5 × 5 μm2. (b) Section profile of ZnO thin film. (c) 3D AFM image of ZnO thin film.

Fig. 4.  (a) TEM image, (b) HRTEM image, and (c) SAED pattern of the BiOCl nanoflakes samples.

Fig. 5.  (Color online) (a) Schematic diagram of the p-BiOCl/n-ZnO photodetector with back-side light irradiation. (b) I–V curve of In–ZnO–In device in dark. (c) I–V curve of p-BiOCl/n-ZnO photodetector in dark, inset is the I–V curves of the device in dark and under 350 nm light illumination at logarithmic scale. (d) I–V curve of Cu–BiOCl–Cu device in dark. (e) Logarithmic scale I–V curves of In–ZnO–In device in dark and under 350 nm light illumination. (f) Logarithmic scale I–V curves of Cu-BiOCl-Cu device in dark and under 350 nm light illumination.

Fig. 6.  (Color online) The photoresponse spectra of the p-BiOCl/n-ZnO photodetector at different (a) negative biases and (b) positive biases. (c) Schematic energy band diagram of the device.

Fig. 7.  (Color online) (a) Time response (“on” and “off” states) characteristic of the p-BiOCl/n-ZnO photodetector under 350 nm (0.304 mW/cm2), 400 nm (0.386 mW/cm2), and 450 nm (0.426 mW/cm2) light illumination at –3 V. (b) Normalized time response of the p-BiOCl/n-ZnO photodetector under 350 nm (0.304 mW/cm2) illumination at –3 V. (c) Single period time response of the In–ZnO–In photodetector under 350 nm (0.304 mW/cm2) illumination at –3 V. (d) Single period time response of the Cu–BiOCl–Cu photodetector under 350 nm (0.304 mW/cm2) illumination at 3 V.

[1]
Chen H Y, Liu K W, Hu L F, et al. New concept ultraviolet photodetectors. Mater Today, 2015, 18(9), 493 doi: 10.1016/j.mattod.2015.06.001
[2]
Lou Z, Yang X L, Chen H R, et al. Flexible ultraviolet photodetectors based on ZnO-SnO2 heterojunction nanowire arrays. J Semicond, 2018, 39(2), 024002 doi: 10.1088/1674-4926/39/2/024002
[3]
Su L X, Yang W, Cai J, et al. Self-powered ultraviolet photodetectors driven by built-in electric field. Small, 2017, 13(45), 1701687 doi: 10.1002/smll.201701687
[4]
Xu X J, Chen J X, Cai S, et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv Mater, 2018, 30(43), 1803165 doi: 10.1002/adma.201803165
[5]
Sang L W, Liao M Y, Sumiya M. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors, 2013, 13(8), 10482 doi: 10.3390/s130810482
[6]
Li SY, Zhang Y, Yang W, et al. 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors. Adv Mater, 2020, 32(7), 1905443 doi: 10.1002/adma.201905443
[7]
Konstantatos G, Levina, L, Fischer A, et al. Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano Lett, 2008, 8(5), 1446 doi: 10.1021/nl080373e
[8]
Jin Y Z, Wang J P, Sun B Q, et al. Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett, 2008, 8(6), 1649 doi: 10.1021/nl0803702
[9]
Zhao B, Wang F, Chen H Y, et al. An ultrahigh responsivity (9.7 mA W–1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv Funct Mater, 2017, 27(17), 1700264 doi: 10.1002/adfm.201700264
[10]
Kong W Y, Wu G A, Wang K Y, et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv Mater, 2016, 28(48), 10725 doi: 10.1002/adma.201604049
[11]
Chen X M, Liu K W, Zhang Z Z, et al. A self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction. ACS Appl Mater Inter, 2016, 8(6), 4185 doi: 10.1021/acsami.5b11956
[12]
Pratiyush A S, Krishnamoorthy S, Solanke S V, et al. High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector. Appl Phys Lett, 2017, 110(22), 221107 doi: 10.1063/1.4984904
[13]
Posada F G, Songmuang R, Hertog M D, et al. Room-temperature photodetection dynamics of single GaN nanowires. Nano Lett, 2012, 12(1), 172 doi: 10.1021/nl2032684
[14]
Butuna B, Tut T, Ulker E, et al. High-performance visible-blind GaN-based p–i–n photodetectors. Appl Phys Lett, 2008, 92(3), 033507 doi: 10.1063/1.2837645
[15]
Xu G Y, Salvador A, Kim W, et al. High speed, low noise ultraviolet photodetectors based on GaN p–i–n and AlGaN(p)-GaN(i)-GaN(n) structures. Appl Phys Lett, 1997, 71(15), 2154 doi: 10.1063/1.119366
[16]
Zheng L X, Yu P P, Hu K, et al. Scalable-production, self-powered TiO2 nanowell-organic hybrid UV photodetectors with tunable performances. ACS Appl Mater Inter, 2016, 8(49), 33924 doi: 10.1021/acsami.6b11012
[17]
Li X D, Gao C T, Duan H G, et al. Nanocrystalline TiO2 film based photoelectrochemical cell as self-powered UV-photodetector. Nano Energy, 2012, 1(4), 640 doi: 10.1016/j.nanoen.2012.05.003
[18]
Patel M, Kim H S, Kim J. All transparent metal oxide ultraviolet photodetector. Adv Electron Mater, 2015, 1(11), 1500232 doi: 10.1002/aelm.201500232
[19]
Chen Z, Li B R, Mo X M, et al. Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3. Appl Phys Lett, 2017, 110(12), 123504 doi: 10.1063/1.4978765
[20]
Cai J, Xu X J, Su L X, et al. Self-powered n-SnO2/p-CuZnS core-shell microwire UV photodetector with optimized performance. Adv Opt Mater, 2018, 6(15), 1800213 doi: 10.1002/adom.201800213
[21]
Xu X J, Shukla S, Liu Y, et al. Solution-processed transparent self-powered p-CuS-ZnS/n-ZnO UV Photodiode. Phys Status Solidi RRL, 2018, 12(2), 1700381 doi: 10.1002/pssr.201700381
[22]
Su L X, Zhang Q L, Wu T Z, et al. High-performance zero-bias ultraviolet photodetector based on p-GaN/n-ZnO heterojunction. Appl Phys Lett, 2014, 105(7), 072106 doi: 10.1063/1.4893591
[23]
Su L X, Zhu Y, Yong D Y, et al. Wide range bandgap modulation based on ZnO-based alloys and fabrication of solar blind UV detectors with high rejection ratio. ACS Appl Mater Inter, 2014, 6(16), 14152 doi: 10.1021/am503427u
[24]
Moon T H, Jeong M C, Lee W, et al. The fabrication and characterization of ZnO UV detector. Appl Surf Sci, 2005, 240(1–4), 280 doi: 10.1016/j.apsusc.2004.06.149
[25]
Wang Z N, Yu R M, Wang X F, et al. Ultrafast response p-Si/n-ZnO heterojunction ultraviolet detector based on pyro-phototronic effect. Adv Mater, 2016, 28(32), 6880 doi: 10.1002/adma.201600884
[26]
Liang S, Sheng H, Liu Y, et al. ZnO Schottky ultraviolet photodetectors. J Cryst Growth, 2001, 225(2–5), 110 doi: 10.1016/S0022-0248(01)00830-2
[27]
Pearton S J, Norton D P, Ip K, et al. Recent progress in processing and properties of ZnO. Prog Mater Sci, 2005, 50(3), 293 doi: 10.1016/j.pmatsci.2004.04.001
[28]
Özgüra Ü, Alivov Y I, Liu C, et al. A comprehensive review of ZnO and related devices. J Appl Phys, 2005, 98(4), 041301 doi: 10.1063/1.1992666
[29]
Shen H, Shan C, Li B, et al. Reliable self-powered highly spectrum-selective ZnO ultraviolet photodetectors. Appl Phys Lett, 2013, 103, 232112 doi: 10.1063/1.4839495
[30]
Cho H D, Zakirov A S, Yuldashev S U, et al. Photovoltaic device on a single ZnO nanowire p –n homojunction. Nanotechnology, 2012, 23(11), 115401 doi: 10.1088/0957-4484/23/11/115401
[31]
Hu K, Teng F, Zheng L X, et al. Binary response Se/ZnO p–n heterojunction UV photodetectorrnwith high on/off ratio and fast speed. Laser Photonics Rev, 2017, 11(1), 1600257 doi: 10.1002/lpor.201600257
[32]
Chen H Y, Yu P P, Zhang Z M, et al. Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small, 2016, 12(42), 5809 doi: 10.1002/smll.201601913
[33]
Li J, Li H, Zhan G, et al. Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc Chem Res, 2017, 50(1), 112 doi: 10.1021/acs.accounts.6b00523
[34]
Huang X Y, Li B, Guo H. Synthesis, photoluminescence, cathodoluminescence and thermal properties of novel Tb3+-doped BiOCl green-emitting phosphors. J Alloy Compd, 2017, 695(25), 2773 doi: 10.1016/j.jallcom.2016.11.224
[35]
Zhang Y W, Xu X H, Xing Y, et al. Growth and electronic transport property of layered BiOCl microplates. Adv Mater Interfaces, 2015, 2(12), 1500194 doi: 10.1002/admi.201500194
[36]
Dutta S, Das T, Datta S. Impact of bi-axial strain on structural, electronic and optical properties of photo-catalytic bulk bismuth oxy-halides. Phys Chem Chem Phys, 2018, 20(1), 103 doi: 10.1039/C7CP07366F
[37]
Dash A, Sarkar S, Adusumalli V N K B, et al. Microwave synthesis, photoluminescence, and photocatalytic activity of PVA-functionalized Eu3+ -doped BiOX (X = Cl, Br, I) nanoflakes. Langmuir, 2014, 30(5), 1401 doi: 10.1021/la403996m
[38]
Li Y J, Wang Q, Liu B C, et al. The {001} facets-dependent superior photocatalytic activities of BiOCl nanosheets under visible light irradiation. Appl Surf Sci, 2015, 349(15), 957 doi: 10.1016/j.apsusc.2015.05.100
[39]
Tripathi G K, Kurchania R. Photocatalytic behavior of BiOX (X = Cl/Br, Cl/I and Br/I) composites/heterogeneous nanostructures with organic dye. Opt Quant Electron, 2017, 49(6), 203 doi: 10.1007/s11082-017-1042-3
[40]
Cheng H F, Huang B B, Dai Y. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale, 2014, 6(4), 2009 doi: 10.1039/c3nr05529a
[41]
Yu Y X, Ouyang W X, Zhang W D. Photoelectrochemical property of the BiOBr-BiOI/ZnO heterostructures with tunable bandgap. J Solid State Electrochem, 2014, 18(6), 1743 doi: 10.1007/s10008-014-2402-6
[42]
Teng F, Ouyang W X, Li Y M, et al. Novel structure for high performance UV photodetector based on BiOCl/ZnO hybrid film. Small, 2017, 13(22), 1700156 doi: 10.1002/smll.201700156

20090013supp.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4011 Times PDF downloads: 78 Times Cited by: 0 Times

    History

    Received: 21 September 2020 Revised: 19 October 2020 Online: Accepted Manuscript: 31 October 2020Uncorrected proof: 03 November 2020Published: 01 May 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Longxing Su, Weixin Ouyang, Xiaosheng Fang. Facile fabrication of heterostructure with p-BiOCl nanoflakes and n-ZnO thin film for UV photodetectors[J]. Journal of Semiconductors, 2021, 42(5): 052301. doi: 10.1088/1674-4926/42/5/052301 L X Su, W X Ouyang, X S Fang, Facile fabrication of heterostructure with p-BiOCl nanoflakes and n-ZnO thin film for UV photodetectors[J]. J. Semicond., 2021, 42(5): 052301. doi: 10.1088/1674-4926/42/5/052301.Export: BibTex EndNote
      Citation:
      Longxing Su, Weixin Ouyang, Xiaosheng Fang. Facile fabrication of heterostructure with p-BiOCl nanoflakes and n-ZnO thin film for UV photodetectors[J]. Journal of Semiconductors, 2021, 42(5): 052301. doi: 10.1088/1674-4926/42/5/052301

      L X Su, W X Ouyang, X S Fang, Facile fabrication of heterostructure with p-BiOCl nanoflakes and n-ZnO thin film for UV photodetectors[J]. J. Semicond., 2021, 42(5): 052301. doi: 10.1088/1674-4926/42/5/052301.
      Export: BibTex EndNote

      Facile fabrication of heterostructure with p-BiOCl nanoflakes and n-ZnO thin film for UV photodetectors

      doi: 10.1088/1674-4926/42/5/052301
      More Information
      • Author Bio:

        Longxing Su is a research assistant professor in School of Physical Science and Technology at Shanghaitech University, China. He received his joint-supervised Ph.D. degree from the Sun Yat-Sen University and UC Riverside in 2015. His current research topic mainly focuses on inorganic/organic semiconductor based optoelectronic devices, photoelectronic synergetic catalysis, and power devices

        Xiaosheng Fang is currently a professor in the Department of Materials Science, Fudan University, China. His current research involves the controlled fabrication, novel properties, and optoelectronic applications of inorganic semiconductors, especially with a focus on II-VI inorganic semiconductors and high-performance UV photodetectors

      • Corresponding author: xshfang@fudan.edu.cn
      • Received Date: 2020-09-21
      • Revised Date: 2020-10-19
      • Published Date: 2021-05-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return