REVIEWS

Electrospun flexible sensor

Qi Liu1, Seeram Ramakrishna1, 2 and Yun-Ze Long1,

+ Author Affiliations

 Corresponding author: Yun-Ze Long, E-mail: yunze.long@163.com or yunze.long@qdu.edu.cn

PDF

Turn off MathJax

Abstract: Flexible sensors have received wide attention because of their ability to adapt to a variety of complex environments. Electrospinning technology has significant advantages in the preparation of flexible sensors. This paper summarizes the progress in the preparation of flexible sensors by electrospinning. Sensors that respond to light, stress, and gas are presented separately. Finally, some directions for electrospinning and flexible sensors are discussed.

Key words: electrospinningsensornanofibers



[1]
Zheng J, Long Y Z, Sun B, et al. Polymer nanofibers prepared by low-voltage near-field electrospinning. Chin Phys B, 2012, 21(4), 048102 doi: 10.1088/1674-1056/21/4/048102
[2]
Zheng J, Sun B, Long Y Z, et al. Fabrication of nanofibers by low-voltage near-field electrospinning. Adv Mater Res, 2012, 486, 60 doi: 10.4028/www.scientific.net/AMR.486.60
[3]
He X X, Zheng J, Yu G F, et al. Near-field electrospinning: progress and applications. J Phys Chem C, 2017, 121(16), 8663 doi: 10.1021/acs.jpcc.6b12783
[4]
Si W Y, Zhang H D, Liu Y J, et al. Fabrication and pressure sensing analysis of ZnO/PVDF composite microfiber arrays by low-voltage near-field electrospinning. Chem J Chin Univ-Chin, 2017, 38(6), 997 doi: 10.7503/cjcu20160847
[5]
You M H, Wang X X, Yan X, et al. A self-powered flexible hybrid piezoelectric-pyroelectric nanogenerator based on non-woven nanofiber membranes. J Mater Chem A, 2018, 6(8), 3500 doi: 10.1039/C7TA10175A
[6]
Sui J X, Wang X X, Song C, et al. Preparation and low-temperature electrical and magnetic properties of La0.33Pr0.34Ca0.33MnO3 nanofibers via electrospinning. J Magnet Magnet Mater, 2018, 467, 74 doi: 10.1016/j.jmmm.2018.07.060
[7]
Shen H, Li L, Xu D. Preparation of one-dimensional SnO2–In2O3 nano-heterostructures and their gas-sensing property. RSC Adv, 2017, 7(53), 33098 doi: 10.1039/C6RA28520A
[8]
Chen S, Long Y Z, Zhang H D, et al. Fabrication of ultrathin In2O3 hollow fibers for UV light sensing. Phys Scrip, 2014, 89(11), 115808 doi: 10.1088/0031-8949/89/11/115808
[9]
Chen S, Yu M, Han W P, et al. Electrospun anatase TiO2 nanorods for flexible optoelectronic devices. Rsc Adv, 2014, 4(86), 46152 doi: 10.1039/C4RA07943D
[10]
You M H, Yan X, Zhang J, et al. Colorimetric humidity sensors based on electrospun polyamide/CoCl2 nanofibrous membranes. Nanoscale Res Lett, 2017, 12, 360 doi: 10.1186/s11671-017-2139-0
[11]
Pyo J Y, Cho W J. In-plane-gate a-IGZO thin-film transistor for high-sensitivity pH sensor applications. Sens Actuators B, 2018, 276, 101 doi: 10.1016/j.snb.2018.08.087
[12]
Li S, Zhang J, Ju D D, et al. Flexible inorganic composite nanofibers with carboxyl modification for controllable drug delivery and enhanced optical monitoring functionality. Chem Eng J, 2018, 350, 645 doi: 10.1016/j.cej.2018.05.166
[13]
Zhang J, Li S, Ju D D, et al. Flexible inorganic core-shell nanofibers endowed with tunable multicolor upconversion fluorescence for simultaneous monitoring dual drug delivery. Chem Eng J, 2018, 349, 554 doi: 10.1016/j.cej.2018.05.112
[14]
Chen S, Liu G S, He H W, et al. Physical structure induced hydrophobicity analyzed from electrospinning and coating polyvinyl butyral films. Adv Conden Matter Phys, 2019, 2019, 6179456 doi: https://doi.org/10.1155/2019/6179456
[15]
Liu G S, Yan X, Yan F F, et al. In situ electrospinning iodine-based fibrous meshes for antibacterial wound dressing. Nanoscale Res Lett, 2018, 13(1), 309 doi: 10.1186/s11671-018-2733-9
[16]
Yan X, Yu M, Ramakrishna S, et al. Advances in portable electrospinning devices for in situ delivery of personalized wound care. Nanoscale, 2019 doi: 10.1039/C9NR02802A
[17]
Liu H, Zhang Z G, Wang X X, et al. Highly flexible Fe2O3/TiO2 composite nanofibers for photocatalysis and utraviolet detection. J Phys Chem Solids, 2018, 121, 236 doi: 10.1016/j.jpcs.2018.05.019
[18]
Zhang J, Wang X X, B Zhang B, et al. In situ assembly of well-dispersed Ag nanoparticles throughout electrospun alginate nanofibers for monitoring human breath-smart fabrics. Acs Appl Mater Interfaces, 2018, 10(23), 19863 doi: 10.1021/acsami.8b01718
[19]
Zhang H D, Yu M, Zhang J C, et al. Fabrication and photoelectric properties of La-doped p-type ZnO nanofibers and crossed p–n homojunctions by electrospinning. Nanoscale, 2015, 7(23), 10513 doi: 10.1039/C5NR02191J
[20]
Liu S, L Liu S L, Long Y Z, et al. Fabrication of p-type ZnO nanofibers by electrospinning for field-effect and rectifying devices. Appl Phys Lett, 2014, 104(4), 042105 doi: 10.1063/1.4863409
[21]
Liu Y J, Zhang H D, Zhang J, et al. Effects of Ce doping and humidity on UV sensing properties of electrospun ZnO nanofibers. J Appl Phys, 2017, 122(10), 105102 doi: 10.1063/1.5000443
[22]
Liu X, Gu L L, Zhang Q P, et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat Commun, 2014, 5, 4007 doi: 10.1038/ncomms5007
[23]
Zhang H D, Liu Y J, Zhang J, et al. Electrospun ZnO/SiO2 hybrid nanofibers for flexible pressure sensor. J Phys D, 2018, 51(8), 085102 doi: 10.1088/1361-6463/aaa82d
[24]
Tong L, Wang X X, He X X, et al. Electrically conductive TPU nanofibrous composite with high stretchability for flexible strain sensor. Nanoscale Res Lett, 2018, 13, 86 doi: 10.1186/s11671-018-2499-0
[25]
Yu G F, Yan X, Yu M, et al. Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization. Nanoscale, 2016, 8(5), 2944 doi: 10.1039/C5NR08618C
[26]
Hu W P, Zhang B, Zhang J, et al. Ag/alginate nanofiber membrane for flexible electronic skin. Nanotechnology, 2017, 28(44), 445502 doi: 10.1088/1361-6528/aa8746
[27]
Zhang H D, Long Y Z, Li Z J, et al. Fabrication of comb-like ZnO nanostructures for room-temperature CO gas sensing application. Vacuum, 2014, 101, 113 doi: 10.1016/j.vacuum.2013.07.046
[28]
Zhang H D, Yan X, Zhang Z H, et al. Electrospun PEDOT:PSS/PVP nanofibers for CO gas sensing with quartz crystal microbalance technique. Int J Polym Sci, 2016, 2016, 3021353 doi: 10.1155/2016/3021353
[29]
Zhang H D, Tang C C, Long Y Z, et al. High-sensitivity gas sensors based on arranged polyaniline/PMMA composite fibers. Sens Actuators A, 2014, 219, 123 doi: 10.1016/j.sna.2014.09.005
[30]
Sheng C H, Zhang H D, S Chen S, et al. Fabrication, structural and humidity sensing properties of BaTiO3 nanofibers via electrospinning. Int J Modern Phys B, 2015, 29(12), 1550066 doi: 10.1142/S0217979215500666
[31]
Zhang Q Q, Wang X X, J Fu J, et al. Electrospinning of ultrafine conducting polymer composite nanofibers with diameter less than 70 nm as high sensitive gas sensor. Materials, 2018, 11(9), 1744 doi: 10.3390/ma11091744
[32]
Wang X X, Song W Z, You M H, et al. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. Acs Nano, 2018, 12(8), 8588 doi: 10.1021/acsnano.8b04244
[33]
Guo W Z, Tan C X, Shi K M, et al. Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring. Nanoscale, 2018, 10, 17751 doi: 10.1039/C8NR05292A
[34]
Qiu H J, Song W Z, Wang X X, et al. A calibration-free self-powered sensor for vital sign monitoring and finger tap communication based on wearable triboelectric nanogenerator. Nano Energy, 2019, 58, 536 doi: 10.1016/j.nanoen.2019.01.069
[35]
Huang C, Chen S, Lai C, et al. Electrospun polymer nanofibres with small diameters. Nanotechnology, 2006, 17(6), 1558 doi: 10.1088/0957-4484/17/6/004
[36]
Yang R, He J, Xu L, et al. Bubble-electrospinning for fabricating nanofibers. Polymer, 2009, 50(24), 5846 doi: 10.1016/j.polymer.2009.10.021
[37]
Jian S, Zhu J, Jiang S, et al. Nanofibers with diameter below one nanometer from electrospinning. RSC Adv, 2018, 8(9), 4794 doi: 10.1039/C7RA13444D
Fig. 1.  (Color online) (a) Flowchart for preparing conductive nanofibers by surface modification[18]. (b) Flowchart for preparing conductive nanofibers by heat treatment[17].

Fig. 2.  (Color online) (a) Schematic diagram of field effect test device for zinc oxide fiber. (b) Field effect characteristics of Ce-doped ZnO[21]. (c) IV curve of La-doped ZnO at different irradiation intensities. (d) Field effect characteristics of La-doped ZnO[19].

Fig. 3.  (Color online) (a) Schematic of the printing unit. (b) Time-domain optical response of the ZnO fiber array. (c) IV curve of the ZnO fiber array. (d) Flexible photodetector. (e) Optical photo of the nanowire array and silver electrode with a scale of 30 microns[22].

Fig. 4.  (Color online) (a) IV curves for PANI/TPU sensors under different tensions. (b) Responses when fingers are bent[24]. (c–f) Fibers with different patterned collectors[25].

Fig. 5.  (Color online) (a) Electrical performance of the sensor at different pressures. (b) Current change of the sensor at different pressures. (c) Response of the sensor to human respiration. (d) Response of the sensor to “Nano” and “Perfect”. (e) Electrode array diagram. (f) Pressure distribution[26].

Fig. 6.  (Color online) (a) PEDOT:PSS/PVP composite nanofibers response to CO. (b) PEDOT:PSS/PVP composite nanofibers response to different concentrations of CO[28]. (c) Polyaniline/PMMA nanofibers in response to different concentrations of ammonia. (d) Sensitivity of polyaniline/PMMA nanofibers[29]. (e) Humidity response of BaTiO3 fiber. (f) Recovery performance of BaTiO3 fiber[30].

Fig. 7.  (Color online) (a) SEM image of ultrafine fiber. (b) Particle size distribution of ultrafine fiber. (c, d) Ammonia response curve of traditional electrospun fiber. (e, f) Ammonia response curve of microfiber[31].

Fig. 8.  (Color online) (a) Photo of the mask combined with the sensor. (b) Response in normal and running state. (c) Response in joy state. (d) Response in sad state. (e) Response in sleep state. (f) Response in normal breathing (NB) and hard to breathe (HB) conditions[18].

Fig. 9.  (Color online) (a) Piezoelectric properties of PVDF under pressure. (b) Piezoelectric properties of PVDF during bending. (c) Pyroelectric characteristics of PVDF. (d) Mixed output of piezoelectric signals and pyroelectric signals of PVDF[5].

Fig. 10.  (Color online) (a) Electronic skin map and wiring diagram. (b) Piezoelectric properties of electronic skin under pressure. (c) Piezoelectric properties of electronic skin during bending. (d) Pyroelectric characteristics of electronic skin[32].

Fig. 11.  (Color online) (a) Pressure profile. (b) Temperature profile. (c) Output of electronic skin after short-circuit of adjacent components. (d) Output signal of direct short-circuit of resistor unit. (e) Output of resistor unit in short-circuit condition of adjacent components[32].

Fig. 12.  (Color online) (a) Bluetooth device schematic. (b) Software interface diagram. (c) Wireless signal when squatting. (d) Wireless signal while walking. (e) Wireless signal during running. (f) Effect of BaTiO3 content on piezoelectricity. (g) 3% BaTiO3 The piezoelectricity of the PVDF fiber membrane at different frequency impacts[33].

Fig. 13.  (Color online) (a) Triboelectric nanogenerator structure diagram. (b) Open circuit voltage output. (c) Breathing output signal. (d) Finger click output signal[34].

[1]
Zheng J, Long Y Z, Sun B, et al. Polymer nanofibers prepared by low-voltage near-field electrospinning. Chin Phys B, 2012, 21(4), 048102 doi: 10.1088/1674-1056/21/4/048102
[2]
Zheng J, Sun B, Long Y Z, et al. Fabrication of nanofibers by low-voltage near-field electrospinning. Adv Mater Res, 2012, 486, 60 doi: 10.4028/www.scientific.net/AMR.486.60
[3]
He X X, Zheng J, Yu G F, et al. Near-field electrospinning: progress and applications. J Phys Chem C, 2017, 121(16), 8663 doi: 10.1021/acs.jpcc.6b12783
[4]
Si W Y, Zhang H D, Liu Y J, et al. Fabrication and pressure sensing analysis of ZnO/PVDF composite microfiber arrays by low-voltage near-field electrospinning. Chem J Chin Univ-Chin, 2017, 38(6), 997 doi: 10.7503/cjcu20160847
[5]
You M H, Wang X X, Yan X, et al. A self-powered flexible hybrid piezoelectric-pyroelectric nanogenerator based on non-woven nanofiber membranes. J Mater Chem A, 2018, 6(8), 3500 doi: 10.1039/C7TA10175A
[6]
Sui J X, Wang X X, Song C, et al. Preparation and low-temperature electrical and magnetic properties of La0.33Pr0.34Ca0.33MnO3 nanofibers via electrospinning. J Magnet Magnet Mater, 2018, 467, 74 doi: 10.1016/j.jmmm.2018.07.060
[7]
Shen H, Li L, Xu D. Preparation of one-dimensional SnO2–In2O3 nano-heterostructures and their gas-sensing property. RSC Adv, 2017, 7(53), 33098 doi: 10.1039/C6RA28520A
[8]
Chen S, Long Y Z, Zhang H D, et al. Fabrication of ultrathin In2O3 hollow fibers for UV light sensing. Phys Scrip, 2014, 89(11), 115808 doi: 10.1088/0031-8949/89/11/115808
[9]
Chen S, Yu M, Han W P, et al. Electrospun anatase TiO2 nanorods for flexible optoelectronic devices. Rsc Adv, 2014, 4(86), 46152 doi: 10.1039/C4RA07943D
[10]
You M H, Yan X, Zhang J, et al. Colorimetric humidity sensors based on electrospun polyamide/CoCl2 nanofibrous membranes. Nanoscale Res Lett, 2017, 12, 360 doi: 10.1186/s11671-017-2139-0
[11]
Pyo J Y, Cho W J. In-plane-gate a-IGZO thin-film transistor for high-sensitivity pH sensor applications. Sens Actuators B, 2018, 276, 101 doi: 10.1016/j.snb.2018.08.087
[12]
Li S, Zhang J, Ju D D, et al. Flexible inorganic composite nanofibers with carboxyl modification for controllable drug delivery and enhanced optical monitoring functionality. Chem Eng J, 2018, 350, 645 doi: 10.1016/j.cej.2018.05.166
[13]
Zhang J, Li S, Ju D D, et al. Flexible inorganic core-shell nanofibers endowed with tunable multicolor upconversion fluorescence for simultaneous monitoring dual drug delivery. Chem Eng J, 2018, 349, 554 doi: 10.1016/j.cej.2018.05.112
[14]
Chen S, Liu G S, He H W, et al. Physical structure induced hydrophobicity analyzed from electrospinning and coating polyvinyl butyral films. Adv Conden Matter Phys, 2019, 2019, 6179456 doi: https://doi.org/10.1155/2019/6179456
[15]
Liu G S, Yan X, Yan F F, et al. In situ electrospinning iodine-based fibrous meshes for antibacterial wound dressing. Nanoscale Res Lett, 2018, 13(1), 309 doi: 10.1186/s11671-018-2733-9
[16]
Yan X, Yu M, Ramakrishna S, et al. Advances in portable electrospinning devices for in situ delivery of personalized wound care. Nanoscale, 2019 doi: 10.1039/C9NR02802A
[17]
Liu H, Zhang Z G, Wang X X, et al. Highly flexible Fe2O3/TiO2 composite nanofibers for photocatalysis and utraviolet detection. J Phys Chem Solids, 2018, 121, 236 doi: 10.1016/j.jpcs.2018.05.019
[18]
Zhang J, Wang X X, B Zhang B, et al. In situ assembly of well-dispersed Ag nanoparticles throughout electrospun alginate nanofibers for monitoring human breath-smart fabrics. Acs Appl Mater Interfaces, 2018, 10(23), 19863 doi: 10.1021/acsami.8b01718
[19]
Zhang H D, Yu M, Zhang J C, et al. Fabrication and photoelectric properties of La-doped p-type ZnO nanofibers and crossed p–n homojunctions by electrospinning. Nanoscale, 2015, 7(23), 10513 doi: 10.1039/C5NR02191J
[20]
Liu S, L Liu S L, Long Y Z, et al. Fabrication of p-type ZnO nanofibers by electrospinning for field-effect and rectifying devices. Appl Phys Lett, 2014, 104(4), 042105 doi: 10.1063/1.4863409
[21]
Liu Y J, Zhang H D, Zhang J, et al. Effects of Ce doping and humidity on UV sensing properties of electrospun ZnO nanofibers. J Appl Phys, 2017, 122(10), 105102 doi: 10.1063/1.5000443
[22]
Liu X, Gu L L, Zhang Q P, et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat Commun, 2014, 5, 4007 doi: 10.1038/ncomms5007
[23]
Zhang H D, Liu Y J, Zhang J, et al. Electrospun ZnO/SiO2 hybrid nanofibers for flexible pressure sensor. J Phys D, 2018, 51(8), 085102 doi: 10.1088/1361-6463/aaa82d
[24]
Tong L, Wang X X, He X X, et al. Electrically conductive TPU nanofibrous composite with high stretchability for flexible strain sensor. Nanoscale Res Lett, 2018, 13, 86 doi: 10.1186/s11671-018-2499-0
[25]
Yu G F, Yan X, Yu M, et al. Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization. Nanoscale, 2016, 8(5), 2944 doi: 10.1039/C5NR08618C
[26]
Hu W P, Zhang B, Zhang J, et al. Ag/alginate nanofiber membrane for flexible electronic skin. Nanotechnology, 2017, 28(44), 445502 doi: 10.1088/1361-6528/aa8746
[27]
Zhang H D, Long Y Z, Li Z J, et al. Fabrication of comb-like ZnO nanostructures for room-temperature CO gas sensing application. Vacuum, 2014, 101, 113 doi: 10.1016/j.vacuum.2013.07.046
[28]
Zhang H D, Yan X, Zhang Z H, et al. Electrospun PEDOT:PSS/PVP nanofibers for CO gas sensing with quartz crystal microbalance technique. Int J Polym Sci, 2016, 2016, 3021353 doi: 10.1155/2016/3021353
[29]
Zhang H D, Tang C C, Long Y Z, et al. High-sensitivity gas sensors based on arranged polyaniline/PMMA composite fibers. Sens Actuators A, 2014, 219, 123 doi: 10.1016/j.sna.2014.09.005
[30]
Sheng C H, Zhang H D, S Chen S, et al. Fabrication, structural and humidity sensing properties of BaTiO3 nanofibers via electrospinning. Int J Modern Phys B, 2015, 29(12), 1550066 doi: 10.1142/S0217979215500666
[31]
Zhang Q Q, Wang X X, J Fu J, et al. Electrospinning of ultrafine conducting polymer composite nanofibers with diameter less than 70 nm as high sensitive gas sensor. Materials, 2018, 11(9), 1744 doi: 10.3390/ma11091744
[32]
Wang X X, Song W Z, You M H, et al. Bionic single-electrode electronic skin unit based on piezoelectric nanogenerator. Acs Nano, 2018, 12(8), 8588 doi: 10.1021/acsnano.8b04244
[33]
Guo W Z, Tan C X, Shi K M, et al. Wireless piezoelectric devices based on electrospun PVDF/BaTiO3 NW nanocomposite fibers for human motion monitoring. Nanoscale, 2018, 10, 17751 doi: 10.1039/C8NR05292A
[34]
Qiu H J, Song W Z, Wang X X, et al. A calibration-free self-powered sensor for vital sign monitoring and finger tap communication based on wearable triboelectric nanogenerator. Nano Energy, 2019, 58, 536 doi: 10.1016/j.nanoen.2019.01.069
[35]
Huang C, Chen S, Lai C, et al. Electrospun polymer nanofibres with small diameters. Nanotechnology, 2006, 17(6), 1558 doi: 10.1088/0957-4484/17/6/004
[36]
Yang R, He J, Xu L, et al. Bubble-electrospinning for fabricating nanofibers. Polymer, 2009, 50(24), 5846 doi: 10.1016/j.polymer.2009.10.021
[37]
Jian S, Zhu J, Jiang S, et al. Nanofibers with diameter below one nanometer from electrospinning. RSC Adv, 2018, 8(9), 4794 doi: 10.1039/C7RA13444D
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4323 Times PDF downloads: 67 Times Cited by: 0 Times

    History

    Received: 16 August 2019 Revised: Online: Accepted Manuscript: 23 September 2019Uncorrected proof: 24 September 2019Published: 08 November 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Qi Liu, Seeram Ramakrishna, Yun-Ze Long. Electrospun flexible sensor[J]. Journal of Semiconductors, 2019, 40(11): 111603. doi: 10.1088/1674-4926/40/11/111603 Q Liu, S Ramakrishna, Y Z Long, Electrospun flexible sensor[J]. J. Semicond., 2019, 40(11): 111603. doi: 10.1088/1674-4926/40/11/111603.Export: BibTex EndNote
      Citation:
      Qi Liu, Seeram Ramakrishna, Yun-Ze Long. Electrospun flexible sensor[J]. Journal of Semiconductors, 2019, 40(11): 111603. doi: 10.1088/1674-4926/40/11/111603

      Q Liu, S Ramakrishna, Y Z Long, Electrospun flexible sensor[J]. J. Semicond., 2019, 40(11): 111603. doi: 10.1088/1674-4926/40/11/111603.
      Export: BibTex EndNote

      Electrospun flexible sensor

      doi: 10.1088/1674-4926/40/11/111603
      More Information
      • Corresponding author: E-mail: yunze.long@163.com or yunze.long@qdu.edu.cn
      • Received Date: 2019-08-16
      • Published Date: 2019-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return